YMTHE, Volume 27

Supplemental Information

Evaluation of a Fully Human, Hepatitis B

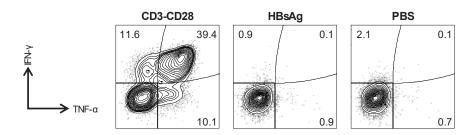
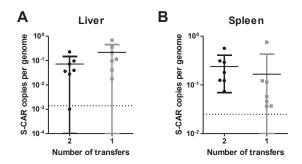
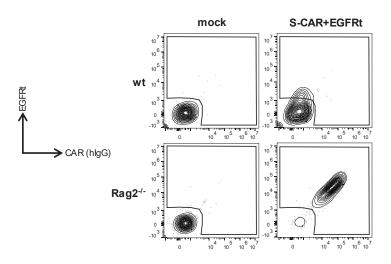
Virus-Specific Chimeric Antigen Receptor

in an Immunocompetent Mouse Model

Marvin M. Festag, Julia Festag, Simon P. Fräßle, Theresa Asen, Julia Sacherl, Sophia Schreiber, Martin A. Mück-Häusl, Dirk H. Busch, Karin Wisskirchen, and Ulrike Protzer

	extracellular		trans- membrane	intracellular		
S-CAR	scFvC8	hlgG1	hCD28	hCD28-hCD3]	
murine IgG1 S-CAR	scFvC8	mlgG1	mCD4	hCD28-hCD3]	
S-CAR+EGFRt	scFvC8	hIgG1 _{mut}	hCD28	hCD28-hCD3	T2A	hEGFRt
S∆-CAR+EGFRt	scFvC8	hIgG1 _{mut}	hNGFR		T2A	hEGFRt

Figure S1: Scheme of CAR constructs. S-CAR and murine IgG1 S-CAR harbor the identical scFv C8 and intracellular signaling domains of human CD28 and CD3 ζ . The S-CAR has a human IgG1 spacer and a human CD28 transmembrane domain, the murine construct harbors a murine IgG1 spacer and the murine CD4 transmembrane domain (grey boxes). The human IgG1 S Δ -CAR harbors the domain of human nerve growth factor receptor (NGFR) instead of CD3 ζ and CD28 and serves as negative control. If indicated, human EGFRt is co-expressed utilizing a T2A element. If EGFRt is co-expressed, the S-CAR and S Δ -CAR contain a human IgG1 spacer with decreased Fc-receptor binding capacity (hIgG1_{mut}).¹⁹

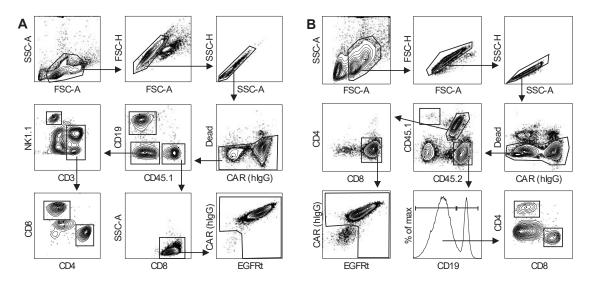

Figure S2: Intracellular cytokine staining of stimulated T cells. Exemplary flow cytometry plots of spleenderived T cells cultured on HBsAg-, anti-CD3/anti-CD28- or PBS-coated control plates overnight (see also Figure 1E). Expression of IFN- γ and TNF- α was analyzed on transferred CD45.1⁺ CD8⁺ T cells.

Figure S3: Quantitative PCR for S-CAR integrates. HBV-transgenic mice were injected once or twice with S-CAR T cells (n=7 per group, see also Figure 1). The number of S-CAR integrates normalized to the single copy gene *PRNP* in (A) liver and (B) spleen tissue was analyzed by quantitative PCR. A plasmid containing both the S-CAR and *PRNP* coding sequenced served as standard. Dotted line represents the background determined in untreated mice. Data points represent individual animals, mean values \pm SD are indicated.

Figure S4: S-CAR and EGFRt-expression on transferred cells. Exemplary flow cytometry plots of S-CAR and EGFRt expression on CD45.1⁺ T cells isolated from blood of HBV-naïve wildtype or Rag2^{-/-} mice on day 10 after transfer (see also Figure 3A).

Figure S5: Gating strategy to differentiate between endogenous and transferred immune cells. A) Gating strategy applied to calculate results of figures 4C-E and S6. Lymphocytes were gated according to their size (FSC) and granularity (SSC). Subsequently duplets were excluded (FSC-A vs. FSC-H and SSC-A vs. SSC-H). After removal of dead cells, B cells (CD19⁺) were identified. Moreover CD45.1⁺ cells (transferred cells) were distinguished from CD45.1⁻ cells (endogenous cells). All transferred cells were identified to be CD8⁺ as well as CAR⁺ (hIgG⁺) and EGFRt⁺. Within the population of CD19⁻ CD45. 1⁻ cells, NK cells (CD3⁻ NK1.1⁺) as well as CD3⁺ T cells were detected, whereby CD3⁺ T cells were further analyzed according to the expression of CD4 and CD8. **B)** Gating strategy applied to calculate results of Figures 6D and S8. Lymphocytes were gated according to their size (FSC) and granularity (SSC). Subsequently duplets were excluded (FSC-A vs. FSC-H and SSC-A vs. SSC-H). After removal of dead cells, CD45.1⁺ cells (cells of first transfer), CD45.1⁺/CD45.2⁺ (cells of second transfer) and CD45.2⁺ cells (endogenous cells) were identified. All CD45.1⁺/CD45.2⁺ cells were identified to be CD8⁺ as well as CAR⁺ (hIgG⁺) and EGFRt⁺. Within the endogenous cells, CD19⁺ B cells were distinguished from CD19⁻ cells, which were used to further gate on CD4⁺ and CD8⁺ T cells.

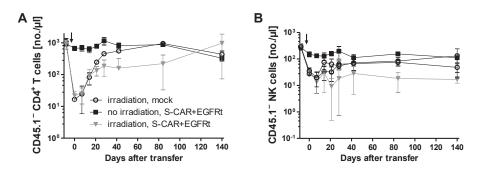


Figure S6: Concentration of CD4⁺ T cells and NK cells in peripheral blood after irradiation. AAV-HBV infected CD45.2⁺ wildtype mice were irradiated one day before transfer of S-CAR⁺/EGFRt⁺ T cells (see also Figure 4). A) Amount of (endogenous) CD45.1⁻ CD4⁺ T cells and B) NK1.1⁺ NK cells per μ l peripheral blood at indicated time points. Arrows mark time point of irradiation. All data are presented as mean values \pm SD. (n=4 per group)

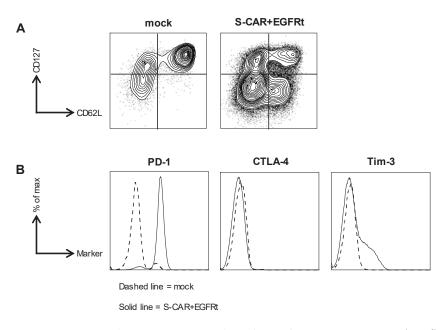


Figure S7: Memory and exhaustion marker expression of transferred T cells. Exemplary flow cytometry plots pregated on transferred CD45.1⁺ T cells in splenocyte population. A) Memory marker expression (see also Figure 4F). B) Exhaustion marker expression (see also Figure 4G).

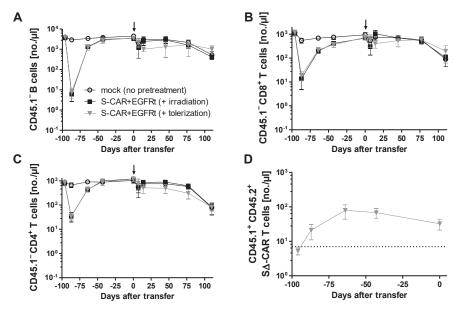


Figure S8: Concentration of endogenous immune cells and S Δ -CAR T cells after tolerization. AAV-HBV infected CD45.2⁺ wildtype mice were irradiated one day before S Δ -CAR⁺/EGFRt⁺ T-cell transfer (see also Figure 6). Cell concentrations in peripheral blood monitored over time. Arrows mark time of S-CAR⁺/EGFRt⁺ T-cell transfer on day 0. A) Concentration of CD45.1⁻ CD19⁺ B cells. B) Concentration of CD45.1⁻ CD8⁺ T cells. C) Concentration of CD45.1⁻ CD4⁺ T cells. D) Concentration of CD45.1⁺ CD45.2⁺ S Δ -CAR⁺/EGFRt⁺ T cells. The dotted line represents the background determined in untreated mice. All data are presented as mean values ± SD. (n=5 per group)