
 
 

Supplementary	Note	
	
1.	Supplementary	Results	
	
Competitive	Gene-Set	(Pathway)	and	Tissue	Expression	Analyses		
We	used	Multi-marker	Analysis	of	GenoMic	Annotation	(MAGMA)1	as	implemented	in	the	FUMA2	pipeline	to	
perform	a	competitive	gene-set	analysis	of	curated	gene-sets	and	GO	terms	(pathways)	obtained	from	the	
Molecular	Signature	Database3,	as	well	as	a	gene-property	analysis	for	gene	expression	of	GTEx4	tissues	for	
LDL-C,	triglycerides,	and	HDL-C.	As	expected,	our	pathway	analysis	revealed	a	significant	enrichment	for	
several	biological	processes	related	to	lipoprotein	metabolism	including	sterol	homeostasis,	acylglycerol	
homeostasis,	chylomicron	mediated	transport,	acyl	reverse	cholesterol	transport,	and	regulation	of	
lipoprotein	lipase	activity	(P	Bonferroni	<	0.05,	Supplementary	Table	24-29).	MAGMA	gene-property	analysis	
revealed	a	significant	enrichment	of	GWAS	signal	overlapping	genes	expressed	in	the	liver,	adrenal	gland,	and	
the	ovary	for	LDL-C,	subcutaneous	and	visceral	adipose	tissue,	liver,	adrenal	gland,	and	pancreas	for	
triglycerides,	and	liver	for	HDL-C	(Supplementary	Fig.	12-17).	
	
	
Novel	Lipid	Loci	and	Association	with	Coronary	Disease	
To	further	evaluate	whether	novel	lipid	variants	identified	in	our	analysis	also	influence	the	risk	of	CAD,	we	
examined	the	association	of	lead	variants	within	the	118	novel	lipid	loci	identified	in	our	study	with	coronary	
artery	disease	(CAD).	115/118	of	the	lead	variants	were	present	in	the	CARDIoGRAMplusC4D	1000	Genomes	
GWAS5;	the	remaining	3	(MAF	<	0.0035	for	each)	were	present	in	the	MIGen	and	CARDIoGRAM	exome	chip	
GWAS	analysis6.	In	total,	25	of	the	118	loci	showed	at	least	nominal	(P	<	0.05)	association	with	CAD	in	the	
CARDIoGRAM	studies	(Supplementary	Table	30).		Notably,	the	previously	identified	lead	locus	for	CAD	at	9p21	
(rs1333048,	CAD	P	=	5.7	x	10-94)	is	also	associated	with	LDL-C	and	TC	at	genome-wide	significance	in	our	study.	
However,	the	LDL-C	raising	allele	is	in	the	opposite	direction	of	the	expected	effect	on	CAD,	suggesting	that	
the	causal	variant(s)	at	9p21	may	confer	CAD	risk	outside	of	a	lipid	pathway	as	implied	by	preliminary	
functional	work	at	the	locus7.	We	then	examined	the	direction	of	effect	for	LDL-C,	TG,	and	HDL-C	raising	alleles	
on	CAD	for	the	118	novel	loci	in	our	analysis.	Consistent	with	prior	observations,	the	32	LDL-C	and	63	TG	
raising	alleles	(lipid	P	<	10-4)	were	more	likely	to	be	associated	with	an	increased	risk	of	CAD	(two-tailed	
binomial	P	=	0.05	and	3.8	x	10-5	for	LDL	and	TG,	respectively).	The	same	was	not	true	for	9	alleles	associated	
with	a	higher	HDL-C	(P	<	10-4)	but	not	also	associated	with	LDL-C	or	TG	(two-tailed	binomial	P	=	0.5).			
	
2.	Supplementary	Methods	
	
Quality	Control	Analysis	
We	excluded:	duplicate	samples,	samples	with	more	heterozygosity	than	expected,	an	excess	(>2.5%)	of	
missing	genotype	calls,	or	discordance	between	genetically	inferred	sex	and	phenotypic	gender.	In	addition,	
one	individual	from	each	pair	of	related	individuals	(as	measured	by	the	KING8	software)	were	removed.	
Veterans	were	then	divided	into	three	mutually	exclusive	ethnic	groups	based	on	self-identified	race/ethnicity	
and	admixture	analysis	using	the	ADMIXTURE	v1.3	software9:	1)	non-Hispanic	whites	(self	identified	as	“non-
Hispanic,”	“white,”	and	>	80%	genetic	European	ancestry),	2)	non-Hispanic	blacks	(self	identified	as	“non-
Hispanic,”		“black,”	and	>	50%	genetic	African	ancestry),	and	3)	Hispanics	(self-identified	only).	ADMIXTURE	
plots	for	black	and	Hispanic	veterans	are	provided	in	Supplementary	Figures	1	and	2.	Prior	to	imputation,	



 
 

variants	that	were	poorly	called	(genotype	missingness	>	5%)	or	that	deviated	from	their	expected	allele	
frequency	based	on	reference	data	from	the	1000	Genomes	Project10	were	excluded.	In	addition,	samples	
with	individual	missingness	>	2.5%	were	also	excluded.	After	pre-phasing	using	EAGLE11	v2,	genotypes	from	
the	1000	Genomes	Project10	phase	3,	version	5	reference	panel	were	imputed	into	Million	Veteran	Program	
(MVP)	participants	via	Minimac3	software12.	Ethnicity-specific	principal	component	analysis	was	performed	
using	the	EIGENSOFT	software13.	

Following	imputation,	variant	level	quality	control	was	performed	using	the	EasyQC	R	package14	(see	
URLs),	and	exclusion	metrics	included:	ancestry	specific	Hardy-Weinberg	equilibrium15	P	<1x10-20,	posterior	
call	probability	<	0.9,	imputation	quality/INFO	<0.3,	minor	allele	frequency	(MAF)	<	0.0003,	call	rate	<	97.5%	
for	common	variants	(MAF	>	1%),	and	call	rate	<	99%	for	rare	variants	(MAF	<	1%).	Variants	were	also	
excluded	if	they	deviated	>	10%	from	their	expected	allele	frequency	based	on	reference	data	from	the	1000	
Genomes	Project10.	
	
Lipid	Phenotypes	Quality	Control	and	Transformation	
Following	extraction	of	prevalent	laboratory	measurements	from	the	electronic	health	record,	lipid	data	were	
evaluated	for	spurious	values	(<	0	mg/dL),	histograms	for	each	lipid	trait	were	inspected	for	normality,	and	
extreme	outliers	(>400	mg/dL,	>	1000	mg/dL,	>	500	mg/dL,	and	>	150	mg/dL	for	low-density	lipoprotein	
cholesterol	(LDL-C),	triglycerides,	total	cholesterol,	and	high-density	lipoprotein	cholesterol	(HDL-C),	
respectively)	were	excluded	(triglycerides	were	evaluated	based	on	raw	values	and	then	following	natural	log	
transformation).	For	each	phenotype:	maximum	LDL-C,	natural	log	transformed	maximum	triglycerides,	
maximum	total	cholesterol,	and	minimum	HDL-C,	residuals	were	obtained	after	regressing	on	age,	age2,	sex,	
and	10	principal	components	within	each	ethnic	group.	Residuals	were	subsequently	inverse	normal	
transformed	for	association	analysis.	To	minimize	confounding	from	statins	and	variable	adherence,	
maximum/minimum	values	were	used16.	
	
Discovery	and	Replication	Association	Analysis	
We	tested	DNA	sequence	variants	for	association	with	the	transformed	lipid	values	through	linear	regression	
assuming	an	additive	model	using	the	SNPTEST	(see	URLs)	statistical	software	program.	In	our	discovery	
analysis,	we	performed	association	analyses	separately	for	each	ethnic	group	(whites,	blacks,	and	Hispanics)	
and	then	meta-analyzed	using	an	inverse	variance-weighted	fixed	effects	method	implemented	in	the	METAL	
software	program17.	We	excluded	variants	with	a	high	amount	of	heterogeneity	(I2	statistic	>	75%)	across	the	
three	ancestries.	In	addition,	we	required	that	variants	be	observed	in	at	least	two	ethnic	groups.	For	variants	
with	suggestive	associations	(association	P	<	10-4),	we	sought	replication	of	our	findings	in	one	of	two	
independent	studies.	

Replication	was	first	performed	using	summary	statistics	from	the	2017	Global	Lipids	Genetics	
Consortium	(GLGC)	exome	array	meta-analysis18.	In	this	analysis,	73	studies	encompassing	up	to	319,677	
participants	contributed	association	results	for	plasma	lipid	levels	using	genotypes	from	the	HumanExome	
BeadChip	(or	exome	array).		For	each	phenotype	(LDL-C,	natural	log	transformed	triglycerides,	total	
cholesterol,	and	HDL-C),	residuals	were	obtained	after	regressing	on	age,	age2,	sex,	and	4	principal	
components	of	ancestry.	For	studies	with	data	collected	after	1994,	adjustments	to	LDL-C	and	total	cholesterol	
measurements	were	made	(LDL-C/0.7,	total	cholesterol/0.8)	for	individuals	on	lipid	lowering	medication.	No	
adjustment	was	made	for	HDL-C	or	triglycerides.	For	studies	ascertained	on	CAD	case/control	status,	the	two	
groups	were	modeled	as	separate	studies.	A	total	of	242,289	variants	were	analyzed	after	quality	control	and	
were	available	for	replication.	



 
 

	 If	a	DNA	sequence	variant	was	not	available	for	replication	in	the	above	exome	array-focused	study,	we	
sought	replication	from	publicly	available	summary	statistics	from	the	2013	GLGC	“joint	meta-analysis19.”	In	
this	analysis,	37	studies	of	primarily	European	ancestry	genotyped	on	various	arrays	and	imputed	to	the	
HapMap20	reference	panel	contributed	association	results	and	were	meta-analyzed.	An	additional	2,044,165	
variants	were	available	for	replication	in	this	study.	Association	results	for	variants	present	in	both	the	2017	
exome	array-focused	study	and	the	2013	“joint	meta-analysis”	were	tested	for	replication	only	in	the	exome	
chip	dataset.		

We	combined	results	across	discovery	and	replication	cohorts	using	inverse-variance	weighted	fixed	
effects	meta-analysis.	A	P	<0.05	with	a	consistent	direction	of	effect	was	required	for	replication,	and	we	set	
an	overall	(discovery	and	replication	combined)	statistical	threshold	of	P	<	5	x10-8	for	genome-wide	
significance.	Novel	loci	were	defined	as	being	greater	than	1	million	base-pairs	away	from	a	known	lipid	
genome-wide	associated	lead	variant.	Additionally,	linkage	disequilibrium	information	from	the	1000	
Genomes	Project10	was	used	to	determine	independent	variants	where	a	locus	extended	beyond	1	million	
base-pairs.	All	association	P	values	were	two-sided.	
	
Competitive	Gene-Set	(Pathway)	and	Tissue	Expression	Analysis		
We	used	MAGMA1	as	implemented	in	the	FUMA2	(see	URLs)	pipeline	to	perform	a	competitive	gene	set	
analysis	for	10,655	gene	sets	(curated	gene	sets:	4,738,	GO	terms:	5,917)	present	in	the	Molecular	Signature	
Database3	(MsigDB	6.1)	and	a	gene-property	analysis	for	gene	expression	in	GTEx	v7	with	53	tissue	types.	The	
input	for	these	analyses	was	our	1000	Genomes10	imputed	summary	statistics	from	Stage	1	for	LDL-C,	
triglycerides,	and	HDL-C.	We	first	ran	the	combined	trans-ethnic	summary	statistics	and	then	the	summary	
statistics	in	the	European	subgroup	of	participants	alone.	For	the	gene-set	analyses,	a	P	adjusted	for	the	
number	of	total	gene	sets	tested	was	calculated	and	output	for	gene-sets	with	two-sided	P	Bonferroni	<	0.05.	
We	note	that	MAGMA	gene-set	and	gene-property	analyses	uses	the	full	distribution	of	SNP	p	values	and	
differs	from	pathway	enrichment	tests	that	only	tests	for	enrichment	of	prioritized	genes.		
	
Cohort	Descriptions	and	Coronary	Artery	Disease	Definitions	for	PDE3B	Analysis	
We	sought	replication	of	our	PDE3B	pLoF	lipid	findings	in	the	DiscovEHR	cohort.	In	this	study,	median	values	
for	serially	measured	laboratory	traits	were	calculated	for	all	individuals	with	two	or	more	measurements	in	
the	EHR	following	removal	of	likely	spurious	values	that	were	greater	than	three	standard	deviations	from	the	
intra-individual	median	value.	All	measurements	were	taken	after	fasting	and	were	adjusted	for	known	lipid-
lowering	medication	use	(total	cholesterol	divided	by	0.8;	LDL-C	divided	by	0.7;	triglycerides	divided	by	0.83;	
and	HDL-C	divided	by	1.04	for	individuals	on	lipid	lowering	medications).	HDL-C	and	triglycerides	
measurements	were	log10-transformed	to	achieve	normality.	Residuals	were	generated	for	each	trait,	
adjusting	for	age,	age2,	sex,	and	the	first	four	principal	components	of	ancestry	and	then	rank-based	inverse	
normalized	residuals	were	tested	for	association	with	variants	using	linear	regression,	under	an	additive	
model.	MVP	and	DiscovEHR	lipid	results	were	combined	using	an	inverse	variance-weighted	fixed	effects	
method.	

We	then	examined	the	effect	of	damaging	and	pLoF	mutations	in	Phosphodiesterase	3B	on	the	risk	of	
coronary	artery	disease	across	five	cohorts.	We	performed	logistic	regression	of	rs150090666	or	associated	
damaging	mutations	with	coronary	artery	disease	adjusted	for	age,	sex,	and	the	first	5	principal	components	
of	ancestry	across	white	participants.		

In	MVP,	coronary	disease	cases	and	controls	were	defined	after	collapsing	ICD-9	diagnosis	codes	to	the	
“Ischemic	Heart	Disease”	phenotype	based	on	the	algorithm	proposed	by	Denny	et	al21.		Phenotype	quality	



 
 

control	was	performed	as	described	in	the	PheWAS	methods	below.	We	identified	50,950	coronary	artery	
disease	cases	and	111,584	controls	available	for	analysis.		
												In	UK	Biobank,	analysis	was	performed	separately	in	individuals	of	European	and	non-European	
ancestry.	Phasing	and	imputation	were	performed	centrally,	by	UK	Biobank,	using	a	reference	panel	combining	
UK10K	and	1000	Genomes	samples.	39,235,157	variants	included	in	the	Haplotype	Reference	
Consortium22	were	imputed.	As	recommended	by	UK	Biobank,	we	excluded	any	samples	with	an	imputation	
quality	<	0.3	as	well	as	pLoF	variants	which	were	not	included	in	the	Haplotype	Reference	Consortium	
reference	panel.	Mitochondrial	genetic	data	and	sex	chromosomes	were	excluded	from	this	analysis.	
Individual	level	genetic	data	was	available	from	individuals	in	UK	Biobank,	after	excluding	one	related	
individual	of	each	related	pair	of	individuals,	individuals	whose	genetic	sex	did	not	match	self-reported	sex,	
and	individuals	with	an	excess	of	missing	genotype	calls	or	more	heterozygosity	than	expected.		

Estimates	of	the	association	of	rs150090666	with	coronary	artery	disease	in	UK	Biobank	were	derived	
using	logistic	regression	with	adjustment	for	age,	sex,	ten	principal	components	of	ancestry	and	a	dummy	
variable	for	array	type.	Coronary	artery	disease	diagnosis	was	defined	as	previously	described23.	
	 In	the	Myocardial	Genetics	Consortium,	whole-exome	sequencing	of	the	Myocardial	Infarction	
Genetics	Consortium	participants	was	performed	between	2010	and	2015	at	the	Broad	Institute	as	previously	
described24.	In	brief,	sequence	data	of	all	participants	were	aligned	to	a	human	reference	genome	build	
GRCh37.p13	using	the	Burrows-Wheeler	Aligner	algorithm.	Aligned	non-duplicate	reads	were	locally	realigned	
and	base	qualities	were	recalibrated	using	Genome	Analysis	Toolkit	(GATK)	software25.	Variants	were	jointly	
called	using	GATK	HaplotypeCaller	software.	The	sensitivity	of	the	selected	variant	quality	score	recalibration	
threshold	was	99.6%	for	single-nucleotide	polymorphisms	and	95%	for	insertion	or	deletion	variants	as	
empirically	assessed	using	HapMap	controls	with	known	genotypes	included	in	the	genotyping	call	set.		
	 pLoF	and	damaging	variants	in	PDE3B	were	identified	in	the	Myocardial	Infarction	Genetics	Consortium	
using	whole-exome	sequencing	as	previously	described24,26,27.	Studies	included	in	the	consortium	were:	1)	the	
Italian	Atherosclerosis	Thrombosis	and	Vascular	Biology	(ATVB)	study	(dbGaP	Study	Accession	
phs000814.v1.p1);	2)	the	Exome	Sequencing	Project	Early-Onset	Myocardial	Infarction	(ESP-EOMI)	study;	3)	a	
nested	case-control	cohort	from	the	Jackson	Heart	Study	(JHS);	4)	the	South	German	Myocardial	Infarction	
study	(dbGaP	Study	Accession	phs000916.v1.p1);	5)	the	Ottawa	Heart	Study	(OHS)	(dbGaP	Study	Accession	
phs000806.v1.p1);	6)	the	Precocious	Coronary	Artery	Disease	(PROCARDIS)	study	(dbGaP	Study	Accession	
phs000883.v1.p1)	;	7)	the	Pakistan	Risk	of	Myocardial	Infarction	Study	(PROMIS)	(dbGaP	Study	Accession	
phs000917.v1.p1);	8)	the	Registre	Gironi	del	COR	(Gerona	Heart	Registry	or	REGICOR)	study	(dbGaP	Study	
Accession	phs000902.v1.p1);	9)	the	Leicester	Myocardial	Infarction	study	(dbGaP	Study	Accession	
phs001000.v1.p1);	10)	the	BioImage	study	(dbGaP	Study	Accession	phs001058.v1.p1);	11)	the	North	German	
Myocardial	Infarction	study	(dbGaP	Study	Accession	phs000990.v1.p1);	12)	the	Bangladesh	Risk	of	Acute	
Vascular	Events	(BRAVE)	study.	A	total	of	47	putative	loss	of	function	variants	and	nonsynonymous	variants	
predicted	to	be	damaging	or	possibly	damaging	by	each	of	5	computer	prediction	algorithms	(LRT	score,	
MutationTaster,	PolyPhen-2,	HumDiv,	PolyPhen-2	HumVar,	and	SIFT)	with	a	minor	allele	frequency	<	0.01	
were	aggregated	together	for	phenotypic	analysis.	
	 In	Penn	Medicine	Biobank,	genomic	DNA	samples	were	transferred	to	the	Regeneron	Genetics	Center	
for	whole	exome	sequencing.	Sequence	reads	were	aligned	to	the	human	reference	build	GRCh37.p13.	Single-
nucleotide	variants	and	insertion–	deletion	(indel)	sequence	variants	were	identified	with	the	use	of	GATK.	
GATK	was	used	to	conduct	local	realignment	of	the	aligned,	duplicate-marked	reads	of	each	sample	around	
putative	indels.	GATK’s	HaplotypeCaller	was	then	used	to	process	the	indel-realigned,	duplicate-marked	reads	
to	identify	all	exonic	positions	at	which	a	sample	varied	from	the	genome	reference	in	the	genomic	VCF	



 
 

format.	Variant	Quality	Score	Recalibration,	from	GATK,	was	employed	to	evaluate	the	overall	quality	score	of	
a	sample’s	variants	using	training	datasets	(e.g.,	1000	Genomes)	to	assess	and	recalculate	each	variant’s	score.		

Following	completion	of	cohort	sequencing,	samples	showing	disagreement	between	genetically-
determined	and	reported	sex,	high	rates	of	heterozygosity,	low	sequence	coverage,	unusually	high	degrees	of	
cryptic	relatedness,	or	genetically-identified	sample	duplicates,	were	excluded.	For	the	purposes	of	
downstream	analyses,	biallelic	variants	with	missingness	rates	<	1%,	Hardy-Weinberg	equilibrium	P	values	>	
1.0x10-6	were	retained.	Coronary	artery	disease	cases	were	defined	as	previously	described28.	Following	these	
exclusions,	7,606	exome	sequences	of	European	ancestry	were	available	for	downstream	analysis.	A	total	of	
34	putative	loss	of	function	variants	and	nonsynonymous	variants	predicted	to	be	damaging	or	possibly	
damaging	by	each	of	5	computer	prediction	algorithms	were	aggregated	together	for	phenotypic	analysis.	

In	DiscovEHR,	samples,	DNA	sequence	variants,	and	coronary	disease	cases	were	defined	as	previously	
described28.	A	total	of	44	putative	loss	of	function	variants	and	nonsynonymous	variants	predicted	to	be	
damaging	or	possibly	damaging	by	each	of	5	computer	prediction	algorithms	with	a	minor	allele	frequency	<	
0.01	were	aggregated	together	for	phenotypic	analysis.	Variants	were	tested	for	association	with	coronary	
disease	status	using	Firth's	penalized	logistic	regression,	under	an	additive	model,	including	age,	age2,	sex,	and	
the	first	four	principal	components	of	ancestry	as	covariates.	
	
Novel	Lipid	Loci	and	Association	with	Coronary	Disease	
To	assess	whether	novel	lipid	loci	in	our	study	modulate	the	risk	of	coronary	disease,	we	extracted	association	
results	for	the	lead	variant	at	each	locus	from	either	the	CARDIoGRAMplusC4D	1000	Genomes	imputed	
GWAS5	(115/118	variants)	or	from	the	MIGen	and	CARDIoGRAM	exome	chip	GWAS	analysis6	for	3	variants	not	
available	in	the	former.	A	two-tailed	exact	binomial	test	for	goodness	of	fit	was	performed	examining	the	
expected	and	observed	distributions	of	1)	LDL-C	and	2)	TG	raising	alleles	(P	<	10-4),	and	3)	HDL-C	raising	alleles	
(P	<	10-4)	not	also	associated	with	LDL-C	or	TG	(P	>	0.05)	and	their	effect	on	coronary	artery	disease	risk.	We	
tested	the	null	hypothesis	that	the	lipid-associated	variants	were	equally	likely	to	increase	or	decrease	
coronary	disease	risk	and	set	a	two-sided	P	<	0.05	threshold	for	statistical	significance.			
	
	
PheWAS	of	Quality	Control,	Disease	Definitions,	and	Association	Analysis	
Of	353,323	genotyped	veterans,	participants	were	included	in	the	PheWAS	analysis	if	the	electronic	health	
record	reflected	2	or	more	separate	encounters	in	the	VA	Healthcare	System	in	each	of	the	two	years	prior	to	
enrollment	in	MVP.	We	identified	277,531	total	veterans	spanning	21,209,658	prevalent	ICD-9	diagnosis	codes	
available	for	analysis.	We	focused	on	the	largest	subgroup	of	176,913	white	participants,	in	which	the	mean	
age	was	64.9	±	12.6	years,	and	93.1%	(164,767)	were	male.			

ICD-9	diagnosis	codes	were	collapsed	to	clinical	disease	groups	and	corresponding	controls	using	the	
groupings	proposed	by	Denny	et	al21.	Diseases	were	required	to	have	a	prevalence	of	>	0.25%	(~400	cases)	to	
be	included	in	the	PheWAS	analysis.	Each	of	two	nonsense	(LPL	p.Ser474Ter,	ANGPTL8	p.Gln121Ter)	and	three	
missense	(ANGPTL4	p.Glu40Lys,	APOA5	p.Ser19Trp,	PCSK9	p.Arg46Leu)	DNA	sequence	variants	were	tested	
using	logistic	regression	adjusting	for	age,	sex,	and	five	principal	components	under	the	assumption	of	additive	
effects	using	the	PheWAS	R	package	in	R	v3.2.0	(see	URLs).	In	total,	1,004	disease	phenotypes	were	available	
for	analysis.	
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Supplementary	Figure	1	

Admixture	plot	for	non-Hispanic	black	participants	in	the	Million	Veteran	Program	

A	supervised	ADMIXTURE1	analysis	was	performed	on	all	MVP	samples	using	1000	Genomes	Project2	
reference	samples	as	the	reference	panel.	Following	training	of	the	ADMIXTURE	model	on	5	populations	
representing	East	Asia	(CHB),	Europe	(GBR),	East	Africa	(LWK),	South	America	(PEL),	and	West	Africa	(YRI),	
individuals	with	at	least	50%	African	(LWK	or	YRI)	ancestry	and	self-identifying	as	“non-Hispanic”	and	“black”	
were	assigned	to	a	separate	MVP	“black”	population.		The	x-axis	depicts	each	of	the	57,332	samples	assigned	
to	this	group,	the	Y-axis	shows	the	percentage	of	each	reference	population	per	sample.	

	



 
 

	

	
Supplementary	Figure	2		

Admixture	plot	for	Hispanic	participants	in	the	Million	Veteran	Program	

A	 supervised	 ADMIXTURE1	 analysis	 was	 performed	 on	 all	 MVP	 samples	 using	 1000	 Genomes	 Project2	
reference	 samples	 as	 the	 reference	 panel.	 Following	 training	 of	 the	 ADMIXTURE	 model	 on	 5	 populations	
representing	 East	 Asia	 (CHB),	 Europe	 (GBR),	 East	 Africa	 (LWK),	 South	America	 (PEL),	 and	West	 Africa	 (YRI),	
individuals	self-identifying	as	“Hispanic”	were	assigned	to	a	separate	MVP	“Hispanic”	population.	 	The	x-axis	
depicts	each	of	the	24,743	samples	assigned	to	this	group,	the	Y-axis	shows	the	percentage	of	each	reference	
population	per	sample.	



 
 

 

 

Supplementary	Figure	3	

Predicted	Loss	of	Function	(pLoF)	Variation	in	Million	Veteran	Program	Participants	

The	number	of	pLoF	variants	passing	quality	control	for	white,	black,	and	Hispanic	participants	in	MVP.	Each	
pLoF	annotation	(frameshift,	splice	donor/acceptor,	stop	gained)	is	depicted	by	a	separate	color.	

Abbreviations:	MVP,	Million	Veteran	Program;	pLoF,	predicted	Loss	of	Function	

	



 
 

 

 

Supplementary	Figure	4	

Comparison	of	MVP	lipid	association	Z	score	to	previously	published	GLGC	lipid	association	Z	score	

Plot	of	the	linear	regression	Z	score	of	association	(β/SE)	for	444	independent	lipid	exome-wide	associated	
(two-sided	P	<	2.2×10-7)	DNA	sequence	variants	per	trait	as	reported	in	the	published	GLGC	2017	exome	chip	
analysis3	and	in	our	MVP	discovery	GWAS	analysis	aligned	to	the	lipid	raising	allele.	A	strong	association	(two-
sided	linear	regression	P	<	1.0	x10-100)	between	published	(GLGC)	and	MVP	Z	scores	was	observed	for	each	
trait.	
Abbreviations:	SE,	standard	error;	GLGC,	Global	Lipids	Genetics	Consortium;	MVP,	Million	Veteran	Program;	
HDL-C,	High-Density	Lipoprotein	Cholesterol;	LDL-C,	Low-Density	Lipoprotein	Cholesterol;	TG,	Triglycerides;	
TC,	Total	Cholesterol	



 
 

	



 
 

 

 

Supplementary	Figure	5	

Comparison	of	MVP	effect	estimates	to	previously	published	GLGC	effect	estimates	for	lipid	traits	

Plot	of	the	linear	regression	effect	estimates	(β)	for	444	independent	lipid	exome-wide	associated	(two-sided	P	<	2.2×10-
7)	DNA	sequence	variants	per	trait	as	reported	in	the	published	GLGC	2017	exome	chip	analysis3	and	in	our	MVP	
discovery	GWAS	analysis.	The	linear	regression	effect	estimate	between	MVP	discovery	and	published	(GLGC)	β	values	
demonstrated	evidence	of	the	winner’s	curse	(β	=	0.72,	0.90,	0.85,	0.96	for	LDL-C,	TG,	TC,	and	HDL-C,	respectively	after	
exclusion	of	extreme	outliers).	
Abbreviations:	GLGC,	Global	Lipids	Genetics	Consortium;	MVP,	Million	Veteran	Program;	HDL-C,	High-Density	
Lipoprotein	Cholesterol;	TG,	Triglycerides;	LDL-C,	Low-Density	Lipoprotein	Cholesterol;	TC,	Total	Cholesterol	

	



 
 

 

 

Supplementary	Figure	6	

Quantile-quantile	plots	for	the	discovery	lipids	GWAS	in	MVP	

The	expected	linear	regression	two-sided	P	values	versus	the	observed	distribution	of	two-sided	P	values	for	
LDL	 cholesterol	 (n=297,218	 individuals),	 triglycerides	 (n=291,993	 individuals),	 total	 cholesterol	 (n=297,626	
individuals),	 and	 HDL	 cholesterol	 (n=291,746	 individuals)	 association	 are	 displayed.	 Quantile-quantile	 plots	
were	 inspected	for	ancestry	specific	analyses,	and	genomic	control	values	were	<	1.20	for	each	racial	group	
(data	not	shown).	The	inflation	observed	(λGC	=	1.08-1.13)	is	comparable	to	that	observed	in	other	studies	of	
polygenic	traits	with	similar	large	sample	sizes	(n	>	300,000)4,5.	Abbreviations:	HDL-C,	High-Density	Lipoprotein	
Cholesterol;	TG,	Triglycerides;	LDL-C,	Low-Density	Lipoprotein	Cholesterol;	TC,	Total	Cholesterol;	MVP,	Million	
Veteran	Program	



 
 

	

	
Supplementary	Figure	7	

Representative	 comparison	 of	 354	 independent	 lipid	 variants	 common	 to	 all	 ethnicities	 for	 triglycerides,	 total	
cholesterol,	and	HDL-C	

a,b)	Effect	estimates	for	association	with	triglycerides	in	white	individuals	(n=211,491;	x-axes)	compared	to	black	(a,	
n=56,439;	β	=	0.76)	or	Hispanic	(b,	n=24,063;	β	=0.91)	individuals.		
c,d)	Effect	estimates	for	total	cholesterol	association	in	white	individuals	(n=215,551;	x-axes)	compared	to	black	(c,	
n=57,332;	β	=	0.95)	or	Hispanic	(d,	n=24,743;	β	=	1.08)	individuals.		
e,f)	Effect	estimates	for	HDL-C	association	in	white	individuals	(n=210,967;	x-axes)	compared	to	black	(e,	n=56,833;	β	=	
0.88)	or	Hispanic	(f,	n=23,946;	β	=	1.04)	individuals.	



 
 

Abbreviations:	SD,	Standard	Deviations;	HDL-C,	High-Density	Lipoprotein	Cholesterol		



 
 

 

 

Supplementary	Figure	8	

Design	of	lipids	stepwise	conditional	analysis	

Flow	chart	for	generation	of	summary	statistics	used	in	GCTA-COJO	approximate	stepwise	conditional	analysis.	
The	GCTA-COJO	software	requires	GWAS	summary	statistics	and	an	LD-matrix	of	a	representative	group	of	
samples	with	similar	genetic	ancestry	to	those	used	for	the	GWAS.	As	such,	summary	statistics	were	combined	
from	MVP	(European	ancestry	subgroup),	the	GLGC	2017	exome	chip	analysis	(predominantly	European	
ancestry)	and	the	GLGC	2013	“joint	meta-analysis”	(predominantly	European	ancestry)	via	an	inverse-variance	
weight	fixed	effects	meta-analysis.	These	combined	results	were	then	used	with	an	LD-matrix	of	10,000	
randomly	selected	European	samples	from	the	UK	Biobank	interim	release6	for	GCTA-COJO	stepwise	
conditional	analysis.	

Abbreviations:	MVP,	Million	Veteran	Program;	GLGC,	Global	Lipids	Genetics	Consortium	



 
 

	



 
 

 

Supplementary	Figure	9	

Manhattan	plot	for	the	lipids	Transcriptome-wide	association	study	(TWAS)	using	MVP	and	GLGC	combined	summary	statistics	

Plot	of	-log10(P)	[two-sided]	for	lipid-gene	associations	by	chromosomal	position	for	all	genes	analyzed	in	the	TWAS	analysis	in	up	to	
511,022	European	samples	in	MVP	and	GLGC.	The	genes	nearest	to	the	top	associated	variants	are	displayed.	
Abbreviations:	MVP,	Million	Veteran	Program;	GLGC,	Global	Lipids	Genetics	Consortium	
	



 
 

	
Supplementary	Figure	10	
Transcriptome-wide	association	study	(TWAS)	results	for	lipids	by	tissue		
Graph	of	the	655	genome-wide	(two-sided	TWAS	P	<	5x10-8)	gene-lipid	associations	for	each	of	four	tissues	
(adipose,	liver,	tibial	artery,	and	whole	blood)	resulting	from	the	lipids	TWAS	analysis	in	up	to	511,022	
European	samples	in	MVP	and	GLGC.	
Abbreviations:	MVP,	Million	Veteran	Program;	GLGC,	Global	Lipids	Genetics	Consortium	
	
	
	
	
	
	
	



 
 

 

Supplementary	Figure	11	

ANGPTL4	40Lys	carrier	association	with	type	2	diabetes	

Independent	replication	of	the	ANGPTL4	p.Glu40Lys	association	with	type	2	diabetes	in	the	recently	published	
meta-analysis	by	Mahajan	et	al7.	Results	for	the	body	mass	index	(BMI)	unadjusted	logistic	regression	analysis	
are	displayed	with	two-sided	P	values.	

Abbreviations:	MVP,	Million	Veteran	Program	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



 
 

 

Supplementary	Figure	12	

Multi-ethnic	LDL-C	MAGMA	gene-property	analysis	of	the	expression	of	genes	in	53	tissues	included	in	GTEx	

MAGMA8	tissue	expression	profile	analysis	results	as	performed	using	the	FUMA	pipeline9	for	LDL-C	in	a	multi-
ethnic	Stage	1	meta-analysis	of	MVP	participants	(n=297,218).	Tissues	with	a	Bonferroni	corrected	P	<	0.05	for	
a	two-sided	Student’s	t-test	are	highlighted	in	red.	

Abbreviations:	 GTEx,	 Genotype-Tissue	 Expression	 Project;	 MAGMA,	 Multi-marker	 Analysis	 of	 GenoMic	
Annotation;	MVP,	Million	Veteran	Program;	LDL-C,	Low-Density	Lipoprotein	Cholesterol	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



 
 

 
Supplementary	Figure	13	

Multi-ethnic	HDL-C	MAGMA	gene-property	analysis	of	the	expression	of	genes	in	53	tissues	included	in	GTEx	

MAGMA8	 tissue	 expression	 profile	 analysis	 results	 as	 performed	 using	 the	 FUMA	 pipeline9	 for	 HDL-C	 in	 a	
multi-ethnic	Stage	1	meta-analysis	of	MVP	participants	(n=291,746).	Tissues	with	a	Bonferroni	corrected	P	<	
0.05	for	a	two-sided	Student’s	t-test	are	highlighted	in	red.	

Abbreviations:	 GTEx,	 Genotype-Tissue	 Expression	 Project;	 MAGMA,	 Multi-marker	 Analysis	 of	 GenoMic	
Annotation;	MVP,	Million	Veteran	Program;	HDL-C,	High-Density	Lipoprotein	Cholesterol	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



 
 

 
Supplementary	Figure	14	

Multi-ethnic	triglycerides	MAGMA	gene-property	analysis	of	the	expression	of	genes	in	53	tissues	included	
in	GTEx	

MAGMA8	tissue	expression	profile	analysis	results	as	performed	using	the	FUMA	pipeline9	for	triglycerides	in	a	
multi-ethnic	Stage	1	meta-analysis	of	MVP	participants	(n=291,993).	Tissues	with	a	Bonferroni	corrected	P	<	
0.05	for	a	two-sided	Student’s	t-test	are	highlighted	in	red.	

Abbreviations:	 GTEx,	 Genotype-Tissue	 Expression	 Project;	 MAGMA,	 Multi-marker	 Analysis	 of	 GenoMic	
Annotation;	MVP,	Million	Veteran	Program	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



 
 

 

Supplementary	Figure	15	

European	only	LDL-C	MAGMA	gene-property	analysis	of	 the	expression	of	genes	 in	53	 tissues	 included	 in	
GTEx	

MAGMA8	tissue	expression	profile	analysis	results	as	performed	using	the	FUMA	pipeline9	 for	LDL-C	 in	MVP	
participants	of	European	ancestry	alone	(n=215,196).	Tissues	with	a	Bonferroni	corrected	P	<	0.05	for	a	two-
sided	Student’s	t-test	are	highlighted	in	red.	

Abbreviations:	 GTEx,	 Genotype-Tissue	 Expression	 Project;	 MAGMA,	 Multi-marker	 Analysis	 of	 GenoMic	
Annotation;	MVP,	Million	Veteran	Program;	LDL-C,	Low-Density	Lipoprotein	Cholesterol	

	
	
	
	
	
	
	
	
	
	
	



 
 

 

Supplementary	Figure	16	

European	only	HDL-C	MAGMA	gene-property	analysis	of	 the	expression	of	genes	 in	53	tissues	 included	 in	
GTEx	

MAGMA8	tissue	expression	profile	analysis	results	as	performed	using	the	FUMA	pipeline9	for	HDL-C	in	MVP	
participants	of	European	ancestry	alone	(n=210,967).	Tissues	with	a	Bonferroni	corrected	P	<	0.05	for	a	two-
sided	Student’s	t-test	are	highlighted	in	red.	

Abbreviations:	 GTEx,	 Genotype-Tissue	 Expression	 Project;	 MAGMA,	 Multi-marker	 Analysis	 of	 GenoMic	
Annotation;	MVP,	Million	Veteran	Program;	HDL-C,	High-Density	Lipoprotein	Cholesterol	

	
	
	
	
	
	
	
	
	
	
	
	
	
	



 
 

 

Supplementary	Figure	17	

European	 only	 triglycerides	 MAGMA	 gene-property	 analysis	 of	 the	 expression	 of	 genes	 in	 53	 tissues	
included	in	GTEx	

MAGMA8	tissue	expression	profile	analysis	results	as	performed	using	the	FUMA	pipeline9	for	triglycerides	in	
MVP	participants	of	European	ancestry	alone	(n=211,491).	Tissues	with	a	Bonferroni	corrected	P	<	0.05	for	a	
two-sided	Student’s	t-test	are	highlighted	in	red.	

Abbreviations:	 GTEx,	 Genotype-Tissue	 Expression	 Project;	 MAGMA,	 Multi-marker	 Analysis	 of	 GenoMic	
Annotation;	MVP,	Million	Veteran	Program	
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