
Monte Carlo estimates of model comparisons.

Let y denote n × 1 vector of responses generated by the true model and X be
n×pmatrix of predictors, where p is the number of parameters in the fitted model.
Under the Gauss-Markov assumptions E(εi) = 0, V ar(εi) = σ2, Cov(εi, εj)
for all i, j we denote the vector of joint maximum likelihood estimates for the
regression coefficients by β̂. By definition of Schwarz Criterion

S(M) = 2p log(n)− 2 logP(y|X, β̂).

If Akaike’s Information Criterion is used, 2p replaces 2p log(n). The loglikelihood
in the second term is equal to n times the log of the residual sums of squares and it
can be written as

logP(y|X, β̂) = n log(y′y − y′X(X′X)−1X′y) + C,

where C is a term dependent only on MT . For transition probabilities, we are
interested in P(S(Mi) < S(Mj)). We have

S(Mi)− S(Mj) = (pi − pj) log(n) + n log(y′Xi(X
′
iXi)

−1X′iy)

−n log(y′Xj(X
′
jXj)

−1X′jy), (1)

where subscripts i, j now denote quantities that depend on model Mi and Mj . The
random variable I{S(Mi)−S(Mj)<0|MT } is Bernoulli distributed with probability of
success P(S(Mi)−S(Mj) < 0) which is equal to its expectation E(I{S(Mi)−S(Mj)<0|MT })
whose Monte Carlo estimate is given by

Ê(I{S(Mi)−S(Mj)<0|MT }) =
1

V

V∑
v=1

I{S(Mi)−S(Mj)<0|yv}. (2)

An estimate of P(S(Mi) − S(Mj) < 0) is obtained using Eq. (2) conditional
on true model MT and its predictors XT as follows. First, generate the set of
k predictor variables and build Xi and Xj for Mi and Mj respectively. Then
generate βTv , v = 1, 2, · · · , V independently of each other. Finally, simulate
yv|XT ,βTv from the normal distribution with expected value E(yv) = XTβTv

and variance σ2. Each realization (y1,y2, · · · ,yv) is used in Eq. (1) to assess
S(Mi)− S(Mj) < 0 and the estimate is obtained using the mean in Eq. (2).
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