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Supplementary Notes 

Model validation results 

In areas where there is time-series data and empirical human movement data available such 

as the United States we find that great-circle distance is capturing the spread process of the 

vector with a univariate correlation between origin of continental spread in the southern 

United States around 1995 (FIPS: 4019 = Pima Arizona, 4021 = Pinal Arizona, 48061 = 

Cameron Texas, 48215 = Hidalgo Texas) and distance to them of 0.24 (Pearson correlation, 

CI: 0.21 – 0.27, p-value: <0.01). In the USA a total 177 out of 3,143 districts (5%) are currently 

reporting the presence of Ae. aegypti mosquitoes. However, this is a very conservative 

estimate as not all counties carry out routine vector surveillance1. Aedes albopictus is much 

more widely distributed in the United States with 37% of all counties reporting presence of 

the mosquito (1,165 of 3,143 districts). For this second species distance is a stronger 

indicator of timing of infestation from the first reported mosquito (Houston Texas, 1985) 

with a Pearson correlation coefficient of 0.40 (CI: 0.37 – 0.43, p-value: <0.01. In Europe, a 

total of 225 districts out of 1,588 (14%) are currently reporting presence of Ae. albopictus. 

From the origin of the continental spread in Durres, Albania, the vector spread extensively 

in southern Europe with occasional importations into northern France and Germany. Great-

circle distance to the origin in Albania is a strong predictor of risk of spread (Pearson 

correlation coefficient 0.54, CI: 0.44 – 0.63, p-value: <0.01). 

Using a comprehensive probabilistic geographic spread model we reconstructed the spatial 

spread process, specifically the timing and likelihood of the vectors persistence. For Ae. 

aegypti, in addition to great-circle distance, county-to-county commuting trips, and mobility 



metrics were strong predictors reconstructing the expansion in the USA (2006-2016). The 

predictive power of the model is evaluated against the ability to anticipate the spread of the 

vector using a training (2006 – 2012) and a test dataset (2013 – 2016) resulting in a mean 

AUC = 0.80 (95% CI: 0.75 – 0.85, Supplementary Figure 6). Similarly, reconstructing the 

spread of Ae. albopictus from 1986 to 2016 in the United States we find our model to be 

highly predictive in terms of discriminating the areas with high risk of infestation from those 

that are at low risk (Supplementary Figure 6). Mean AUC using a training dataset (1986-

2005) and testing dataset (2006-2016) is 0.76 (95% CI: 0.66 – 0.87, Supplementary Figure 

6). Covariates best explaining the spatial spread are direct neighbour adjacency, great-circle 

distance, radiation, and gravity models. We repeated the analysis for Ae. albopictus in Europe 

and also show robust predictive ability (mean AUC = 0.90, 95% CI: 0.88 – 0.93, 

Supplementary Figure 6). Covariates retained in the model were the same for both models 

except the greater risk of infestation when a district was two degrees away from an infested 

district. 

The environmental niche modelling was performed for both species. The 2015 baseline 

model using environmental variables and species occurrence data resulted in high predictive 

power for Ae. aegypti (AUC = 0.865, 95% CI = 0.85 – 0.87) and Ae. albopictus (AUC = 0.90, 

95% CI = 0.88 – 0.91). Variables that explained most of the variation of the species 

environmental niche was the species-specific temperature suitability indices (58% for Ae. 

aegypti and 49% for Ae. albopictus) followed by maximum precipitation (16% for Ae. aegypti 

and 19% for Ae. albopictus). A full list is available in Table 1 and 2. 

Comparison to previously published work and CDC and ECDC records 



Aedes albopictus in Europe: Overall, there is a high concordance between the current 

reported distribution of Ae. albopictus and the present day predicted distribution as 

determined by our model. Both suggest that the primary range of Ae. albopictus is 

concentrated around the Mediterranean coastline with extensions across southern France. 

Our model-based predictions also suggest a high probability of presence in Bulgaria, 

Romania and Hungary, regions for which ECDC data is patchy or missing entirely. 

Furthermore, we predict relatively low levels of suitability for areas for which ECDC has 

observed introduction but no subsequent establishment, such as central France, southern 

Germany and southern England. One noticeable discrepancy is the reported absence of Ae. 

albopictus in Portugal, a country we predict to be both highly suitable and highly connected 

to the species’ established range. This may be due to the biogeographical barrier of the arid 

interior of the Iberian peninsula which may desiccate eggs and juveniles in transit. 

Aedes aegypti in Europe: There is a high degree of consensus between the reported absence 

of Ae. aegypti across Europe and the 2015 predicted distribution from our model. While we 

do predict low probability of presence in some regions of the southern Mediterranean 

(Sicily and Lebanon) which have not yet reported Ae. aegypti this remains only a minor 

discrepancy. The biggest inconsistency is in the Eastern black sea region where established 

Ae. aegypti populations have been reported to occur over multiple years, yet our model 

predicts negligible risk for these regions. Therefore, our model may under predict risk in 

far south Eastern Europe. 

Aedes albopictus in the USA: There is a high degree of concordance between predicted and 

observed Ae. albopictus distribution in the USA as of 2015 with the majority of Eastern and 

Mid-Western States reporting presence of the vector. The model also correctly identifies 



patchy incursions in the south western states, however, there is slight overestimation of 

risk (when comparing to reported occurrences) in the northern states (e.g. South Dakota 

and Wisconsin). 

Aedes aegypti in the USA: Our model predictions for Ae. aegypti in the USA in 2015 are 

largely consistent with reported occurrences of the species with the most consistent 

presence in Florida, a northern limit of around Washington DC, a patchy distribution in 

Texas and slight incursion into California. Discrepancies do exist in many southern states, 

however, where the model predicts widespread presence but only sporadic records of 

presence have been reported. Given reported presence of the species on the northern, 

southern and western borders of these regions, it remains unclear if these absences reflect 

true absences or absences in reporting. 

A PubMed search for Aedes AND future AND [global OR Europe OR USA] returned 108, 55, 

and 131 results respectively which were distilled to the 16 references in Supplementary 

Table 9 based on the inclusion criteria: i) gave projections of the future distribution of 

either species and ii) made predictions at the scale of whole country or US state or higher. 

Methodologically, past approaches to project the future distribution of Aedes have largely 

fallen into two camps: i) agent based, mechanistic dynamic models or ii) species 

distribution models using the Maximum Entropy (MAXENT) algorithm. These methods, in 

isolation, are only suitable for estimating suitability for Aedes populations and do not 

attempt to estimate whether it would be possible for any Aedes species to spread into this 

newfound niche. In addition, the Boosted Regression Tree species distribution model used 

here presents a considerable advantage over the MAXENT algorithm for this application 



due to its more explicit handling of biases in reporting 2, a key feature of spatially variable 

Aedes surveillance. 

All previous modelling attempts also only consider changes in climatological factors, 

principally temperature and precipitation (Supplementary Table 9). Previous mapping 

studies have shown that the current global distribution of Ae. aegypti and Ae. albopictus is 

also determined by socioeconomic factors such as urbanization3. Given the importance of 

these variables, we have included them in our assessment of the future distribution of 

these mosquito species.  

In Europe, the majority of these climatological projection models suggest Ae. albopictus will 

spread through France to cover much of western Europe and southeast England with some 

suggesting extensions as far north as southern Sweden. In contrast, our own mapping 

efforts suggest much more limited spread over this time period with modest increases in 

range along the fringes of the European distribution of Ae. albopictus. 

In the USA, previous predictions for Ae. albopictus suggest the species will spread 

throughout the country by 2080 with the exception of the arid southern state of Arizona 

and the northern states of north Dakota and Wisconsin4,5, while much of the south east of 

the USA from Texas to Virginia is predicted to be suitable for Ae. aegypti at least for some 

times of the year6. 

For Ae. aegypti in the USA our predictions are similar to previous efforts, however we do 

predict further spread to some major cities in the northeast and inland California that 

previous models have not. For Ae. albopictus while our estimates agree on the northern 



limit of the species with those from previous approaches, we predict that the species’ 

distribution will be largely restricted East of the Rocky Mountains. 

Elsewhere, all past approaches agree that there will be considerable change in suitability in 

Asia (in particular India, Thailand and Vietnam) for both species with both increases and 

decreases in suitability, but there is a lack of consensus on which areas will see expansion 

or contraction. Our predictions of modest changes across the continent are in line with 

previous findings. 

The combination of more advanced methodological approaches with more detailed 

covariates helps explain much of the difference between past projections and those 

presented here, in particular the inclusion of socioeconomic as well as climatic factors.  



Supplementary Figures 

 
 
Supplementary Figure 1: Full description of data and methods used to predict the geographic 

spread of Aedes aegypti and Aedes albopictus in 2020, 2050 and 2080.  

  



 
Supplementary Figure 2: Data for model fitting and evaluation. Dates of observations per county 

for Aedes albopictus (A, C) where white is the earliest detection and purple the latest. B shows the 

observations per county in the United States of America (USA) for Aedes aegypti. D - F show the 

interpolated earliest detection at a 10 km resolution grid for both species and the USA (D, E) and 

Europe (F). G-I show the estimated spread rates in km per year based on a thin plate spline regression 

(TPSR) with kernel density smoothing of 100 km.  



 

 

Supplementary Figure 3: Maps showing the spatial global distribution of occurrence data of Aedes 

aegypti (a) and Ae. albopictus (b). Each black dot corresponds to an occurrence and colours represent 

the number of occurrences. The temporal distribution for Ae. aegypti (c) and Ae. albopictus (d) with 

different colours representing different continents. 

 
 
 
 
 



 

Supplementary Figure 4: Global maps of the predicted spread of Ae. aegypti globally for all climatic 

scenarios (RCP 4.5, RCP 6.0, and RCP 8.5) in 2020, 2050 and 2080. Predicted suitability of Ae. aegypti 

quantile cutoff points were 0.24, 0.66, 0.88. Relative uncertainty was computed as the ratio of the 

95% uncertainty intervals and predicted Ae. aegypti suitability for each pixel. Cutoff points for 

uncertainty were 0.08, 0.18, 0.31. The lowest quantile of predicted suitability is shown in white, and 

the highest in dark pink. The lowest quantile for uncertainty is white and the highest is blue. The 

colours overlap such that areas coloured purple have both high predicted suitability of Ae. aegypti 

and high relative uncertainty. Pixels with no predicted suitability are coloured in grey. 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 5: Global maps of the predicted spread of Ae. albopictus globally for all 

climatic scenarios (RCP 4.5, RCP 6.0, and RCP 8.5) in 2020, 2050 and 2080. Predicted suitability of 

Ae. albopictus quantile cutoff points were 0.13, 0.41, 0.70. Relative uncertainty was computed as the 

ratio of the 95% uncertainty intervals and predicted Ae. albopictus suitability for each pixel. Cutoff 

points for uncertainty were 0.16, 0.36, 0.53. The lowest quantile of predicted suitability is shown in 

white, and the highest in dark pink. The lowest quantile for uncertainty is white and the highest is 

blue. The colours overlap such that areas coloured purple have both high predicted suitability of Ae. 

albopictus and high relative uncertainty. Pixels with no predicted suitability are coloured in grey.  



 

Supplementary Figure 6: Evaluation of geographic spread model showing the predicted probability 

of infestation compared to infestation that occurred in Europe and the United States. Models were 

run on subsets of data and predicted probabilities were compared to new invasions (out of sample) 

at the later stage of the spread process. Groupings for Ae. albopictus were 

[0.001;0.01,0.03,0.06,0.1,0.3,0.5,0.7, 1] and for Ae. aegypti [0.001,0.01,0.05,0.1, 1] where the dots 

represent the mean predicted probability for each group. The number indicates the number of 

predicted and observed proportion falling within each group. The grey line represents the range of 

values within each of the groups. The dotted line shows the perfect correspondence between 

predicted vs. observed spread.  



 

 

 

Supplementary Figure 7: Out of sample predictive accuracy as measured by Area Under the Curve 

(AUC) for Ae. albopictus in the United States (A) Ae. albopictus in Europe (B) and Ae. aegypti in the 

United States (C). Different colours represent different training datasets. Evaluation was always 

done on the subsequent set of data going forward to the last year of data.  
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Supplementary Figure 8: Out of sample prediction of a model fitted to USA occurrence data for Ae. 

albopictus and applied to Europe. Different lines represent different periods of evaluation on the 

European Ae. albopictus data. 

  



 

 
 

Supplementary Figure 9: Comparison of movements extracted from Taxi’s GPS and from Baidu LBS. Each 
data point represents the proportion of movements between each pair of districts. The correlation between 
Taxi movements and Baidu movements Pearson’s r  = 0.99. 



 



 
 
Supplementary Figure 10: Comparing predictions of Ae. aegypti (A) and Ae. albopictus (B) for the 

United States when limiting the potential for spread using human mobility metrics and distance 

metrics to 200km vs. 1000km for 2020 (blue) and 2050 (red). 

 

 

 

Supplementary Figure 11: Predictive accuracy when decreasing movements between countries to 

within country movement to predict the spread of Ae. albopictus in Europe from 2014-2017 (fitted 

between 1979-2013). Green shows a reduction in between country movement of 80% (Area Under 

the Curve (AUC) = 0.889), khaki 50% (AUC = 0.886), red 30% (AUC = 0.887) and blue (AUC = 0.885) 

is baseline. 

 



 

Supplementary Figure 12: Out of sample prediction of Aedes aegypti (A) spread in the United States 

comparing single variable models to the full model (training 1986-2002, testing: 2003-2013). B 

shows out of sample predictions for Ae. albopictus in the United States (training: 1995-2010, testing: 

2011-2016). 

 

 

Supplementary Figure 13: Histograms of predicted suitability for locations of observations. This 

data was used to derive cut-offs to build binary presence and absence maps for Ae. aegypti (a) and 

Ae. albopictus (b) species so the relevant population at risk and area expansion could be calculated. 

 

  



Supplementary Tables: 

              mean 2.50% 97.50% 

Temperature suitability index (0-1) 58.46 57.09 59.55 

Maximum precipitation (mm) 16.22 15.27 17.26 

Relative humidity (%) 10.11 9.41 10.97 

Minimum precipitation (mm) 9.47 8.72 10.12 

Probability urban (%) 5.74 5.26 6.40 
Supplementary Table 1:  Relative contribution of each variable used in the Boosted Regression Tree 

Model for Ae. aegypti. 

 

         mean 2.50% 97.50% 

Temperature suitability index (0-1) 48.85 47.23 50.04 

Maximum precipitation (mm) 18.61 17.56 19.73 

Minimum precipitation (mm) 16.58 15.22 17.76 

Relative humidity (%) 11.08 10.05 12.13 

Probability urban (%) 4.88 4.28 5.38 
Supplementary Table 2: Relative contribution of each variable used in the Boosted Regression Tree 

Model for Ae. albopictus. 

 

Name Fit data date range Fit data type Total number of 

points* 

Model 1 1979-2017 Occurrence and 

longitudinal 

2,704 

Model 2 2013-2017 Longitudinal only 344 

Model 3 2013-2017 Occurrence and 

longitudinal 

1,111 

Supplementary Table 3: Data used to evaluate the spread model in Europe. *Points correspond to 

unique detections of Ae. albopictus in district within one calendar year 

 

 

 



Name Total number of new districts infested 2013-

2017 (95% uncertainty interval) 

Model 1 22 (15-31) 

Model 2 89 (71-105) 

Model 3 20 (13-28) 

Supplementary Table 4: Simulated spread using different sets of models in Europe to contrast the 

performance under different surveillance efforts. 

 

Species Continent Model variant Total deviance in 

holdout sets 

Ae. albopictus 

Europe 

Baseline 21,544 

Baseline + s(Year) 101,137 

USA 

Baseline 2,876 

Baseline + s(Year) 3,291 

Baseline + (Year > 

2003) 

2,904 

Ae. aegypti USA 

Baseline 1045 

Baseline + s(Year) 2804 

Baseline + (Year > 

2003) 

1071 

Supplementary Table 5: Changes of surveillance activity under different assumptions. 

 

Species Coefficient (Year > 

2003) 

Percentage increase in 

deviance over baseline 

model 

Ae. aegypti 0.83 +2.5% 



Ae. albopictus -1.32 +1.0% 

Supplementary Table 6: Evaluation of spread model in the United States before and after the 2003 

West Nile Virus outbreak.  



 

  Model Institution Resolution, 

Lat/Long 

Reference Replicates 

RCP 

Hist* 

Replicates 

RCP 

4.5 

Replicates 

 RCP 

6.0 

Replicates 

 RCP 

8.5 

1  BCC-CSM 1.1 Beijing Climate 

Centre, China 

Meteorological 

Administration 

2.8125 x 

2.8125 

7 3 1 1 1 

2  BCC-CSM 

1.1(m) 

Beijing Climate 

Centre, China 

Meteorological 

Administration 

2.8125 x 

2.8125 

7 3 1 1 1 

3  CSIRO-

Mk3.6.0 

CSIRO and the 

Queensland 

Climate Change 

Centre of 

Excellence 

1.875 x 

1.875 

8 10 10 10 10 

  FIO-ESM The First Institute 

of Oceanography, 

SOA, China 

2.812 x 

2.812 

9 3 3 3 3 

5  GFDL-CM3  Geophysical Fluid 

Dynamics 

Laboratory 

2.0 x 2.5 10 5 1 1 1 

6  GFDL-ESM2G  Geophysical Fluid 

Dynamics 

Laboratory 

2.0 x 2.5 11 1 1 1 1 



7  GFDL-ESM2M Geophysical Fluid 

Dynamics 

Laboratory 

2.0 x 2.5 11 1 1 1 1 

8  GISS-E2-H NASA Goddard 

Institute for Space 

Studies 

2.0 x 2.5 12 15 1 3 3 

9  GISS-E2-R NASA Goddard 

Institute for Space 

Studies 

2.0 x 2.5 12 10 7 3 3 

10  HadGEM2-ES Met Office Hadley 

Centre 

1.2414 x 

1.875 

13 4 4 4 4 

11  IPSL-CM5A-

LR 

Institut Pierre-

Simon Laplace 

1.875 x 3.75 14 6 4 1 1 

12  IPSL-CM5A-

MR 

Institut Pierre-

Simon Laplace 

1.2587 x 2.5 14 3 1 1 1 

13  MIROC-ESM Atmosphere and 

Ocean Research 

Institute (The 

University of 

Tokyo), National 

Institute for 

Environmental 

Studies, and Japan 

Agency for 

Marine-Earth 

Science and 

Technology 

2.8125 x 

2.8125 

15 5 3 1 3 

14  MIROC-ESM-

CHEM 

Atmosphere and 

Ocean Research 

Institute (The 

2.8125 x 

2.8125 

15 3 1 1 1 



Supplementary Table 7: Details of 17 Global Climate Model ensembles used for the study. *Hist is the number of runs of historic data for 

baseline evaluation 

University of 

Tokyo), National 

Institute for 

Environmental 

Studies, and Japan 

Agency for 

Marine-Earth 

Science and 

Technology 

15  MIROC5  Japan Agency for 

Marine-Earth 

Science and 

Technology, 

Atmosphere and 

Ocean Research 

Institute (The 

University of 

Tokyo), and 

National Institute 

for Environmental 

Studies 

1.4063 x 

1.4063 

16 

 

1 1 1 1 

16  MRI-CGCM3 Meteorological 

Research Institute 

1.125 x 

1.125 

17 5 1 1 1 

17  NorESM1-M  Norwegian 

Climate Centre 

1.875 x 2.5 18,19 3 1 1 1 



 

 

year RCP Ae. 
aegypti, 
# of 
countries  

Ae. aegypti, 
country 
names 

Ae. 
albopictus 
# of 
countries 

Ae. albopictus; country names 

2015 baseline 156 NA 177 NA 

2020 4.5 155 NA 180 Jersey, Chad, Comoros 

2050 4.5 156 Swaziland 180 Jersey, Chad, Comoros 

2080 4.5 156 NA 181 Belgium, Jersey, Chad, Solomon Islands 

2020 6 157 Swaziland 191 Poland, Netherlands, Germany, Belgium, Czech Republic, 
Jersey, Mali, Chad, Burkina Faso, Solomon Islands, Comoros, 
Samoa, Saint Helena, Europa Island 

2050 6 158 Saint 
Helena, 
Swaziland 

191 Poland, Netherlands, Belgium, Germany, Jersey, Czech 
Republic, Mali, Chad, Burkina Faso, Solomon Islands, 
Comoros, Samoa, Saint Helena, Europa Island 

2080 6 159 Canada, 
Saint 
Helena, 
Swaziland 

197 Norway, Poland, Germany, Belarus, Netherlands, U.K. of 
Great Britain and Northern Ireland, Belgium, Czech 
Republic, Jersey, Bahrain, Saint Kitts and Nevis, Montserrat, 
Mali, Chad, Burkina Faso, Solomon Islands, Comoros, Samoa, 
Saint Helena, Europa Island 

2020 8.5 159 Canada, 
Saint 
Helena, 
Swaziland 

195 Norway, Lithuania, Poland, Belarus, Germany, Netherlands, 
Belgium, Czech Republic, Jersey, Saint Kitts and Nevis, 
Montserrat, Mali, Burkina Faso, Chad, Solomon Islands, 
Comoros, Samoa, Saint Helena 

2050 8.5 159 Canada, 
Saint 
Helena, 
Swaziland 

197 Norway, Denmark, Poland, U.K. of Great Britain and 
Northern Ireland, Germany, Belarus, Netherlands, Belgium, 
Czech Republic, Jersey, Saint Kitts and Nevis, Montserrat, 
Mali, Burkina Faso, Chad, Solomon Islands, Comoros, Samoa, 
Saint Helena, Europa Island 

2080 8.5 162 Canada, 
Croatia, 
Greece, 
Cayman 
Islands, 
Saint 
Helena, 
Swaziland 

209 Norway, Finland, Estonia, Sweden, Latvia, U.K. of Great 
Britain and Northern Ireland, Denmark, Lithuania, Belarus, 
Germany, Poland, Netherlands, Ireland, Belgium, Czech 
Republic, Mongolia, Luxembourg, Guernsey, Jersey, 
Liechtenstein, Kuril islands, Andorra, Bahrain, Saint Kitts 
and Nevis, Montserrat, Mali, Burkina Faso, Chad, Solomon 
Islands, Comoros, Samoa, Saint Helena, Europa Island 

Supplementary Table 8: Number of countries expected to report Ae. aegypti and Ae. albopictus for 

each scenario and from 2015 to 2080. 

  



 

Reference Species Modelling approach Covariates included 

Europe 

Cunze et al 201620 Albopictus MAXENT species 

distribution model 

Temperature and 

precipitation 

Cunze et al 201621 Albopictus MAXENT species 

distribution model 

Temperature, 

precipitation and 

photoperiod 

Liu Helmersson et al 201622 Aegypti and 

Albopictus 

Mechanistic model 

of vectorial 

capacity 

Temperature 

Koch et al 201523 Albopictus MAXENT species 

distribution model 

Temperature and 

precipitation 

Fischer et al 201324 Albopictus MAXENT species 

distribution model 

Temperature, 

precipitation and 

altitude 

Caminade et al 201225 Albopictus Mechanistic model 

of climatic limits 

Temperature, 

precipitation 

ECDC 200926 Albopictus Mechanistic model 

of climatic limits 

Temperature and 

Precipitation 

USA 

Butterworth et al 20176 Aegypti Mechanistic model 

of mosquito 

population 

dynamics 

Temperature and 

precipitation 

Rochlin et al 20134 Albopictus MAXENT species 

distribution model 

Temperature, 

precipitation and 

land use 

Ogden et al 20145 Albopictus Mechanistic model 

of climatic limits 

Temperature 

Global 



Campbell et al 201527 Aegypti and 

Albopictus 

MAXENT species 

distribution model 

Temperature and 

precipitation 

Proestos et al 201528 Albopictus Mechanistic model 

of climatic limits 

Temperature and 

precipitation 

Khormi and Kumar 201429 Aegypti Mechanistic model 

of climatic limits 

Temperature, 

precipitation and 

humidity 

Capinha et al 201430 Aegypti Alpha-shapes 

species distribution 

model 

Temperature and 

precipitation 

Liu Helmersson et al 201431 Aegypti Mechanistic model 

of vectorial 

capacity 

Temperature 

Supplementary Table 9: Past published projections of the distribution of Ae.aegypti and Ae. 

albopictus 
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