ISCI, Volume 15

Supplemental Information

Centrosomal Actin Assembly Is Required for Proper Mitotic Spindle Formation and Chromosome Congression Matthias Plessner, Julian Knerr, and Robert Grosse

Transparent Methods

Cell culture

HT22, NIH3T3 and RPE-1 cells as well as derivatives were maintained in DMEM high glucose supplemented with 10% fetal calf serum (FCS) and 1% Pen/Strep in a 5% CO₂ atmosphere at 37 °C. Stably expressing cell lines were generated using lentiviral transduction (Hinojosa *et al.*, 2017).

Plasmids, antibodies, reagents

H2B-mCherry and sAC-TagGFP2 have been described elsewhere (Baarlink *et al.*, 2017). To generate mCherry-β-tubulin and GFP-Arpin, respective sequences were amplified from human cDNA by PCR and inserted into pmCherry-C1 or pEGFP-C1 (Clontech) using standard molecular cloning techniques. mCherry-β-tubulin was subcloned into pWPXL-GFP for generation of lentiviral particles.

anti-GFP (CST, D5.1) and anti-alpha-Tubulin (CST, 11H10) were used for Immunoblotting in Fig. 4d. Immunostaining in Fig. 3a was performed with anti-Arp2 (ab49674, abcam) and anti-Centrin 1 (ab11257, abcam).

SiR-Tubulin and SiR-DNA (Spirochrome) were used at a concentration of 200 nM for 30-45 min to label MTs and DNA, respectively. DMSO (0.1%, Roth), CK-666, CK-689 (100 μ M, Sigma), CK-869 (50 μ M, Sigma) and SMIFH2 (50 μ M, Sigma) were used for drug treatments in Fig. 3 and 4a, b.

Live cell imaging

Except Fig. 3a, all images were generated using a confocal laser scanning microscope (LSM800, Zeiss) with a 63X 1.4 NA objective (except Fig. 4a, c; 20X objective). Cells were cultured in a 5% CO₂ atmosphere at 37 °C using μ -slides (ibidi). Images in Fig. 3a were acquired using a Spinning Disk microscope (Yokogawa, CSU-X1) and a 100X 1.4 NA objective.

Image processing and analysis

Raw data were processed using VisiView (Visitron), ZEN blue (Zeiss), or FIJI (NIH) (Schindelin *et al.*, 2012). Orthogonal cross-sections in Fig. 1c and kymographs in Fig. 2e were computed using FIJI. Branch angle of actin filaments (Fig. 2d) was measured using FIJI. To measure integrated sAC-TagGFP2 fluorescence intensities (Fig. 2b), location of centrosomes was defined by mCherry-β-tubulin fluorescence intensities

(calculated as center of mass), around which a circular ROI (diameter of 2 μ m) was placed. sAC-TagGFP2 fluorescence intensities have been subsequently integrated within the circular ROI. Mitotic defects (quantified in Fig. 4b, d) are defined by scattered chromosomes, micronuclei formation or multinucleation.

Synchronization of RPE-1 cells

RPE-1 cells in Figure 4 were synchronized at the G2/M border by application of RO- $3306 (10 \mu M, Sigma)$ for 16-20 h. Mitotic block was released by washout of RO-3306.

Glutaraldehyde Fixation and Phalloidin Staining

Cells grown on glass coverslips were fixed with 2% glutaraldehyde (Sigma) in PBS for 10 min. F-actin and DNA were stained with phalloidin (100 nM, AF488, Invitrogen) and DAPI in 0.3% Triton X-100/PBS for 48 h at 4 °C.

Immunostaining

Immunostaining was described more detailed elsewhere (Grikscheit *et al.*, 2015). In brief, cells were fixed with 4% PFA in PBS for 10 min. Blocking was performed with 5% goat serum and 1% BSA at RT for 1 h. Cells were then incubated with both primary antibodies at 4 °C for ~24 h. Appropriate secondary antibodies were applied at RT for 2 h.

Statistics

Data were plotted using Prism 7 (GraphPad) as indicated in the respective figure legends.

References

Grikscheit, K., Frank, T., Wang, Y. and Grosse, R. (2015) 'Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1', *Journal of Cell Biology*, 209(3), pp. 367–376. doi: 10.1083/jcb.201412015.

Hinojosa, L. S., Holst, M., Baarlink, C. and Grosse, R. (2017) 'MRTF transcription and Ezrin-dependent plasma membrane blebbing are required for entotic invasion', *Journal of Cell Biology*. Rockefeller University Press, 216(10), pp. 3087–3095. doi: 10.1083/jcb.201702010.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,

Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Cardona, A. (2012) 'Fiji: An opensource platform for biological-image analysis', *Nature Methods*, 9(7), pp. 676–682. doi: 10.1038/nmeth.2019.