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Supp. 1 Experiments612

We evaluated spike population dynamics from recordings in rats, cats and monkeys. The rat613

experimental protocols were approved by the Institutional Animal Care and Use Committee of614

Rutgers University (Mizuseki et al., 2009a,b). The cat experiments were performed in accor-615

dance with guidelines established by the Canadian Council for Animal Care (Blanche, 2009).616

The monkey experiments were performed according to the German Law for the Protection of617

Experimental Animals, and were approved by the Regierungspräsidium Darmstadt. The proce-618

dures also conformed to the regulations issued by the NIH and the Society for Neuroscience.619

The spike recordings from the rats and the cats were obtained from the NSF-founded CRCNS620

data sharing website (Blanche and Swindale, 2006, Blanche, 2009, Mizuseki et al., 2009a,b).621

Rat experiments. In rats the spikes were recorded in CA1 of the right dorsal hippocampus622

during an open field task. We used the first two data sets of each recording group (ec013.527,623

ec013.528, ec014.277, ec014.333, ec015.041, ec015.047, ec016.397, ec016.430). The data-sets pro-624

vided sorted spikes from 4 shanks (ec013) or 8 shanks (ec014, ec015, ec016), with 31 (ec013), 64625

(ec014, ec015) or 55 (ec016) channels. We used both, spikes of single and multi units, because626

knowledge about the identity and the precise number of neurons is not required for the MR627

estimator. More details on the experimental procedure and the data-sets proper can be found628

in Mizuseki et al. (2009a,b).629

Cat experiments. Spikes in cat visual cortex were recorded by Tim Blanche in the laboratory630

of Nicholas Swindale, University of British Columbia (Blanche, 2009). We used the data set pvc3,631

i.e. recordings of 50 sorted single units in area 18 (Blanche and Swindale, 2006). We used that632

part of the experiment in which no stimuli were presented, i.e., the spikes reflected spontaneous633

activity in the visual cortex of the anesthetized cat. Because of potential non-stationarities at634

the beginning and end of the recording, we omitted data before 25 s and after 320 s of recording.635

Details on the experimental procedures and the data proper can be found in Blanche (2009),636

Blanche and Swindale (2006).637
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Monkey experiments. The monkey data are the same as in Pipa et al. (2009), Priesemann638

et al. (2014). In these experiments, spikes were recorded simultaneously from up to 16 single-639

ended micro-electrodes (⌀ = 80 𝜇m) or tetrodes (⌀ = 96 𝜇m) in lateral prefrontal cortex of640

three trained macaque monkeys (M1: 6 kg ♀; M2: 12 kg ♂; M3: 8 kg ♀). The electrodes had641

impedances between 0.2 and 1.2 M𝛺 at 1 kHz, and were arranged in a square grid with inter642

electrode distances of either 0.5 or 1.0 mm. The monkeys performed a visual short term memory643

task. The task and the experimental procedure is detailed in Pipa et al. (2009). We analyzed644

spike data from 12 experimental sessions comprising almost 12.000 trials (M1: 5 sessions; M2: 4645

sessions; M3: 3 sessions). 6 out of 12 sessions were recorded with tetrodes. Spike sorting on the646

tetrode data was performed using a Bayesian optimal template matching approach as described647

in Franke et al. (2010) using the “Spyke Viewer” software (Pröpper and Obermayer, 2013). On the648

single electrode data, spikes were sorted with a multi-dimensional PCA method (Smart Spike649

Sorter by Nan-Hui Chen).650

Supp. 2 Analysis651

Temporal binning. For each recording, we collapsed the spike times of all recorded neurons652

into one single train of population spike counts 𝑎𝑡, where 𝑎𝑡 denotes how many neurons spiked653

in the 𝑡𝑡ℎ time bin 𝛥𝑡. If not indicated otherwise, we used 𝛥𝑡 = 4 ms, reflecting the propagation654

time of spikes from one neuron to the next.655

Multistep regression estimation of 𝑚̂. From these time series, we estimated 𝑚̂ using the656

MR estimator described in Wilting and Priesemann (2018). For 𝑘 = 1, … , 𝑘max, we calculated657

the linear regression slope 𝑟𝑘 𝛥𝑡 for the linear statistical dependence of 𝑎𝑡+𝑘 upon 𝑎𝑡. From658

these slopes, we estimated 𝑚̂ following the relation 𝑟𝛿𝑡 = 𝑏 ⋅ 𝑚̂𝛿𝑡/𝛥𝑡, where 𝑏 is an (unknown)659

parameter that depends on the higher moments of the underlying process and the degree of660

subsampling. However, for an estimation of 𝑚 no further knowledge about 𝑏 is required.661

Throughout this study we chose 𝑘max = 2500 (corresponding to 10 s) for the rat record-662

ings, 𝑘max = 150 (600 ms) for the cat recording, and 𝑘max = 500 (2000 ms) for the monkey663

recordings, assuring that 𝑘max was always in the order of multiple intrinsic network timescales664

(i.e., autocorrelation times).665

In order to test for the applicability of a MR estimation, we used a set of conservative tests666

(Wilting and Priesemann, 2018), which found the expected exponential relation 𝑟𝛿𝑡 = 𝑏 𝑚𝛿𝑡/𝛥𝑡
667

in the majority of experimental recordings (14 out of 21, Fig. S1).668
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Avalanche size distributions. Avalanche sizes were determined similarly to the procedure

described in Priesemann et al. (2009, 2014). Assuming that individual avalanches are separated

in time, let {𝑡𝑖} indicate bins without activity, 𝑎𝑡𝑖
= 0. The size 𝑠𝑖 of one avalanche is defined

by the integrated activity between two subsequent bins with zero activity:

𝑠𝑖 =
𝑡𝑖+1

∑
𝑡=𝑡𝑖

𝑎𝑡. (S1)

From the sample {𝑠𝑖} of avalanche sizes, avalanche size distributions 𝑝(𝑠) were determined669

using frequency counts. For illustration, we applied logarithmic binning, i.e. exponentially in-670

creasing bin widths for 𝑠.671

For each experiments, these empirical avalanche size distributionswere compared to avalanche672

size distributions obtained in a similar fashion from three different matched models (see below673

for details). Model likelihoods 𝑙({𝑠𝑖}) | 𝑚) for all threemodels were calculated following Clauset674

et al. (2009), and we considered the likelihood ratio to determine the most likely model based675

on the observed data.676

ISI distributions, Fano factors and spike count cross-correlations. For each experiment677

and corresponding reverberating branchingmodel (subsampled to a single unit), ISI distributions678

were estimated by frequency counts of the differences between subsequent spike times for each679

channel.680

We calculated the single unit Fano factor 𝐹 = Var[𝑎𝑡]/⟨𝑎𝑡⟩ for the binned activity 𝑎𝑡 of681

each single unit, with the bin sizes indicated in the respective figures. Likewise, single unit Fano682

factors for the reverberating branching models were calculated from the subsampled and binned683

time series.684

From the binned single unit activities 𝑎1
𝑡 and 𝑎2

𝑡 of two units, we estimated the spike count685

cross correlation 𝑟sc = Cov(𝑎1
𝑡 , 𝑎2

𝑡 )/𝜎𝑎1
𝑡
𝜎𝑎2

𝑡
. The two samples 𝑎1

𝑡 and 𝑎2
𝑡 for the reverberating686

branching models were obtained by sampling two randomly chosen neurons.687

Supp. 3 Branching processes688

In a branching process (BP) with immigration (Harris, 1963, Heathcote, 1965, Pakes, 1971) each689

unit 𝑖 produces a random number 𝑦𝑡,𝑖 of units in the subsequent time step. Additionally, in each690

time step a random number ℎ𝑡 of units immigrates into the system (drive). Mathematically, BPs691

are defined as follows (Harris, 1963, Heathcote, 1965): Let 𝑦𝑡,𝑖 be independently and identically692
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distributed non-negative integer-valued random variables following a law 𝑌 with mean 𝑚 =693

⟨𝑌 ⟩ and variance 𝜎2 = Var[𝑌 ]. Further, 𝑌 shall be non-trivial, meaning it satisfies P[𝑌 = 0] >694

0 and P[𝑌 = 0] + P[𝑌 = 1] < 1. Likewise, let ℎ𝑡 be independently and identically distributed695

non-negative integer-valued random variables following a law 𝐻 with mean rate ℎ = ⟨𝐻⟩ and696

variance 𝜉2 = Var[𝐻]. Then the evolution of the BP 𝐴𝑡 is given recursively by697

𝐴𝑡+1 =
𝐴𝑡

∑
𝑖=1

𝑦𝑡,𝑖 + ℎ𝑡, (S2)

i.e. the number of units in the next generation is given by the offspring of all present units and698

those that were introduced to the system from outside.699

The stability of BPs is solely governed by the mean offspring 𝑚. In the subcritical state, 𝑚 <700

1, the population converges to a stationary distribution 𝐴∞ with mean ⟨𝐴∞⟩ = ℎ/(1 − 𝑚).701

At criticality (𝑚 = 1), 𝐴𝑡 asymptotically exhibits linear growth, while in the supercritical state702

(𝑚 > 1) it grows exponentially.703

We will now derive results for the mean, variance, and Fano factor of subcritical branching

processes. Following previous results, taking expectation values of both sides of Eq. (S2) yields

⟨𝐴𝑡+1⟩ = 𝑚⟨𝐴𝑡⟩ + ℎ. Because of stationarity ⟨𝐴𝑡+1⟩ = ⟨𝐴𝑡⟩ = ⟨𝐴∞⟩ and the mean activity

is given by

⟨𝐴∞⟩ = ℎ
1 − 𝑚. (S3)

In order to derive an expression for the variance of the stationary distribution, observe that by the704

theorem of total variance, Var[𝐴𝑡+1] = ⟨Var[𝐴𝑡+1 | 𝐴𝑡]⟩+Var[⟨𝐴𝑡+1 | 𝐴𝑡⟩], where ⟨⋅⟩ denotes705

the expected value, and 𝐴𝑡+1 | 𝐴𝑡 conditioning the random variable 𝐴𝑡+1 on 𝐴𝑡. Because 𝐴𝑡+1706

is the sum of independent random variables, the variances also sum: Var[𝐴𝑡+1 | 𝐴𝑡] = 𝜎2 𝐴𝑡 +707

𝜉2. Using the previous result for ⟨𝐴∞⟩ one then obtains708

Var[𝐴𝑡+1] = 𝜉2 + 𝜎2 ℎ
1 − 𝑚 + Var[𝑚𝐴𝑡 + ℎ] = 𝜉2 + 𝜎2 ℎ

1 − 𝑚 + 𝑚2Var[𝐴𝑡].

Again, in the stationary distribution Var[𝐴𝑡+1] = Var[𝐴𝑡] = Var[𝐴∞] which yields709
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Var[𝐴∞] = 1
1 − 𝑚2 (𝜉2 + 𝜎2 ℎ

1 − 𝑚) , (S4)

The Fano factor 𝐹𝐴𝑡
= Var[𝐴𝑡] / ⟨𝐴𝑡⟩ is easily computed from (S3) and (S4):710

𝐹𝐴𝑡
= 𝜉2

ℎ(1 + 𝑚) + 𝜎2

1 − 𝑚2 . (S5)

Interestingly, the mean rate, variance, and Fano factor all diverge when approaching criticality711

(given a constant input rate ℎ): ⟨𝐴∞⟩ → ∞, Var[𝐴∞] → ∞, and 𝐹𝐴𝑡
→ ∞ as 𝑚 → 1.712

These results were derived without assuming any particular law for 𝑌 or 𝐻 . Although the713

limiting behavior of BPs does not depend on it (Harris, 1963, Heathcote, 1965, Pakes, 1971), fixing714

particular laws allows to simplify these expressions further.715

We here chose Poisson distributions with means 𝑚 and ℎ for 𝑌 and 𝐻 respectively: 𝑦𝑡,𝑖 ∼
Poi(𝑚) and ℎ𝑡 ∼ Poi(ℎ). We chose these laws for two reasons: (1) Poisson distributions allow

for non-trivial offspring distributions with easy control of the branching ratio 𝑚 by only one

parameter. (2) For the brain, one might assume that each neuron is connected to 𝑘 postsynaptic

neurons, each of which is excited with probability 𝑝, motivating a binomial offspring distribution

with mean 𝑚 = 𝑘 𝑝. As in cortex 𝑘 is typically large and 𝑝 is typically small, the Poisson limit is

a reasonable approximation. Choosing these distributions, the variance and Fano factor become

Var[𝐴𝑡] = ℎ / ((1 − 𝑚)2(1 + 𝑚)),

𝐹𝐴𝑡
= 1 / (1 − 𝑚2). (S6)

Both diverge when approaching criticality (𝑚 = 1).716

Supp. 4 Subsampling717

A general notion of subsampling was introduced in Wilting and Priesemann (2018). The sub-718

sampled time series 𝑎𝑡 is constructed from the full process 𝐴𝑡 based on the three assumptions:719

(i) The sampling process does not interfere with itself, and does not change over time. Hence720

the realization of a subsample at one time does not influence the realization of a subsample at721

another time, and the conditional distribution of (𝑎𝑡|𝐴𝑡) is the same as (𝑎𝑡′ |𝐴𝑡′) if 𝐴𝑡 = 𝐴𝑡′ .722
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However, even if 𝐴𝑡 = 𝐴𝑡′ , the subsampled 𝑎𝑡 and 𝑎𝑡′ do not necessarily take the same value.723

(ii) The subsampling does not interfere with the evolution of 𝐴𝑡, i.e. the process evolves in-724

dependent of the sampling. (iii) On average 𝑎𝑡 is proportional to 𝐴𝑡 up to a constant term,725

⟨𝑎𝑡 | 𝐴𝑡⟩ = 𝛼𝐴𝑡 + 𝛽.726

In the spike recordings analyzed in this study, the states of a subset of neurons are observed727

by placing electrodes that record the activity of the same set of neurons over the entire record-728

ing. This implementation of subsampling translates to the general definition in the following729

manner: If 𝑛 out of all 𝑁 neurons are sampled, the probability to sample 𝑎𝑡 active neurons out730

of the actual 𝐴𝑡 active neurons follows a hypergeometric distribution, 𝑎𝑡 ∼ Hyp(𝑁, 𝑛, 𝐴𝑡). As731

⟨𝑎𝑡 | 𝐴𝑡 = 𝑗⟩ = 𝑗 𝑛 / 𝑁 , this representation satisfies the mathematical definition of subsam-732

pling with 𝛼 = 𝑛 / 𝑁 . Choosing this special implementation of subsampling allows to derive733

predictions for the Fano factor under subsampling and the spike count cross correlation. First,734

evaluate Var[𝑎𝑡] further in terms of 𝐴𝑡:735

Var[𝑎𝑡] = ⟨Var[𝑎𝑡 | 𝐴𝑡]⟩ + Var[⟨𝑎𝑡 | 𝐴𝑡⟩]

= 𝑛⟨𝐴𝑡
𝑁

𝑁 − 𝐴𝑡
𝑁

𝑁 − 𝑛
𝑁 − 1 ⟩ + Var[ 𝑛

𝑁 𝐴𝑡]

= 1
𝑁

𝑛
𝑁

𝑁 − 𝑛
𝑁 − 1 (𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴2

𝑡 ⟩) + 𝑛2

𝑁2 Var[𝐴𝑡]

= 𝑛
𝑁2

𝑁 − 𝑛
𝑁 − 1 (𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2) + ( 𝑛2

𝑁2 − 𝑛
𝑁2

𝑁 − 𝑛
𝑁 − 1 ) Var[𝐴𝑡]. (S7)

This expression precisely determines the variance Var[𝑎𝑡] under subsampling from the proper-736

ties ⟨𝐴𝑡⟩ and Var[𝐴𝑡] of the full process, and from the parameters of subsampling 𝑛 and 𝑁 . We737

now show that the Fano factor approaches and even falls below unity under strong subsampling,738

regardless of the underlying dynamical state 𝑚. In the limit of strong subsampling (𝑛 ≪ 𝑁 ) Eq.739

(S7) yields:740

Var[𝑎𝑡] ≈ 𝑛
𝑁2 (𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2) + 𝑛2 − 𝑛

𝑁2 Var[𝐴𝑡]. (S8)

Hence the subsampled Fano factor is given by741
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𝐹𝑎𝑡
= Var[𝑎𝑡]

⟨𝑎𝑡⟩ ≈ 1 − ⟨𝐴𝑡⟩
𝑁 + 𝑛 − 1

𝑁
Var[𝐴𝑡]

⟨𝐴𝑡⟩ = 1 −
⟨𝐴𝑡⟩ − (𝑛 − 1)𝐹𝐴𝑡

𝑁 . (S9)

Interestingly, when sampling a single unit (𝑛 = 1) the Fano factor of that unit becomes com-742

pletely independent of the Fano factor of the full process:743

𝐹𝑎𝑡
= 1 − ⟨𝐴𝑡⟩/𝑁 = 1 − ⟨𝑎𝑡⟩/𝑛 = 1 − 𝑅, (S10)

where 𝑅 = ⟨𝑎𝑡⟩/𝑛 is the mean rate of a single unit.744

Based on this implementation of subsampling, we derived analytical results for the cross-745

correlation between the activity of two units on the time scale of one time step. The pair of746

units is here represented by two independent samplings 𝑎𝑡 and ̃𝑎(𝑡) of a BP 𝐴𝑡 with 𝑛 = 1,747

i.e. each represents one single unit. Because both samplings are drawn from identical distri-748

butions, their variances are identical and hence the correlation coefficient is given by 𝑟sc =749

Cov(𝑎𝑡, ̃𝑎(𝑡)) /Var[𝑎𝑡]. Employing again the law of total expectation and using the indepen-750

dence of the two samplings, this can be evaluated:751

Cov(𝑎𝑡, ̃𝑎(𝑡)) = ⟨⟨𝑎𝑡 ̃𝑎(𝑡) | 𝐴𝑡⟩⟩𝐴𝑡
− ⟨⟨𝑎𝑡 | 𝐴𝑡⟩⟩2

𝐴𝑡
= 1

𝑁2 Var[𝐴𝑡], (S11)

with the first inner expectation being taken over the joint distribution of 𝑎𝑡 and ̃𝑎(𝑡). Using Eq.

(S8), one easily obtains

𝑟sc = Var[𝐴𝑡]
𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2 =

𝐹𝐴𝑡

𝑁 − ⟨𝐴𝑡⟩ =
𝐹𝐴𝑡

𝑁 (1 − 𝑅) (S12)

with the mean single unit rate 𝑅 = ⟨𝐴𝑡⟩/𝑁 . For subcritical systems, the Fano factor 𝐹𝐴𝑡
752

is much smaller than 𝑁 , and the rate is typically much smaller than 1. Therefore, the cross-753

correlation between single units is typically very small.754
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Figure S1: MR estimation for individual recording sessions. Reproduced from Wilting and Priese-
mann (2018). MR estimation is shown for every individual animal. The consistency checks are detailed in
Wilting and Priesemann (2018). Data from monkey were recorded in prefrontal cortex during an working
memory task. The third panel shows a oscillation of 𝑟𝑘 with a frequency of 50 Hz, corresponding to
measurement corruption due to power supply frequency. Data from anesthetized cat were recorded in
primary visual cortex. Data from rat were recorded in hippocampus during a foraging task. In addition
to a slow exponential decay, the slopes 𝑟𝑘 show the 𝜗-oscillations of 6 – 10 Hz present in hippocampus.
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Figure S2: Interspike interval distribution for individual recording sessions. Interspike interval
(ISI) distributions are shown for individual units of each recording (gray), for the average over units of
each recording (blue), as well as for thematchedmodels, either AI (green), in vivo-like (red), or near critical
(yellow). The insets show the corresponding coefficients of variation (CV). For every experiment AI and
in vivo-like models are virtually indistinguishable by the ISI distributions.
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Figure S3: Fano factors for individual recording sessions. Fano factors are shown for individual
single or multi units of every recording (gray boxplots, median / 25% – 75%, 2.5% – 97.5%), as well as for
the matched models, either AI (green), in vivo-like (red), or near critical (yellow).
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are shown for every neuron pair (gray) and the ensemble average (blue) of each recording, for bin sizes
from 1 ms to 2s. Cross correlations are also shown for the matched models, either AI (green), in vivo-like
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Figure S5: Activity distributions (4 ms bin size). Activity distributions are shown for every recording
for a bin size of 4 ms (blue). Activity distributions for the matched models, either AI (green), in vivo-like
(red), or near critical (yellow) are also shown. The color of the asterisk indicates which of the three models
yielded the highest likelihood for the data following Clauset et al. (2009).
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Figure S6: Activity distributions (40 ms bin size). Activity distributions are shown for every record-
ing, for a bin size of 40 ms (blue). Activity distributions for the matched models, either AI (green), in
vivo-like (red), or near critical (yellow) are also shown. The color of the asterisk indicates which of the
three models yielded the highest likelihood for the data following Clauset et al. (2009).
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Figure S7: Avalanche size distribution for individual recording sessions. Avalanche size distribu-
tions are shown for every recording (blue) and for matched models, either AI (green), in vivo-like (red), or
near critical (yellow). The color of the asterisk indicates which of the three models yielded the highest
likelihood for the data following Clauset et al. (2009).
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Figure S8: Avalanche duration distribution for individual recording sessions. Avalanche duration
distributions are shown for every recording (blue) and for matched models, either AI (green), in vivo-like
(red), or near critical (yellow).
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Figure S9: MR estimation from single neuron activity (cat). Modified fromWilting and Priesemann
(2018). MR estimation is used to estimate 𝑚̂ from the activity 𝑎𝑡 of a single units in cat visual cortex.
a. Each panel shows MR estimation for one of the 50 recorded units. Autocorrelations decay rapidly in
some units, but long-term correlations are present in the activity of most units. The consistency checks
are detailed in Wilting and Priesemann (2018). b. Histogram of the single unit branching ratios 𝑚̂, in-
ferred with the conventional estimator and usingMR estimation. The difference between these estimates
demonstrates the subsampling bias of the conventional estimator, and how it is overcome by MR esti-
mation. c. Histogram of single unit timescales with their median (gray dotted line) and the timescale of
the dynamics of the whole network (blue dotted line).
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Figure S10: Doubly stochastic model. Instead of a branching model, we here matched a doubly
stochastic process to the data. The rates evolved according to 𝑅𝑡+1 = 𝑚 𝑅𝑡+ℎ𝑡 where ℎ𝑡 is drawn from
a Poisson distribution. The actual activity is then drawn from a Poisson distribution according to 𝐴𝑡 ∼
Poi(𝑁 𝑅𝑡). Here, results for the experiment in cat visual cortex are shown. a Time evolution of 𝑅𝑡 and
𝐴𝑡. As the activity is not fed back into the evolution of 𝑅𝑡, the second step effectively adds measurement
noise to the underlying process. b The subsampled activity (50 out of 10,000, as in the branching models)
shows the expected autocorrelation function. c Any of the doubly stochastic processes underestimated
the spike count cross correlations. d Any of the doubly stochastic processes underestimated the single
unit Fano factors.
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Figure S11: Further predictions about network activity. a. Themodel predicts that the perturbation
decays exponentially with decay time 𝜏 = −𝛥𝑡/ log 𝑚. b The variance across trials of the perturbed
firing rate has a maximum, whose position depends on 𝑚. c. Depending on 𝑚, the model predicts the
distributions for the total number of extra spikes 𝑠𝛥 generated by the network following a single extra
spike. d. Likewise, the model predicts distributions of the duration 𝑑 of these perturbations. e. Variance
of the total perturbation size as a function of 𝑚. f. Variance of the total perturbation duration as a
function of 𝑚. g. Increase of the network firing rate as a function of the rate of extra neuron activations
for different 𝑚. h. Amplification (susceptibility) d𝑟/dℎ of the network as a function of the branching
ratio 𝑚.
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