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ABC Demographic Models. For Tamias alpinus and T. speciosus from Yosemite National Park 
(YNP), we modeled each sampling locality as its own deme in an island model with symmetric 
migration. Although an island model may not closely reflect the actual dispersal behavior of T. 
alpinus or T. speciosus, the number of modeled demes precluded sensibly fitting different 
pairwise migration rates. Tamias alpinus populations in the southern Sierras (SS) were modeled 
in a similar manner, but given fewer sampling localities pairwise migration rates were allowed to 
vary between different demes.  

We fitted four general model topologies (S6 Fig): Bottleneck (A, B, G), historic 
expansion (C, D, J), historic expansion followed by a bottleneck (H), and constant size models 
(E, F, N). For some models (A, G, H, J) migration rates were allowed to change (increase or 
decrease) and in certain cases migration either definitely (B, C, F) or could potentially (D, E) 
stop altogether. In models A, B, C, and F we fixed population bottlenecks and/or migration rate 



 

changes to begin 90 generations prior to the modern sampling time (i.e., the approximate timing 
of the historic sampling) given that we knew that there had been changes in genetic structure 
between the historic and modern samples of T. alpinus. To obtain a more precise timeframe for 
demographic events, we tested these models against those in which the times could vary (D, E, 
G, H, J). For YNP T. alpinus we tested models A, B, C, D, E, F, G, H, N, for T. speciosus we 
tested A, B, D, E, G, H, J, N, and for SS T. alpinus we tested models A, G, H, J, N. Different 
subsets of our total model set were tested for different temporal contrasts because preliminary 
results showed that fitting some of the nested models was redundant as the more flexible models 
converged to the simpler models. The same spectrum of possible histories was fitted for each 
contrast, but with fewer explicit models in some cases. An overview of the entire ABC workflow 
used to fit histories is outlined in S4 Fig and scripts for carrying it out are available at 
https://github.com/tplinderoth/ABCutils (doi: 10.5281/zenodo.2591546). 
 
ABC Simulation. We performed 25,000 simulations under each demographic model with a 
custom script, fastsimcoal_sampler.pl, where each simulation proceeded as follows: 1) draw 
demographic parameter values from a uniform or log-uniform (if the range exceeded three orders 
of magnitude) prior distribution; 2) simulate demes under the chosen parameter values using the 
coalescent simulator fastsimcoal [1]. We simulated 20.18 MB of sequence, which was equal to 
the reference sequence length, split evenly among 38 unlinked chromosomes. We assumed no 
recombination, a mouse-based per site mutation rate of 2.2*10-9, and a transition bias of 0.725 
that was empirically determined from the modern chipmunk populations. Individuals were 
sampled from demes according to the actual sample sizes at the present (modern sample) and 90 
generations in the past (historic sample); 3) All samples within a respective time period were 
pooled and the folded historic versus modern 2D-SFS was calculated. Diagonal and anti-
diagonal bins of this joint SFS were then calculated using a bin width of 2. The bin width refers 
to the number of joint SFS categories on either side of the diagonal that are included in each bin. 
The joint SFS was binned in this way to reduce noise caused by trying to fit categories with no or 
few counts, reduce the dimensionality of the summary statistics, and to ensure that we fit the 
mass correctly everywhere throughout the spectrum. Binning in this manner allows for fitting the 
shape of the 2D-SFS, which should be a result of demography (barring selection). 
 
ABC Model Selection. Under the rejection-sampling framework when comparing at least two a 
priori equally likely models, the approximate posterior probability of a model is proportional to 
its proportion of accepted simulations. We used the R package 'abc' [2] postpr function to 
approximate model posterior probabilities with the rejection method set to accept 0.8% of the 
simulations. Models with the highest posterior probabilities for each temporal contrast were 
chosen as the best fitting models (S6 Table, S7 Table). In order to evaluate the error associated 
with choosing models based on their posterior probabilities, we used the cross validation 
approach implemented in abc to generate a confusion matrix for each contrast (S8 Table). 



 

Briefly, this method works by randomly selecting one simulated 2D-SFS generated during the 
ABC procedure and treats it as a pseudo-observation. This pseudo-observed 2D-SFS is used to 
compute the posterior probability of each of the competing models (i.e., the proportion of 
accepted simulations from rejection sampling) and is assigned to the model with the highest 
probability. This was conducted 1,000 times for each model to produce confusion matrices. By 
using this approach on our set of tested models, which we considered to be all plausible 
demographic scenarios, we were able to quantify the reliability of our ABC procedure to 
differentiate between them based on the model posterior probabilities.  
 To aid in model selection, we also compared models based on the goodness-of-fit of their 
maximum likelihood estimates (ML), which is the set of parameter values that minimized the 
Euclidean distance between the observed and expected 2D-SFS bins. ML parameter values for 
each model were used to perform 1,000 additional simulations with fastsimcoal to encapsulate 
variance due to randomness under the ML histories, and the Euclidean distances between our 
observed and simulated 2D-SFS bins, DML,obs, were calculated. This produced a distribution of 
DML,obs for each of the models, which were compared using Kolmogorov-Smirnov 2-sample tests 
(KS test) to determine if models were significantly different with respect to their fit to the 
observed data. Models that were most probable to minimize DML,obs fit the data best. We found 
close agreement between the rank order of the models with the highest posterior probabilities and 
those with the best ML goodness-of-fit for T. speciosus and SS T. alpinus (S7 Table, S7 Fig). 
However, agreement between these two criteria was weaker for YNP T. alpinus. Consequently, 
in order to ensure that we evaluated the possibility of all closest-fitting histories to represent the 
actual history, we also included the model with the best-fitting ML history for YNP T. alpinus 
among its chosen models. 
 Based on our confusion matrices (S8 Table), we found considerable misclassification 
between nested models. When considering the fitted histories for the best fitting models in terms 
of their parameter posterior distributions or ML estimates, they were quite similar. Thus, fitting 
multiple nested models in essence corroborated one another in that they tended to converge on a 
similar history, and for this reason they were difficult to differentiate. We were also fitting 
models to what are likely very recent demographic changes, and so unless they were very strong, 
signatures of these changes in the joint site frequency spectrum are expected to be weak. 

We evaluated goodness-of-fit for the chosen models based on the similarity between the 
distributions of DML,obs and DML,pseudo. DML,pseudo is calculated exactly the same as DML,obs except 
that the 2D-SFS bins simulated under the model’s ML history are treated as the pseudo-observed 
data. Similarity between DML,obs and DML,pseudo was quantified using Weitzman's overlapping 
coefficient (OVL), defined as 𝑂𝑉𝐿 = ∫ min{𝑓+(𝑥), 𝑓0(𝑥)}d𝑥34

. The OVL quantifies the agreement 

between two probability distributions, 𝑓+(𝑥)and 𝑓0(𝑥), and ranges from 0 (the distributions are 
disjoint) to 1 (the distributions are equal). The OVL can be interpreted as the sum of two error 
probabilities [3], which translates into the probability of choosing either the ML history as the 
probability density function (pdf) for DML,obs or the true history as the pdf for DML,pseudo. This 



 

implies that in our case when the OVL=1 the ML history for a model produces 2D-SFS bins that 
are the same as the true history, providing strong evidence that it is likely very similar to the 
actual history. However, it is important to recognize that the degree to which the OVL can be 
used to determine how similar an inferred history is to the true history also depends on how 
identifiable the demographic history is from the 2D-SFS bins. It is possible that other 
demographic scenarios outside of the realm of what was tested could produce large OVL values. 
The OVLs were calculated from kernel density estimates for DML,obs and DML,pseudo using the 
same bandwidth for all distributions, which was the average of all the respective DML,obs and 
DML,pseudo bandwidths selected using the Sheather-Jones method. All of the ML model selection 
was performed using R and a custom script, ABCutils.pl. 

We note that in order to account for uncertainty in the parameter values, one could 
simulate with values sampled from the parameter posterior distributions. While such an approach 
would fully utilize the Bayesian framework, we argue that our approach of simulating from a 
model’s ML estimate to obtain DML,obs and DML,pseudo is preferable. Using goodness-of-fit from 
point estimates to reject models that may not be close to the true population history may actually 
be more powerful than using posterior predictive p-value approaches which tend to be more 
conservative [4]. Furthermore, simulations under model ML estimates has traditionally been 
effective in population genetics for obtaining p-values for observed statistics [5] as was our goal 
with the FST outlier validation. Reliable inference under this framework necessitates that the 
model ML estimate is accurate, and so in our case, ensuring a good fit of the demographic model 
ML estimate was important. 
 
ABC Parameter Inference. We obtained posterior probability distributions for model 
parameters using a standard rejection method. Specifically, from the 25,000 simulations 
performed under each model, we accepted 8% of simulations that had the smallest Euclidean 
distance between the observed and expected 2D-SFS bins. The parameter posterior probability 
distributions are the distributions of parameter values from these accepted simulations. Rejection 
sampling was performed using the ABCutils.pl script. 
 YNP T. alpinus demography. The best fitting models for YNP T. alpinus were B, F, H, 
and N, which mostly converged on a population history characterized by a relatively small, 
constant population size and increased fragmentation occurring within 90 generations ago. 
Models B, F, and N had the highest approximate posterior probabilities (S7 Table), while the 
distribution of the distance between the observed and expected 2D-SFS bins under the ML 
history for model H suggested that it was also a relatively good fit (S7 Fig).  The ML histories 
under models B, F, H, and N all produced joint spectra similar to the true history as indicated by 
OVL values greater than 0.81, with model F having the highest value of 0.89 (S7 Fig). 
 Posterior median parameter estimates for models B, F, and N and the ML estimate for 
model H (S6 Table) indicate modern deme effective sizes of around 1,350 individuals for YNP 
T. alpinus. A combination of small intrinsic shrink rates and very recent bottleneck times equated 



 

to no population bottlenecks under models B and H. Population expansion was only possible 
under model H, but with an intrinsic growth rate of 1.1e-8 under the ML history, the population 
size would effectively remain constant since glaciers began retreating from the YNP region 
approximately 10K years ago. With the exception of N (constant migration), the best fitting 
models specify at least a two order of magnitude decrease in migration from historic rates of 
approximately 7e-5 (based on model B and F posterior median values and model H's ML value). 
The ML estimate for model H has migration slowing 20 generations prior to the modern sample, 
while migration entirely stops under models B and F 90 generations before the modern sample. 
Model N had a 3-7% worse fitting ML history compared to the other best fitting models (S7 Fig), 
which offers further support for a history involving increased fragmentation as specified under 
the better fitting ML histories of B, F, and H. 
 SS T. alpinus demography. The best fitting models for T. alpinus in the southern Sierras 
were A, G, and N, which had both the highest approximate posterior probabilities (S7 Table) and 
ML histories that produced joint frequency spectra most closely resembling the observed 2D-
SFS (S7 Fig). The population history inferred from these three models is one with fragmentation 
potentially recently increasing among demes and a constant population size that is likely around 
three times larger than YNP T. alpinus. There is, however, some evidence for a recent, weak, 
population bottleneck. Simulations under the ML histories indicate that models A, G, and N are a 
significantly better fit to the observed data than the other models (all KS test p-values < 2.2e-16) 
(S9 Table, S7 Fig). 
 The parameter posterior medians for models A, G, and N (S6 Table) indicate that SS T. 
alpinus has a modern effective deme size of around 4,600 individuals, which has likely remained 
constant through time. Histories based the posterior medians for models A and G have an 
essentially negligible bottleneck of at most a few individuals per deme occurring within the past 
90 generations. No population size change is also supported by model N and the ML history for 
model G, which had the highest OVL of 0.93 (S7 Fig). The 95% credible intervals for the 
intrinsic shrink rates and bottleneck times for models A and G (S6 Table) do not however 
exclude the possibility for a population bottleneck, but if one did occur, the parameter posterior 
distributions indicate that it was weak (r < -3e-4) and likely within the past 100 years. The 
historic migration rates between adjacent demes {1,2} and {2,3} were around 3e-4 and 6e-5 
respectively, while the migration rate was lower between the geographically most distant demes, 
{1,3}, ranging from possibly around 2e-9 (based on model G and N ML estimates) to 3.5e-7 
(based on posterior median estimates). The posterior median values for models A and G indicate 
that somewhere between 29-90 generations before the modern sample migration rates between 
demes decreased to around 2e-5, 1e-5, and 2e-8 for demes {1,2}, {2,3}, and {1,3} respectively. 
While the ML history for model A supports this increased fragmentation among all demes, the 
ML history for model G has migration changing only 5 generations prior to the modern sample 
suggesting a history with effectively no change in migration, which is supported by model N. 



 

Taken together, this makes it uncertain whether population fragmentation has changed in the 
southern Sierras, but if it has, it was likely a subtle increase within the past 100 years. 
 YNP T. speciosus demography. Models D, H, and J had the best fit for YNP T. 
speciosus in terms of both their approximate posterior probabilities (S7 Table) and distance of 
their ML histories from the observed data (S7 Fig). The fits for these models indicate that T. 
specious is characterized by a past population expansion and a modern effective size that is 
likely at least three times larger than T. alpinus in YNP. The model fits also provide some 
evidence to suggest that migration among T. speciosus demes has also decreased recently. 
Simulations under the ML histories showed a clear and significant difference (all KS test p-
values < 2.2e-16) in the fits between models D, H, and J and the other tested models (S9 Table, 
S7 Fig). 

Based on the parameter posterior medians for models D, H, and J (S6 Table), T. 
speciosus demes were expanding at an intrinsic rate of around 8e-6 until 45 - 1,234 generations 
ago, at which point deme sizes have remained constant at around 4,560 individuals. Models D 
and J did not involve a bottleneck, and although model H allowed for one, small shrink rates and 
very recent bottleneck times equated to no bottleneck based on posterior median and ML 
parameter estimates. The migration rate posterior medians for models D, H, and J decreased 
from around 3e-4 to rates of 0 – 1.47e-5 within 33 generations prior to the modern sample. It 
should be noted that the ML estimates for models D and H indicate that migration rates remain 
constant at around 7.7e-4, however, the ML estimate under model J, which nearly perfectly fit 
the true history according to an OVL value of 0.98 (S7 Fig), had migration decreasing from 
3.42e-3 to 1.17e-8 341 generations ago. Parameter posterior distributions for all three best fitting 
models suggest that if migration has decreased, it was likely within the last 100 generations (S6 
Table). It is difficult to discern for certain whether fragmentation has increased for YNP T. 
speciosus, but the single, best-fitting, ML history and the posterior median migration rate 
estimates across all three closest fitting models suggest that it has. 
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