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Supplementary Figures 

Supplementary Figure 1. Proportion of genes that have new direct control 
regions as a function of the number of structural control configurations (SCCs) 
of the network. 
A human gene regulatory network with 5,959 genes and 108,281 regulatory 
interactions was used as the input for searching SCCs and direct control regions of all 
genes. The figure shows that the proportion of genes that have new direct control 
regions starts to level off when the number of SCCs reaches 500. Red line, fitted 
curve for the scatter plot (grey dots). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 2. Determination of the threshold for the indirect control 
value. 
Indirect control region of a gene is identified based on indirect control values of its 
downstream genes. The indirect control value ranges from 0 to 1. Dashed line, value 
of the threshold (λ ) that corresponds to an empirical p-value < 0.01; Solid line, null 
distribution of indirect control values generated using 100 randomized regulatory 
networks. (a) Liver cancer. (b) Lung cancer. (c) Breast cancer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Figure 3. Procedures used to determine parameters of the greedy 
search algorithm for finding a set of optimal control nodes (OCNs). 
(a, c, e) Determination of the stopping criterion based on the growth rate of the 
optimal influence value. To initiate multiple greedy searches, all control regions of 
nodes in a regulatory network are ranked based on their optimal influence value (i.e. 
desired influence minus undesired influence). Each control node of the top 0.01% of 
all control regions is used as the starting point for a greedy search. HCC, 
hepatocellular carcinoma; LUAD, lung adenocarcinoma; BRCA, breast invasive 
carcinoma. In total, 532, 595, and 595 greedy searches are performed for HCC, 
LUAD, and BRCA network, respectively. Each colored line represents the growth 
rate of the optimal influence value during a greedy search initiated from a control 
node. As shown in the figure, the growth rate levels off at 5% for all three regulatory 
networks. Thus, 5% is chosen as the stopping criterion for the greedy search. (b, d, f) 
Calculation of false discovery rate of OCNs based on OCN occurrence frequencies in 
real and randomized regulatory networks. Shown are cumulative distribution function 
(CDF) of OCN occurrence frequency in each regulatory network. Occurrence 
frequency of an OCN is computed as the number of greedy search solutions 
containing this OCN divided by the total number of greedy searches. Red line, CDF 
of OCN occurrence frequency generated using the real regulatory network. Orange 
line, CDF of OCN occurrence frequency generated using 10 randomized regulatory 
networks. Blue dashed line, false discovery rate of 0.05 for predicting OCNs. 



 
 
 
 
 
 
 
 
 
 
 
 

 



Supplementary Figure 4. Clinically relevant synthetic lethal interactions are 
enriched between optimal control regions of synergistic OCN pairs. 
(a, c, e) Clinically relevant synthetic lethal interactions (cSL) are significantly 
enriched between optimal control regions (OCRs) of 52 (68%), 89 (46%) and 49 
(78%) synergistic OCN pairs identified in hepatocellular carcinoma (HCC), lung 
adenocarcinoma (LUAD) and breast invasive carcinoma (BRCA), respectively 
(hypergeometric test p-values < 0.05). Shade of magenta in the heatmap is inversely 
proportional to the enrichment p-values. (b, d, f) Contingency tables and 
corresponding Fisher’s exact test p-values are shown for HCC, LUAD and BRCA, 
respectively, indicating that clinically relevant synthetic lethal interactions are more 
enriched between OCRs of synergistic OCN pairs than non-synergistic OCN pairs. 

 

 



Supplementary Figure 5. Representative FACS plot of cells infected with 
lentiviruses expressing sgRNAs targeting gene pairs in liver cancer (a), lung 
cancer (b) and breast cancer (c). 
Value in each quadrant indicates the percentage of cells expressing a given reporter in 
the culture. The growth phenotype is calculated by measuring the relative depletion of 
the single-infected and double-infected cells between the start and the end of the 
growth assay. KO, single knockout. DKO, double knockout. RFU, relative 
fluorescence unit. Source data are provided as a Source Data file. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

 

 

 

 

 

Supplementary Figure 6. Optimal control regions controlled by synergistic OCN 
pairs are enriched for recurrently mutated cancer genes and have higher 
interaction densities than expected by chance. 
(a, b, c) Recurrently mutated cancer genes in a specific cancer type are significantly 
enriched (hypergeometric test p-values < 0.05) in optimal control regions (OCRs) 
controlled by two synergistic OCNs. In total, OCRs of 77 (100%), 189 (98%) and 63 
(100%) synergistic OCN pairs are enriched for recurrently mutated cancer genes in 
hepatocellular carcinoma (HCC), lung adenocarcinoma (LUAD) and breast invasive 
carcinoma (BRCA), respectively. Shade of yellow in the heatmap is inversely 
proportional to the enrichment p-values. (d, e, f) Dense interactions among OCRs of 
synergistic OCN pairs (empirical p-values < 0.1). In total, OCRs of 61 (79%), 160 
(83%) and 56 (89%) synergistic OCN pairs have significantly higher interaction 
density in HCC, LUAD and BRCA, respectively. Empirical p-value for interaction 
density is calculated using a null distribution generated based on 10 million randomly 
selected gene pairs from the input regulatory network. Shade of green in the heatmap 
is inversely proportional to the empirical p-values. 
 





Supplementary Methods 

Identification of a maximum matching of a directed network 

For identifying a maximum matching of a directed network G (Fig. 1a, left panel), we 

first converted the network G to a bipartite graph (Fig. 1a, middle panel). Each node 

in the network is represented by two types of nodes: a start node (+) and an end node 

(-). The directed edges can only connect from start nodes to end nodes according to 

the relationship in the original network. 

The identification of a maximum matching of the network G is equivalent to 

finding a maximum matching of its associated bipartite graph (Fig. 1a, middle panel), 

which can be solved using the Hungarian algorithm 1. A matching of a bipartite graph 

is a subset of the edges in the graph, in which any two edges do not share common 

starting nodes or ending nodes. A matching of the maximum size is called a maximum 

matching. Note that the maximum matching of a network is not unique, but its size is 

uniquely determined by the network topology. 

Pseudo code of the greedy search algorithm for identifying optimal control nodes 

(OCNs) and their optimal control regions (OCRs) 

Inputs: A DScore-weighted gene regulatory network G, a threshold α  for the 

growth rate of optimal influence value; 

Outputs: OCNs & OCRs 

1. Identify M different structural control configurations SCC ( 1,2, , )m m M= L  for



the network G using the maximum matching algorithm 1; 

2. For each SCC, identify the control region (CR) of each gene. Here, we assume

that there are a total of N genes in the network G.

3. Rank all N M×  control regions identified in Step 2 based on their optimal

influence values (i.e. desired influence minus undesired influence) and use each

control node p of the top 0.01% of all control regions as the starting point for a

search below (i.e. initiate OCNs { }p= , OCRs CR p= );

4. Search from the remaining control regions to identify the SCCCR m
q (the control 

region of node q in SCCm ) that maximizes the optimal influence value

SCCOCRs CR m
q

o
∪

; 

5. If the growth rate of optimal influence value no less than α  (i.e.

SCC OCRsOCRs CR

OCRs

m
q

o o

o
α∪

−
≥ ), then update OCNs OCNs { }q= ∪ , 

SCCOCRs OCRs CR m
q= ∪ , SCCOCRs OCRs CR m

q
o o

∪
= , and go Step 4. Otherwise, 

terminate the algorithm and return OCNs and OCRs. 

It is worth noting that we used a set of 1,000 structural control configurations 

(SCCs) for identifying direct control regions in this study since it is NP-hard to 

enumerate all SCCs for a given network. Although most of the identified OCNs based 

on this set of SCCs are supported by multiple lines of evidence, more SCCs should be 

considered, if high-performance computing resources are available, in order to further 

improve the performance of OptiCon. 



Supplementary Notes 

Additional supporting evidence for identified optimal control nodes (OCNs) in 

liver cancer 

APH1A encodes a subunit of gamma-secretase complex in the Notch signaling 

pathway, whose activation was demonstrated to promote the formation of 

hepatocellular carcinoma (HCC) in vivo 2. Several gamma-secretase inhibitors are 

also in clinical trials for solid tumors, such as RO4929097 3 and PF-03084014 4. 

MAPKAPK2 inhibitor, PHA-781089, was also reported to suppress HCC cell growth 

and induce HCC cell apoptosis 5. 

In addition to the 10 OCNs that are known key regulators in HCC 

(Supplementary Table 4), we also identified five novel regulators, which may play a 

critical role in the progression of HCC. For instance, we found that DNM1 knockout 

using the CRISPR-Cas9 technology can significantly inhibit the growth of SkHep1 

liver cancer cells (Fig. 6b). 

Additional supporting evidence for identified optimal control nodes (OCNs) in 

lung cancer 

Targeting PARP1 can selectively kill lung adenocarcinoma (LUAD) cells with 

ERCC1 or PTEN deficiency 6,7. PARP1 is also documented in the Therapeutic Target 

Database as a target of the drug CEP-9722 (Phase 2 clinical trial) against non-small 

cell lung cancer. HIF1A inhibitor, PX-478, was reported to be effective against LUAD 

growth and metastasis in vivo 8. Silencing of PTP4A1 can decrease LUAD cell 



invasiveness and enhance cell adhesion to reduce cancer metastasis 9. Several 

PTP4A1 inhibitors have been discovered for cancer treatment 10,11. EGR1 and EGLN2 

are two known tumor suppressor genes in LUAD. Their overexpressing can suppress 

cancer cell proliferation and migration 12-14. 

Besides the 13 OCNs that play critical roles in LUAD, we also identified 10 

novel regulators, which may be important for LUAD development (Supplementary 

Table 4). For example, TAF12 is a key regulator involving in the RAS-induced 

malignant transformation of colon cancer cells 15. Because KRAS is also an oncogene 

frequently mutated in LUAD 16 and TAF12 is also significantly up-regulated in our 

expression data (fold-change = 1.5, t-test p-value = 8.2E-12), the pathogenic and 

therapeutic roles of TAF12 in LUAD should be further experimentally investigated. 

Additional supporting evidence for identified optimal control nodes (OCNs) in 

breast cancer 

PLK1 encodes a regulator of several stages during mitotic progression. Silencing 

PLK1 can suppress proliferation and induce apoptosis of breast cancer cells 17-19. 

Several PLK1 inhibitors are currently in clinical trials for advanced solid tumors 20,21. 

EGFR is an effective therapeutic target for combination therapy of metastatic breast 

cancer 22-26. ESPL1 and EGR1 are known oncogene 27-29 and tumor suppressor gene 

30,31 of breast cancer, respectively. SNAI1 is a cancer metastasis-promoting gene 32,33, 

while RELN and SIK1 are two metastasis suppressor genes of breast cancer 34,35. 



Evaluation of OptiCon predictions using existing drug synergy screening data 

We used the drug synergy screening data by Friedman et al. 36 to evaluate the 

performance of OptiCon. The Friedman et al. study identified 1,220 synergistic drug 

pairs out of the 108 108×  drug combinations in the melanoma cell lines SK-MEL-28 

and LOXIMVI. 3,030 gene pairs in our input network are targets of these synergistic 

drug pairs, about 0.02% of the network. As the input to OptiCon, we downloaded 

gene expression data from Gene Expression Omnibus (GSE31909), which were 

generated using two melanoma cell lines SK-MEL-28 and LOXIMVI and two normal 

melanocyte lines, HEMn and HEMa. Each cell line has three replicates. Using this 

dataset, OptiCon identified 18 optimal control nodes (OCNs) and 105 synergistic 

OCN pairs (Supplementary Table 8). Among the OCNs, six (33%) are known cancer 

drug targets and two (NR1H3 and EPHA5) of them are primary targets of T0901317 

and Dasatinib, respectively, which are two drugs in the 108-drug pool used in the 

Friedman et al. study 36. NR1H3 and EPHA5 were predicted by OptiCon to have a 

synergistic interaction (multi-testing corrected p-value = 0.05) and their 

corresponding drugs T0901317 and Dasatinib were also validated to have a 

synergistic anti-cancer effect in both SK-MEL-28 and LOXIMVI cell lines based on 

the drug combination study 36. 

It is also worth noting that another two identified OCNs, CDC25A and 

CCNB1, are key cell cycle regulators. CDC25A was reported to be directly 

phosphorylated by cyclinD-CDK4/6 complexes and its phosphorylation can be 

regulated by CDK inhibitors 37. CCNB1 activity can also be modulated by CDK 



inhibitors 38. Thus, we regarded CDC25A and CCNB1 as the indirect targets of CDK 

inhibitors. Based on the drug combination data 36, CDK inhibitors were shown to have 

a synergistic interaction with either T0901317 or Dasatinib. Four gene pairs targeted 

by these two drugs (i.e. CDC25A & NR1H3, CDC25A & EPHA5, CCNB1 & NR1H3, 

and CCNB1 & EPHA5) were also predicted by OptiCon to be synergistic. Taken 

together, five synergistic gene pairs predicted by OptiCon (out of 105 pairs, 4.8%) are 

also targeted by pairs of drugs that have been shown to be synergistic by Friedman et 

al. 36. The overlap between our predicted synergistic gene pairs and targets of 

synergistic drug pairs by Friedman et al. is statistically significant (hypergeometric 

test p-value = 1.4E-11). 
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