SUPPLEMENTAL MATERIALS
Emergent Functional Network Effects in Parkinson Disease

Supplemental Methods

Patrticipants: Inclusion and Exclusion Criteria

PD was diagnosed based on clinical diagnostic criteria from the modified United Kingdom PD Society Brain Bank,
requiring clear motor response to levopdopa (Hughes et al., 1992). PD participants were excluded from the study based
on: neurologic diagnosis other than PD, head injury with loss of consciousness of > 5 minutes or neurologic sequelae,
presence of severe psychiatric disorders (e.g., schizophrenia), treatment with drugs that block or deplete dopaminergic
signaling, or inability to complete MRI. Dementia was assessed in all participants by Clinical Dementia Rating (CDR)
evaluation (Morris, 1993), with a global score of 0 indicating normal cognition, 0.5 indicating cognitive decline, and =1
indicating dementia. We did not include PD participants if they met criteria for dementia (CDR = 1 or a Mini-Mental Status
Examination score of < 24; 5 people with PD and dementia were excluded).

HC (age-matched) were recruited through the PD participants (e.g., spouses/partners), with the following additional
exclusion criteria: normal neurological examination, no family history of PD, normal cognition (CDR = 0), and no evidence
of pre-clinical Alzheimer’s disease (Sperling et al., 2011) (based on 3-amyloid PIB PET, (Mintun et al., 2006)). Five
controls were excluded based on elevated cortical $-amyloid levels.

Behavioral Assessments: Detailed Account of Tests
Where relevant, clinical, cognitive, and motor measures were compared between groups using two-sample two-tailed t-
tests or chi-squared measures (for differences in sex ratio).

Cognitive Assessment: Participants completed tests of memory (California Verbal Learning Test-Il, short form (Delis et al.,
2000); Logical Memory (Wechsler, 1997b)), attention (Digit Span (Wechsler, 1997a); Digit Symbol (Wechsler, 1997a)),
language (Boston Naming Test (Kaplan et al., 2001)), visual-spatial (Judgment of Line Orientation (Lezak, 2004); Spatial
Relations Test (Woodcock et al., 2001); Hooper Visual Organization Test (Hooper, 1983)) and executive function (Trail
Making Test (Lezak, 1995); Verbal Fluency (Delis et al., 2001); Stroop (Delis et al., 2001)). Age-adjusted scaled scores,
based on test manuals and published normative data (lvnik et al., 1996), were converted to Z-scores, averaged within
cognitive domains, then averaged across domains to create a global cognitive Z-score for each participant. PD
participants completed the neuropsychological evaluation while OFF medication to minimize the potential confound on
performance (Cools, 2006).

Motor Assessment : Movement disorder specialists rated motor severity using the Unified Parkinson Disease Rating Scale
motor evaluation (UPDRS-III) (Fahn et al., 1987) after overnight withdrawal of PD medications. Motor subscores were
computed as previously described (Campbell et al., 2015).

Data Preprocessing

FMRI data first underwent a standard set of preprocessing steps (Campbell et al., 2015; Fox et al., 2005; Hacker et al.,
2012), which included slice-timing correction, rigid-body motion correction, mode 1000 normalization, affine alignment to
the structural MRI scan, and affine alignment to an atlas template, created from equal numbers of PD and HC participants
to reduce systematically biased errors in the registration procedure (Buckner et al., 2004; Campbell et al., 2015).
Alignments were concatenated and applied as a single transform at the final step.
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Supplemental Table 1 (continued from previous page):

This table reviews previous results on functional connectivity differences in Parkinson’s disease. To be most comparable to our manuscript, references
were included in this review if they (1) included a comparison of PD vs. HC static functional connectivity, (2) had a multi-network scope (i.e., > 4 networks),
(3) included PD cases without dementia (given our focus on non-demented PD), (4) reported on functional connectivity results, not focusing exclusively on
graph metrics or feature weights from classifications. References were found based on literature searches, including a formal PubMed search with terms:
Parkinson AND “functional connectivity” AND fMRI AND (“resting-state” OR “resting state”) AND (“networks” OR “systems”). Gray rows represent papers
that focused on the differences between PD and HC such as ours, rather than on differences between subtypes of PD. Additional notes: * motion
censoring criteria are lenient as defined by (Power et al., 2014); ~ these references include some report or account of atrophy effects in PD.

Table References:

(Amboni et al., 2015; Baggio et al., 2014; Baggio et al., 2015; Campbell et al., 2015; Canu et al., 2015; Gorges et al., 2015; Guimaraes et al., 2016;
Imperiale et al., 2017; Ma et al., 2017a; Ma et al., 2017b; Madhyastha et al., 2015; Olde Dubbelink et al., 2014; Onu et al., 2015; Peraza et al., 2017,
Putcha et al., 2015; Tan et al., 2015; Vervoort et al., 2016; Wei et al., 2017)



PD HC PD vs. HC

Behavioral Measures Mean (SD) Mean (SD) p-value
Attention 0.30 (0.84) 0.65 (0.65) 0.01
Memory 0.41 (0.74) 0.83 (0.59) 0.02
Language 0.82 (0.96) 1.09 (0.86) 0.1
Visuospatial 0.60 (0.66) 0.79 (0.62) 0.1
Executive Function 0.24 (0.88) 0.59 (0.68) 0.02
Global Cognition 0.47 (0.59) 0.78 (0.44) 0.002

Supplemental Table 2: Cognitive Assessment. PD and HC z-scores on cognitive measures related to attention,
memory, language, visuospatial, and executive function, along with a summary measure of cognitive performance (“global
cognition”). Sample means and standard deviations (SD) are reported, as well as the p-value of the comparison between
groups. The attention, memory, and executive function z-scores were missing data from one participant, and the language
function z-score was missing for two participants.
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Supplemental Figure 1. Motion effects in PD and HC groups. (A) Mean Framewise Displacement (FD; see
Supplemental Methods for calculation) in each group did not differ significantly (p=0.63). (B) Percent of connections
significantly related to FD in PD and HCs. Both had less the 0.5% of connections related to motion. (C) Relationship
between distance and FD-FC correlation — note the fairly flat line, with similar pattern across the two groups.
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Supplemental Figure 2: Infomap in PD and HC participants. (A) Data-driven clustering solutions (using Infomap
(Rosvall and Bergstrom, 2008)) for large-scale networks in this group of HC participants. Different colors represent
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plot, but for PD participants. Note substantial similarity between PD and HC participants.
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Supplemental Figure 3: PD — HC FC difference matrix for 300 spherical ROIs from (Power et al., 2011; Seitzman et al.,
2017 SFN abstract). PD and HC exhibited significantly different matrices with this parcellation as well (p<0.001). Note the
similarity of these results to the results reported in Figure 2D in the manuscript, with prominent differences within and
between sensorimotor, thalamic, and cerebellar systems.
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PD_match HC PD_match vs. HC
Clinical Characteristics Mean (SD) Mean (SD) p-value
N 47 46 -
Sex (% male) 27.7 30.4 0.77
Age 65.3 (7.7) 63.8 (11.0) 0.45
Years of Education 14.9 (2.0) 14.8 (2.7) 0.82

Supplemental Figure 4: PD and HC matched groups for subject number, sex, age, and years of education. The PD
group was subsampled to approximately match the HC group for sex, years of education, and participant numbers (note
that age was already approximately matched; see table above). The figure shows the G* difference map between groups
(G*pp_match-G*He; p<0.001). Notably, the differences between the two groups were quite similar to those reported for the
full sample of PD.
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Supplemental Figure 5: Consistency of findings across split-half samples of data. (A) Distribution of p-values from
OODA run on 50 split-half samples of PD and HC data (mean+/-SD: p=0.02 +/- 0.03; median: p=0.008). (B) G* difference
matrices from the two halves of a split-half sampling are plotted (this iteration was selected as it had the median p-value

outcome of split-half samples). G* difference matrices were largely similar between the two halves, and were both
significant (p<0.05).
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Supplemental Figure 6: Analysis of FC differences between PD and HC. (A) The absolute magnitude of differences
between PD and controls; decreases in magnitude are shown in blue colors, increases in magnitude are shown in red
colors, and changes in direction are shown in black. (B) FC for each connection in the correlation matrix for HC and PD
participants, plotted against the unity line. Note that PD is associated with a flattening of FC, with negative values being
elevated toward 0 and positive values being diminished toward 0, and thus tending to appear more in the yellow triangles.
This was especially true of edges within the significant blocks (red) relative to other edges (gray) which stayed closer to

the unity line.
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Supplemental Figure 7: Striatal seed. FC correlation maps for the left caudate (top panel), left anterior putamen (middle
panel), and left posterior putamen (bottom panel) seeds (seeds shown on the far left, indicated with gray arrows), depicted
for PD participants (left column), HC participants (middle column), and the difference between the two (right column,
depicted in a t-statistic map in the volume and on the surface). Note the similarity between these results and other
previous investigations of altered striatal connectivity in PD (Campbell et al., 2015; Hacker et al., 2012). Black circles in
the t-statistic map indicate significant clusters (p<0.05, permutation based FWE correction, t>3.0). Cyan arrows highlight
motor increases with PD for each seed; purple arrows highlight prominent insular and dorsal anterior cingulate
(CO/salience) differences; additional differences were present in cerebellar and visual regions that did not pass cluster
correction at this threshold. FC patterns were analogous for right hemisphere seeds.
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Supplemental Figure 8: Relationship between block-FC and motor performance. (A) Full set of relationships
between UPDRS-III total (off medication) scores and FC within each permutation-selected block, with covariates for age,
sex, and years of education. Note that most cortical and subcortical motor regions show a negative relationship between
UPDRS-III score and FC, with the exceptions of SM-Reward and SM-cerebellar FC. Some weak positive relationships
between UPDRS-III and FC were also seen for relationships with sensory systems. (B) Scatter plots showing significant
correlations (FDR-corrected across blocks, p<0.05) for UPDRS-III total, and related significant correlations for the
bradykinesia subscale (note that the within-thalamus effect was marginally significant for UPDRS-III total, at
p(FDR)=0.08).
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Supplemental Figure 9: Relationship between block-FC and cognitive performance. (A) Full set of relationships

between cognitive scores and FC within each permutation-selected block, with covariates for age, sex, and years of
education. Note that relationships showed heterogeneous patterns, differing by cognitive test and block. (B) Scatter plots
showing significant correlations (FDR-corrected across blocks, p<0.05). PD participants shown in red; HC participants
shown in blue.
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