A stochastic process of scientific discovery.

Consider an infinite population of scientists conducting a sequence of idealized
experiments () := (Ml(f), 9, DM S, K®), indexed by time t = 1,2, --- where
M }(;t) belongs to a set of probability structures M = {Mj, Mo, --- , M1} known
to all scientists. Further, assume that there are A distinct scientist types in the pop-
ulation, each with a well-defined research strategy R € R = {R,, R1, -+ ,Ra}
of proposing a model in their experiment. These strategies depend on the type
of scientist and a global model Mg) e M, K®_ which represents the consen-
sus of the scientist population at time ¢. The population of scientists aims to find
the true model My € M. A scientist selected to conduct an experiment at time
t, uses her background knowledge K ) to propose a new candidate model M I(Dt ),
Specifically, we define K (*) as a probability distribution P(Mp|R®), M((;t )), where
{Mp, MP} € M2, and R®) € R.

The initial conditions of our stochastic process include the true model My,
true parameter values 67 of M, an initial global model M, (0), a method for model
selection S, and the sample size of the data n. At each time step, an idealized
experiment £ ) js performed and new data D of size n is generated independent
of everything else from distribution M7 (67). Each experiment is performed by a
scientist randomly selected from A types in the population using the categorical
distribution with probabilities (p1,p2,- - ,pa). The selected scientist proposes a
model M I(Dt ) with probability P(Mp|R®), M, g )) conditional on a research strategy
fully specified by her type and the current global model. Given the data D®), model
scores under the proposed model and the current global model are calculated as
S(M ](Dt )) and S (Mg )), respectively. The model with favorable score (i.e., smaller

for both AIC and SC) is set as the new global model Mg+1). This mechanism
represents how scientific consensus is updated in light of new evidence.

A defining property of our stochastic process with no replication is that K ()
depends only on quantities at time ¢. If R, € R depends only on Mg) for all a,
the transition from M, g ) to Mg 1) admits the Markov property and the stochas-
tic process representing the scientific process is a Markov chain with transition
probabilities given by
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On the right hand side of Eq. (I)), the last term is the probability of selecting a
scientist with research strategy R, independent of all else, the middle term is the



probability of proposing the model M, given the current global model M; and the
scientist type a with research strategy R, selected. The probability P(S(M,) <
S(M;)) depends on M7 via D) generated and it is obtained by [, [, P(S(M,) <
S(M;)|D)P(D|0)P(0)dDde, where P(0) is the probability of parameter, P(D|6)
is the likelihood of the data, and P(S(M;) < S(M;)|D) is the probability that the
proposed model M, has a more favorable score than M, conditional on data. We
have P(S(M;) = S(M;)) = 1 when ¢ = i and the model selection method S’ is
a continuous variable so that P(S(M;) < S(M;)) = P(S(My) < S(M;)) and by
convention we set P(S(M;) < S(M;)) = 1. Further, P(M;|R,, M;) > 0 for all
a, 1, £ so that transition probabilities are nonzero for all models and scientist types.
This second condition guarantees that our Markov chain is ergodic, which implies
that it has a unique stationary distribution—its limiting distribution for visiting a
model.

When there are no replication experiments in the system, K(*) is defined as
P(Mp|R®, M(Gt )) which states that conditional on R® and M, g ), the probability
of proposing a model is independent of the past time steps. Let R, € R be the
replicator strategy. Given the proposed and global models at time ¢ — 1, the repli-
cator strategy at time ¢, Rgt), is to perform an experiment at time ¢, using the exact
same proposed and global models as those at time ¢ — 1, but with new data D(®) gen-
erated under Mr(0r). Since R, € R depends on Mg _1), the transition from Mg )

to M, g 1 does not admit the Markov property anymore and the stochastic process
representing the scientific process is a higher order Markov chain. The transition
probabilities of the Markov chain at time ¢ can be expressed by conditioning on
whether a scientist chosen at a given time is a replicator:
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In Eq. (2), the first term in the sum is the joint probability of choosing a scientist
who is not a replicator at time ¢ and the transition probability from global model at
time ¢ to global model at time ¢ + 1. Since the scientists are chosen independently
of all else, the joint probability is written as the product of choosing a scientist
who is not a replicator at time ¢, given by IP’(R(t) # R,), and the probability of
transition to the global model at time ¢ + 1 is given by Eq. (I). The second term
in the sum is the joint probability of choosing a scientist who is a replicator at
time ¢ and the transition probabilities to a model. We write the second term as
the product of ]P’(R(t) = R,) and the transition probabilities when a replicator is
chosen. If the scientist at time £ is a replicator, she replicates the experiment at time



step t — 1, which might be a replication experiment itself. Therefore, the transition
probabilities to a model within the first brackets is a sum of two probabilities. The
first term is the joint probability of choosing a scientist who is not a replicator
and the transition probability in that case, and the second term is the probability
of choosing a replicator given by P(R*~1 = R,) at time step ¢t — 1, and the
transition probability in that case. This is a recursive equation, in the sense that the
transition probabilities at time ¢ depend on the transition probabilities at time ¢ — 1.
An implication is that the transition probabilities at time ¢ are path dependent.
Therefore, when a replicator scientist is included in the population, we have a
higher order Markov chain, whose long term dynamics are feasible to obtain with
a forward simulation method.

For the process with replicator, we lift the assumption P(M;|R,, M;) > 0 for
all a, 4, ¢ that we imposed in the process without a replicator. This assumption
increases the connectivity of the transition probability matrix, which makes calcu-
lations in the long-term behavior of the Markov chain straightforward. Due to our
new process not admitting the Markov property, these calculations are irrelevant in
the analysis of the process with a replicator. Therefore, we drop the assumption of
transitioning from a model to any other model to be nonzero. Removing this as-
sumption allows us to define scientist types that visit only the subset of all models
consistent with a specific research strategy. This property of the process renders
the effects of each research strategy on the process outcomes well-pronounced.



