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Fig. S1. Stand-alone AIDA device. The imaging component consists of a dual-LED and CMOS image 
sensor. The device housing was fabricated in a photopolymer resin, and the door was fastened by 
magnets. The overall size is 11.8 cm (width) × 12.3 cm (length) × 15.6 cm (height).  
 
 
  



 

 

 
 
 

 
Fig. S2. Chromogenic substrate screening. (a) Absorbance spectra of 10 different chromogenic 
substrates were measured at different chromogen concentrations. The bottom photo shows the bright-
field image of the corresponding dilution series. (b) The absorbance levels of the 10 substrates were 
plotted at a wavelength range of 400 to 700 nm. HRP NovaRED and AP Blue displayed the largest 
spectral separation and the absorbance difference. (c) Choice of illumination wavelength. For red 
staining, the maximum contrast could be achieved at 475 nm illumination; for blue staining, at 620 nm 
illumination (dotted lines). LEDs with the closest emission wavelength (solid lines) were chosen.  



 

 

 
 
 

 
 
Fig. S3. Cancer cell capture with the quad-marker combination. Different breast cancer cell lines 
were tested for immunocapture: (a) T-47D and (b) SkBr3. Cells were introduced to a glass substrate 
coated with a “quad” cocktail of antibodies against HER2, EpCAM, EGFR, and MUC1. The control 
substrate was coated with isotype-matched IgG antibodies. More than 90% of cancer cells were 
captured on the quad-marker coated surface, whereas the non-specific binding was <10%. The capture 
rate for each experiment condition was obtained by analyzing four images. The data are displayed as 
mean ± SD.  
  



 

 

 
 

 
 
Fig. S4. Index matching strategy. (a) Different types of high refractive index mounting media were 
tested to reduce optical scattering from unstained cells. (b) We embedded cells in the media and 
imaged them at 470 nm and 625 nm illumination using AIDA. The absorbance of cells was obtained 
from numerical reconstruction of diffraction patterns. Using glycerol (80%) yielded the lowest 
absorbance (i.e., optically clear cells) at both illumination wavelengths. Each bar represents mean ± SD 
from 15 cells. (c) Representative images (diffraction and reconstruction) of unstained and stained cells 
embedded in PBS or 80% glycerol. (d) The absorbance of unstained and AP-Blue stained cells 
(BT4740) were measured in PBS or 80% glycerol media. The index-matching strategy significantly 
improved the signal contrast. Data are shown as mean ± SD from 33 cells. (e) Signal-to-noise ratio 
(SNR) and signal-to-background ratio (SBR) were compared between PBS and 80% glycerol media 
solution. Data are shown as mean ± SD from 33 cells.  



 

 

 

 
 
Fig. S5. Converting raw absorbances to dye concentrations. (a) Absorbances of serially diluted 
dyes (HRP Red, left; AP Blue, right) were measured at two illumination wavelengths (λILL = 470 and 
625 nm). The curves were fitted to obtain parameters for the total absorbance (A) at each illumination: 
A470 at λILL = 470 nm; A625 at λILL = 625 nm. (b) Two dyes (HRP Red and AP Blue) were mixed at 
different ratios (left), and their total absorbances (A470, A625) were measured. The concentration of each 
dye type was then estimated from measured absorbances (right).  
  



 

 

 
 
 
 
 

 
Fig. S6. Architecture of AIDA neural networks. (a) Cell detection network has 2 convolutional layers, 
2 pooling layers, and a fully connected layer. The final output has 2 classes (cell, non-cell). (b) Color 
classification network consists of 8 convolutional layers and 3 fully connected layers, and produces the 
final output of 4 classes (breast cancer subtypes).  



 

 

 
 

 
Fig. S7. Model loss for deep neural networks. The loss was estimated using a binary cross-entropy 
loss function for cell recognition (a) and a categorical cross-entropy loss function for color classification 
(b).  



 

 

 
 
 

 
 
Fig. S8. Training data for deep learning. (a) Over 7,000 diffraction images of cells were taken at 470 
nm and 625 nm illumination, and mathematically reconstructed. The diffraction image along with the 
mean pixel intensity inside each reconstructed cell was used to train the color classification neural 
network. (b) Number of test images used for the color classification training.   



 

 

 
 
 

 
Fig. S9. Flow cytometry-based subtyping. Cancer cell subtyping was done based on ER/PR and 
HER2 expression. The positive cut-offs for ER/PR and HER2 expression levels were determined 
according to the conventional criterion: (mean + 2× standard deviation) from the marker expression 
profiles of negative cell lines. 
 
 
  



 

 

 
 

 
Fig. S10. Representative flow cytometry histograms of patient FNA samples. The samples were 
treated with the quad-marker (green) or isotype IgG negative control (grey). 
  



 

 

Table S1. Cost breakdown for AIDA imaging system and reagent per single assay. 

Imaging device components Cost ($) 
Two high power LEDs (470 nm and 625 nm) 100.00 
LED driver 60.00 
Dichromatic mirror (550 nm cutoff) 75.00 
Aperture 20.00 
High resolution CMOS image sensor 40.00 
Other miscellaneous part components 30.00 
3D printed case 20.00 

Total 345.00 
 
 

Reagent & Disposable Price ($) # of tests Cost / test ($) 
Anti-human ER-a antibody 239.00 100 2.39 
Anti-human PR A/B antibody 269.00 200 1.35 
Anti-human HER-2 antibody 315.00 1000 0.32 
Rabbit IgG, monoclonal isotype control 119.00 1000 0.12 
Purified Rat IgG2a, κ Isotype Ctrl Antibody 24.75 1000 0.02 
ImmPRESS™ HRP Anti-Rabbit IgG (peroxidase) polymer 140.00 150 0.93 
ImmPRESS™ AP Anti-Rat IgG (alkaline phosphatase) polymer 140.00 150 0.93 
AP Blue substrate 155.00 500 0.31 
ImmPACT NovaRED HRP substrate 144.00 500 0.29 
Cell-Tak 205.63 500 0.41 
Others (e.g., buffer, tubes) 50.00 100 0.50 
Disposable flow cell 2.00 1 2.00 

  Total 9.57 
 
  



 

 

Table S2. List of antibodies used in this study. 

Antibody Clone Cat No. Vendor 

AIDA    

Anti-human ER-a antibody (rabbit monoclonal) D6R2W 13258S CST 
Anti-human PR A/B antibody (rabbit monoclonal) D8Q2J 8757S CST 
Anti-human HER-2 antibody (rabbit monoclonal) ICR55  BioRad 
Rabbit IgG, monoclonal isotype control DA1E 3900 CST 
Purified Rat IgG2a, κ Isotype control antibody  400501 BioLegend 

ImmPRESS™ HRP Anti-Rabbit IgG (peroxidase) polymer  MP-7451 Vector Labs 

ImmPRESS™ AP Anti-Rat IgG (alkaline phosphatase) polymer  MP-5404 Vector Labs 

 

Flow cytometry 
Anti-human ER-a antibody (rabbit monoclonal) D6R2W 13258S CST 
Anti-human PR A/B antibody (rabbit monoclonal) D8Q2J 8757S CST 
Anti-human HER-2 antibody (rat monoclonal) ICR55  BioRad 

Rabbit IgG, monoclonal isotype control ICR55  BioRad 
Purified Rat IgG2a, κ Isotype control antibody DA1E 3900 CST 
Alexa 488 Goat anti-rabbit IgG H&L  4412s CST 

Alexa 647 Goat anti-rabbit IgG H&L  4414s CST 

Alexa 488 Goat anti-rat IgG  405418 BioLegend 
 


