
A stochastic process of scientific discovery.

Consider an infinite population of scientists conducting a sequence of idealized
experiments ξ(t) := (M

(t)
P , θ,D(t), S,K(t)), indexed by time t = 1, 2, · · · where

M
(t)
P belongs to a set of probability structuresM = {M1,M2, · · · ,ML} known

to all scientists. Further, assume that there are A distinct scientist types in the pop-
ulation, each with a well-defined research strategy R ∈ R = {Ro, R1, · · · , RA}
of proposing a model in their experiment. These strategies depend on the type
of scientist and a global model M (t)

G ∈ M,K(t), which represents the consen-
sus of the scientist population at time t. The population of scientists aims to find
the true model MT ∈ M. A scientist selected to conduct an experiment at time
t, uses her background knowledge K(t) to propose a new candidate model M (t)

P .
Specifically, we define K(t) as a probability distribution P(MP |R(t),M

(t)
G ), where

{MP ,M
(t)
G } ∈ M2, and R(t) ∈ R.

The initial conditions of our stochastic process include the true model MT ,
true parameter values θT of MT , an initial global model M (0)

G , a method for model
selection S, and the sample size of the data n. At each time step, an idealized
experiment ξ(t) is performed and new data D(t) of size n is generated independent
of everything else from distribution MT (θT ). Each experiment is performed by a
scientist randomly selected from A types in the population using the categorical
distribution with probabilities (p1, p2, · · · , pA). The selected scientist proposes a
model M (t)

P with probability P(MP |R(t),M
(t)
G ) conditional on a research strategy

fully specified by her type and the current global model. Given the dataD(t), model
scores under the proposed model and the current global model are calculated as
S(M

(t)
P ) and S(M (t)

G ), respectively. The model with favorable score (i.e., smaller
for both AIC and SC) is set as the new global model M (t+1)

G . This mechanism
represents how scientific consensus is updated in light of new evidence.

A defining property of our stochastic process with no replication is that K(t)

depends only on quantities at time t. If Ra ∈ R depends only on M (t)
G for all a,

the transition from M
(t)
G to M (t+1)

G admits the Markov property and the stochas-
tic process representing the scientific process is a Markov chain with transition
probabilities given by

P(M (t+1)
G =M`|M

(t)
G =Mi) =

A∑
a=1

P(S(M`) < S(Mi))P(M`|Ra,Mi)P(Ra).

(1)
On the right hand side of Eq. (1), the last term is the probability of selecting a
scientist with research strategy Ra independent of all else, the middle term is the
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probability of proposing the model M` given the current global model Mi and the
scientist type a with research strategy Ra selected. The probability P(S(M`) <
S(Mi)) depends onMT viaD(t) generated and it is obtained by

∫
Θ

∫
D P(S(M`) <

S(Mi)|D)P(D|θ)P(θ)dDdθ, where P(θ) is the probability of parameter, P(D|θ)
is the likelihood of the data, and P(S(M`) < S(Mi)|D) is the probability that the
proposed model M` has a more favorable score than Mi conditional on data. We
have P(S(M`) = S(Mi)) = 1 when ` = i and the model selection method S is
a continuous variable so that P(S(M`) ≤ S(Mi)) = P(S(M`) < S(Mi)) and by
convention we set P(S(M`) < S(Mi)) = 1. Further, P(M`|Ra,Mi) > 0 for all
a, i, ` so that transition probabilities are nonzero for all models and scientist types.
This second condition guarantees that our Markov chain is ergodic, which implies
that it has a unique stationary distribution—its limiting distribution for visiting a
model.

When there are no replication experiments in the system, K(t) is defined as
P(MP |R(t),M

(t)
G ) which states that conditional on R(t) and M (t)

G , the probability
of proposing a model is independent of the past time steps. Let Ro ∈ R be the
replicator strategy. Given the proposed and global models at time t − 1, the repli-
cator strategy at time t, R(t)

o , is to perform an experiment at time t, using the exact
same proposed and global models as those at time t−1, but with new dataD(t) gen-
erated under MT (θT ). Since Ro ∈ R depends on M (t−1)

G , the transition from M
(t)
G

to M (t+1)
G does not admit the Markov property anymore and the stochastic process

representing the scientific process is a higher order Markov chain. The transition
probabilities of the Markov chain at time t can be expressed by conditioning on
whether a scientist chosen at a given time is a replicator:

P(R(t) 6= Ro)P(M
(t+1)
G |M (t)

G ) +

P(R(t) = Ro)[P(R(t−1) 6= Ro)P(M
(t+1)
G |M (t)

G ,M
(t−1)
G ) + · · ·+

P(R(1) = Ro)[P(R(0) 6= Ro)P(M
(t+1)
G |M (t)

G ,M
(t−1)
G , · · · ,M (0)

G )] · · · ].(2)

In Eq. (2), the first term in the sum is the joint probability of choosing a scientist
who is not a replicator at time t and the transition probability from global model at
time t to global model at time t+ 1. Since the scientists are chosen independently
of all else, the joint probability is written as the product of choosing a scientist
who is not a replicator at time t, given by P(R(t) 6= Ro), and the probability of
transition to the global model at time t + 1 is given by Eq. (1). The second term
in the sum is the joint probability of choosing a scientist who is a replicator at
time t and the transition probabilities to a model. We write the second term as
the product of P(R(t) = Ro) and the transition probabilities when a replicator is
chosen. If the scientist at time t is a replicator, she replicates the experiment at time
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step t− 1, which might be a replication experiment itself. Therefore, the transition
probabilities to a model within the first brackets is a sum of two probabilities. The
first term is the joint probability of choosing a scientist who is not a replicator
and the transition probability in that case, and the second term is the probability
of choosing a replicator given by P(R(t−1) = Ro) at time step t − 1, and the
transition probability in that case. This is a recursive equation, in the sense that the
transition probabilities at time t depend on the transition probabilities at time t−1.
An implication is that the transition probabilities at time t are path dependent.
Therefore, when a replicator scientist is included in the population, we have a
higher order Markov chain, whose long term dynamics are feasible to obtain with
a forward simulation method.

For the process with replicator, we lift the assumption P(M`|Ra,Mi) > 0 for
all a, i, ` that we imposed in the process without a replicator. This assumption
increases the connectivity of the transition probability matrix, which makes calcu-
lations in the long-term behavior of the Markov chain straightforward. Due to our
new process not admitting the Markov property, these calculations are irrelevant in
the analysis of the process with a replicator. Therefore, we drop the assumption of
transitioning from a model to any other model to be nonzero. Removing this as-
sumption allows us to define scientist types that visit only the subset of all models
consistent with a specific research strategy. This property of the process renders
the effects of each research strategy on the process outcomes well-pronounced.
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