# Supplementary methods

### **Materials**

Sodium dodecyl sulphate (SDS), urea, dithiothreitol (DTT), iodoacetamide (IAA), formic acid (FA), ammonium acetate (7.5M solution), sodium chloride, ammonium bicarbonate, L-fucose, methyl  $\alpha$ -D-mammopyranoside and methyl  $\alpha$ -D-glucopyranoside were from Sigma-Aldrich (Steinheim, Germany). LC grade water, methanol, acetonitrile (ACN), Tris (Trizma base) were purchased from Merck. Mass spectrometry grade trypsin was purchased from Promega (Madison, WI, USA). Neuraminidase A ( $\alpha$ 2-3, 6, 8, 9) was from New England Biolabs (NEB). Ammonium hydroxide (extra pure, 25% solution in water) was purchased from Acros organics. Amicon Ultra-0.5 mL centrifugal filters were from Merck Millipore.

# **Glycoprotein sample preparation for native MS**

The asialo-AGP and asialo-Hp were obtained by digestion of 500  $\mu$ g AGP and Hp with 400 unit neuraminidase A in 50 mM sodium acetate buffer (pH 5.5) at 37 °C overnight. Asialo-AGP and asialo-Hp were buffer exchanged into 200 mM ammonium acetate (pH 7.6) in 10 kDa MWCO centrifugal filters (Amicon Ultra-0.5 ml, Millipore) for native MS analysis.

# Glycoprotein sample preparation for glycoproteomics and glycomics

Asialo-AGP and asialo-Hp were diluted with 100 mM Tris buffer (pH 8.0) containing 8 M Urea and 10 mM DTT to a concentration of 1 mg/ml for denaturing. The sample was incubated at 56 °C for 30 min for disulphide bond reduction and buffer exchanged to 50 mM NH<sub>4</sub>HCO<sub>3</sub> with 10 mM IAA in a 10K Amicon centrifugal filter. The protein containing solution was then incubated at room temperature for 30 min in the dark and buffer exchanged to 50 mM NH<sub>4</sub>HCO<sub>3</sub>. The sample was then transferred to a new Eppendorf tube and digested with 2 µg trypsin at 37 °C overnight. For glycomics analysis, the denatured glycoprotein (about 50 µg) was incubated with 4 unit PNGase F at 37 °C overnight. The released N-glycans were desalted using a porous graphitic carbon StageTip and analyzed on a Q Exactive-Orbitrap mass spectrometer in positive mode.

# Native MS data analysis

The raw native mass spectra were deconvoluted by UniDec to zero-charge spectra. Protein and glycan mass calculations were based on amino acid and monosaccharides average residue masses and led to a

calculated mass of 21560.12 Da for the AGP F1 variant peptide backbone. Pyro-Glu at the N-terminus (Gln to Pyro-Glu) results in a reduction of -17.03 Da. Hp (phenotype 1-1)  $\alpha$  and  $\beta$  subunit peptide backbones are 9192.21 Da and 27265.07 Da, respectively. A disulfide bond reduces the mass by -2.01 Da. Hexose (Man and Gal) masses are 162.1424 Da. Fucose (Fuc) is 146.1430 Da, N-aceytlneuraminic acid (Neu5Ac) is 291.2579 Da and N-acetylglucosamine (GlcNAc) is 203.1950 Da.

### **Glycoproteomics data analysis**

The monoisotopic masses of asialo-AGP and asialo-Hp tryptic glycopeptides without missed cleavages were manually calculated to 4 decimal places. Hexose (Man and Gal) monoisotopic masses are 162.0528 Da. GlcNAc is 203.0794 Da, Fuc is 146.0579 Da and Neu5Ac is 291.0954 Da. The extracted ion chromatogram (XIC) and its area under the curve (AUC) of each tryptic glycopeptide were processed and integrated using Xcalibur 2.2 with 50 ppm mass tolerance and 7 point Gaussian smoothing. Relative quantifications of the tryptic glycopeptides were based on their AUCs.



**Figure S1.** Glycoproteomics analysis of an asialo-Hp tryptic glycopeptide (Asn238). Intact glycopeptides with charge state +3 are shown. The glycan composition of intact glycopeptides are calculated based on peptide mass and monosaccharide residue monoisotopic masses. Bi-, tri- and tetra- antennary N-glycan without/with one fucose residue (red triangle, +146.0579 Da) are found at Asn238 of asialo-Hp. No sialylated (+291.0954 Da) N-glycan is observed. These suggest the complete removal of sialic acid residues. The monosaccharide residues are labeled according to the Consortium for Functional Glycomics guidance (blue square for GlcNAc, yellow circle for Gal, green circle for Man, and red triangle for Fuc).



Figure S2. Glycoproteomics analysis of tetra-antennary asialo-AGP tryptic glycopeptides (Asn85). (A) MS of asialo-AGP tryptic glycopeptides (Asn85) carrying tetra-antennary N-glycans with zero to three additional fucose residues (red triangles, +146.0579 Da). Intact glycopeptides with charge state +3 are shown. No sialylated (+291.0954 Da) tetra-antennary N-glycopeptide is found. (B) MS/MS of asialo-AGP tryptic glycopeptides (Asn85). The neutral loss of fucose residue is indicated by red arrow. The high resolution mass spectrum of intact glycopeptides and tandem MS analysis confirm the complete removal of sialic acid residues and the presence of multiple fucose residues (red triangles).



**Figure S3.** Glycomics analysis of the released N-glycans from asialo-AGP. N-glycans were enzymatically digested from denatured asialo-AGP using PNGase F treatment and analyzed by mass spectrometer. Bi-, tri- and tetra- antennary N-glycans are observed. We also identified mono-, bi- and tri- fucosylations (red triangles). No sialylated (+291.2579 Da) N-glycan is observed. This confirms the complete desialylation of asialo-AGP at the glycan level. All N-glycan ions in the spectrum are charge state +1.



**Figure S4.** Fucosylation levels of asialo-Hp (A) and asialo-AGP (B). The relative abundances of Fuc<sub>0</sub>, Fuc<sub>1</sub>, Fuc<sub>2</sub>, Fuc<sub>3</sub> and Fuc<sub>4</sub> peaks in asialo-Hp and asialo-AGP native mass spectra (Figure 1) are summed, normalized and plotted as bar graphs, respectively.



**Figure S5.** Raw native mass spectra of AAL-bound asialo-Hp and AAL-unbound asialo-Hp. The average molecular weight of AAL-bound asialo-Hp is significantly larger than AAL-unbound asialo-Hp suggesting AAL-bound asialo-Hp carries more fucose residues and/or fucose-containing glycan structures.



**Figure S6.** Raw native mass spectra of AAL-bound asialo-AGP and AAL-unbound asialo-AGP. The average molecular weight of AAL-bound asialo-AGP is also significantly larger than AAL-unbound asialo-AGP indicating the presence of additional fucose residues and/or fucose-containing glycan structures on AAL-bound asialo-AGP.



**Figure S7.** Raw native mass spectra of PHA-L fractionated asialo-Hp (A) and asialo-AGP (B). The PHA-Lbound and unbound asialo-AGP spectra are similar. PHA-L fractionation is more efficient to enrich highly branched asialo-Hp (with higher molecular weight), but less efficient to fractionate asialo-AGP.



**Figure S8.** Raw native mass spectra of Con A fractionated asialo-Hp (A) and asialo-AGP (B). Con A- bound and unbound asialo-Hp spectra are almost identical. Comparing to PHA-L fractionation (Fig. S7), Con A lectin affinity purification is more practical to fractionate asialo-AGP.

| Num  | Experimental | Theoretical | Mass<br>Difference | Relative<br>Abundance |    |         | <b>.</b> | Glycosylation   | Annatation |
|------|--------------|-------------|--------------------|-----------------------|----|---------|----------|-----------------|------------|
| Num. |              |             | (Da)               | (%)                   |    | HEXINAC | Fuc      | Status          | Annotation |
| 1    | 84260.1      | 84260.9     | 0.8                | 6.94                  | 35 | 28      | 1        | Partially       |            |
| 2    | 84412.5      | 84407.1     | 5.4                | 4.57                  | 35 | 28      | 1        | Partially       |            |
| 3    | 84625.8      | 84626.3     | 0.5                | 15.55                 | 36 | 29      | 0        | Partially       |            |
| 4    | 84775.3      | 84772.4     | 2.9                | 10.84                 | 36 | 29      | 1        | Partially       |            |
| 5    | 84924.2      | 84918.5     | 5.7                | 1.93                  | 30 | 29      | 2        | Partially       |            |
| 6    | 84989.9      | 84991.6     | 1.7                | 16.42                 | 37 | 30      | 0        | Partially       |            |
| /    | 85138.4      | 85137.7     | 0.7                | 13.74                 | 37 | 30      | 1        | Partially       |            |
| 8    | 85288.5      | 85283.9     | 4.6                | 5.74                  | 37 | 30      | 2        | Partially       |            |
| 9    | 85356.4      | 85356.9     | 0.5                | 14.07                 | 38 | 31      | 0        | Partially       |            |
| 10   | 85504.8      | 85503.1     | 1.7                | 12.88                 | 38 | 31      | 1        | Partially/Fully | POFO       |
| 11   | 85654.9      | 85649.2     | 5.7                | 6.71                  | 38 | 31      | 2        | Partially/Fully | P0F1       |
| 12   | 85723.2      | 85722.3     | 0.9                | 10.06                 | 39 | 32      | 0        | Partially       |            |
| 13   | 85881.4      | 85884.4     | 3                  | 39                    | 40 | 32      | 0        | Fully           | P1F0       |
| 14   | 86033.2      | 86030.5     | 2.7                | 15.84                 | 40 | 32      | 1        | Fully           | P1F1       |
| 15   | 86091.3      | 86087.6     | 3.7                | 7.02                  | 40 | 33      | 0        | Partially       |            |
| 16   | 86248.1      | 86249.7     | 1.6                | 79.12                 | 41 | 33      | 0        | Fully           | P2F0       |
| 17   | 86398.7      | 86395.9     | 2.8                | 52.9                  | 41 | 33      | 1        | Fully           | P2F1       |
| 18   | 86546.4      | 86542.0     | 4.4                | 6.89                  | 41 | 33      | 2        | Fully           | P2F2       |
| 19   | 86615.3      | 86615.1     | 0.2                | 100                   | 42 | 34      | 0        | Fully           | P3F0       |
| 20   | 86762.4      | 86761.2     | 1.2                | 82.42                 | 42 | 34      | 1        | Fully           | P3F1       |
| 21   | 86913.0      | 86907.4     | 5.6                | 31.92                 | 42 | 34      | 2        | Fully           | P3F2       |
| 22   | 86980.3      | 86980.4     | 0.1                | 95.69                 | 43 | 35      | 0        | Fully           | P4F0       |
| 23   | 87127.6      | 87126.6     | 1                  | 84.57                 | 43 | 35      | 1        | Fully           | P4F1       |
| 24   | 87276.2      | 87272.7     | 3.5                | 44.4                  | 43 | 35      | 2        | Fully           | P4F2       |
| 25   | 87346.7      | 87345.8     | 0.9                | 73.95                 | 44 | 36      | 0        | Fully           | P5F0       |
| 26   | 87425.4      | 87418.8     | 6.6                | 7.02                  | 43 | 35      | 3        | Fully           | P4F3       |
| 27   | 87493.7      | 87491.9     | 1.8                | 66.49                 | 44 | 36      | 1        | Fully           | P5F1       |
| 28   | 87640.6      | 87638.0     | 2.6                | 41.21                 | 44 | 36      | 2        | Fully           | P5F2       |
| 29   | 87711.0      | 87711.1     | 0.1                | 48.93                 | 45 | 37      | 0        | Fully           | P6F0       |
| 30   | 87789.9      | 87784.2     | 5.7                | 15.45                 | 44 | 36      | 3        | Fully           | P5F3       |
| 31   | 87859.6      | 87857.2     | 2.4                | 43.65                 | 45 | 37      | 1        | Fully           | P6F1       |
| 32   | 88006.0      | 88003.4     | 2.6                | 29.27                 | 45 | 37      | 2        | Fully           | P6F2       |
| 33   | 88077.4      | 88076.4     | 1                  | 29.79                 | 46 | 38      | 0        | Fully           | P7F0       |
| 34   | 88155.3      | 88149.5     | 5.8                | 14.74                 | 45 | 37      | 3        | Fully           | P6F3       |
| 35   | 88223.8      | 88222.6     | 1.2                | 26.39                 | 46 | 38      | 1        | Fully           | P7F1       |

 Table S1.
 Annotation of asialo-Hp glycoproteoforms

| 36 | 88301.5 | 88295.7 | 5.8 | 4.39  | 45 | 37 | 4 | Fully | P6F4  |
|----|---------|---------|-----|-------|----|----|---|-------|-------|
| 37 | 88371.7 | 88368.7 | 3   | 18.16 | 46 | 38 | 2 | Fully | P7F2  |
| 38 | 88442.1 | 88441.8 | 0.3 | 16.61 | 47 | 39 | 0 | Fully | P8F0  |
| 39 | 88518.9 | 88514.9 | 4   | 9.39  | 46 | 38 | 3 | Fully | P7F3  |
| 40 | 88590.3 | 88587.9 | 2.4 | 15.2  | 47 | 39 | 1 | Fully | P8F1  |
| 41 | 88666.6 | 88661.0 | 5.6 | 4.03  | 46 | 38 | 4 | Fully | P7F4  |
| 42 | 88736.1 | 88734.1 | 2   | 10.12 | 47 | 39 | 2 | Fully | P8F2  |
| 43 | 88808.4 | 88807.1 | 1.3 | 10.02 | 48 | 40 | 0 | Fully | P9F0  |
| 44 | 88883.9 | 88880.2 | 3.7 | 4.31  | 47 | 39 | 3 | Fully | P8F3  |
| 45 | 88955.4 | 88953.2 | 2.2 | 9.32  | 48 | 40 | 1 | Fully | P9F1  |
| 46 | 89031.7 | 89026.3 | 5.4 | 1.88  | 47 | 39 | 4 | Fully | P8F4  |
| 47 | 89102.7 | 89099.4 | 3.3 | 4.75  | 48 | 40 | 2 | Fully | P9F2  |
| 48 | 89172.4 | 89172.4 | 0   | 3.75  | 49 | 41 | 0 | Fully | P10F0 |
| 49 | 89254.6 | 89245.5 | 9.1 | 2.22  | 48 | 40 | 3 | Fully | P9F3  |
| 50 | 89320.1 | 89318.6 | 1.5 | 3.2   | 49 | 41 | 1 | Fully | P10F1 |

|      | Experimental | Theoretical | Mass<br>Difference | Relative<br>Abundance |     |        |     | Genetic |            |
|------|--------------|-------------|--------------------|-----------------------|-----|--------|-----|---------|------------|
| Num. | Mass (Da)    | Mass (Da)   | (Da)               | (%)                   | Hex | HexNAc | Fuc | Variant | Annotation |
| 1    | 30751.5      | 30752.5     | 1                  | 4.75                  | 28  | 23     | 0   | F1      | P0         |
| 2    | 30901.8      | 30898.7     | 3.1                | 2.37                  | 28  | 23     | 1   | F1      | P0F1       |
| 3    | 30930.3      | 30926.7     | 3.6                | 1.17                  | 28  | 23     | 1   | S       | P0F1       |
| 4    | 31042.9      | 31044.8     | 1.9                | 1.27                  | 28  | 23     | 2   | F1      | P0F2       |
| 5    | 31115.7      | 31117.9     | 2.2                | 21.99                 | 29  | 24     | 0   | F1      | P1F0       |
| 6    | 31145.4      | 31145.9     | 0.5                | 3.83                  | 29  | 24     | 0   | S       | P1F0       |
| 7    | 31190.8      | 31191.0     | 0.2                | 1.91                  | 28  | 23     | 3   | F1      | P0F3       |
| 8    | 31262.4      | 31264.0     | 1.6                | 10.55                 | 29  | 24     | 1   | F1      | P1F1       |
| 9    | 31292.2      | 31292.1     | 0.1                | 4.63                  | 29  | 24     | 1   | S       | P1F1       |
| 10   | 31324.2      | 31321.1     | 3.1                | 2.8                   | 29  | 25     | 0   | F1      |            |
| 11   | 31408.4      | 31410.2     | 1.8                | 8.28                  | 29  | 24     | 2   | F1      | P1F2       |
| 12   | 31437.5      | 31438.2     | 0.7                | 2.32                  | 29  | 24     | 2   | S       | P1F2       |
| 13   | 31480.4      | 31483.2     | 2.8                | 47.91                 | 30  | 25     | 0   | F1      | P2         |
| 14   | 31509.8      | 31511.3     | 1.5                | 18.35                 | 30  | 25     | 0   | S       | P2         |
| 15   | 31556.6      | 31556.3     | 0.3                | 4.14                  | 29  | 24     | 3   | F1      | P1F3       |
| 16   | 31584.8      | 31584.4     | 0.4                | 1.71                  | 29  | 24     | 3   | S       | P1F3       |
| 17   | 31627.1      | 31629.4     | 2.3                | 21.62                 | 30  | 25     | 1   | F1      | P2F1       |
| 18   | 31657.5      | 31657.4     | 0.1                | 9.7                   | 30  | 25     | 1   | S       | P2F1       |
| 19   | 31689.7      | 31686.4     | 3.3                | 7.81                  | 30  | 26     | 0   | F1      |            |
| 20   | 31706.0      | 31702.4     | 3.6                | 1.39                  | 29  | 24     | 4   | F1      | P1F4       |
| 21   | 31774.1      | 31775.5     | 1.4                | 15.99                 | 30  | 25     | 2   | F1      | P2F2       |
| 22   | 31803.7      | 31803.5     | 0.2                | 8.53                  | 30  | 25     | 2   | S       | P2F2       |
| 23   | 31845.7      | 31848.5     | 2.8                | 71.79                 | 31  | 26     | 0   | F1      | Р3         |
| 24   | 31876.6      | 31876.6     | 0                  | 32.08                 | 31  | 26     | 0   | S       | Р3         |
| 25   | 31921.5      | 31921.6     | 0.1                | 7.86                  | 30  | 25     | 3   | F1      | P2F3       |
| 26   | 31950.3      | 31949.7     | 0.6                | 6.21                  | 30  | 25     | 3   | S       | P2F3       |
| 27   | 31993.3      | 31994.7     | 1.4                | 34.55                 | 31  | 26     | 1   | F1      | P3F1       |
| 28   | 32021.9      | 32022.7     | 0.8                | 18.81                 | 31  | 26     | 1   | S       | P3F1       |
| 29   | 32054.6      | 32051.7     | 2.9                | 9.93                  | 31  | 27     | 0   | F1      |            |
| 30   | 32070.1      | 32067.8     | 2.3                | 3.34                  | 30  | 25     | 4   | F1      | P2F4       |
| 31   | 32094.6      | 32095.8     | 1.2                | 2.78                  | 30  | 25     | 4   | S       | P2F4       |
| 32   | 32138.9      | 32140.8     | 1.9                | 25.96                 | 31  | 26     | 2   | F1      | P3F2       |
| 33   | 32168.1      | 32168.9     | 0.8                | 15.58                 | 31  | 26     | 2   | S       | P3F2       |
| 34   | 32212.5      | 32213.9     | 1.4                | 100                   | 32  | 27     | 0   | F1      | P4         |
| 35   | 32243.1      | 32241.9     | 1.2                | 46.4                  | 32  | 27     | 0   | S       | P4         |
| 36   | 32287.1      | 32287.0     | 0.1                | 13.18                 | 31  | 26     | 3   | F1      | P3F3       |
| 37   | 32314.1      | 32315.0     | 0.9                | 9.41                  | 31  | 26     | 3   | S       | P3F3       |
| 38   | 32360.0      | 32360.0     | 0                  | 48.81                 | 32  | 27     | 1   | F1      | P4F1       |
| 39   | 32387.7      | 32388.1     | 0.4                | 28.11                 | 32  | 27     | 1   | S       | P4F1       |

Table S2. Annotation of asialo-AGP glycoproteoforms

| 40 | 32419.6 | 32417.1 | 2.5 | 17.22 | 32 | 28 | 0 | F1 |      |
|----|---------|---------|-----|-------|----|----|---|----|------|
| 41 | 32435.6 | 32433.1 | 2.5 | 5.48  | 31 | 26 | 4 | F1 | P3F4 |
| 42 | 32460.1 | 32461.2 | 1.1 | 6.09  | 31 | 26 | 4 | S  | P3F4 |
| 43 | 32505.8 | 32506.2 | 0.4 | 34.99 | 32 | 27 | 2 | F1 | P4F2 |
| 44 | 32533.4 | 32534.2 | 0.8 | 19.93 | 32 | 27 | 2 | S  | P4F2 |
| 45 | 32577.8 | 32579.2 | 1.4 | 81.83 | 33 | 28 | 0 | F1 | P5   |
| 46 | 32608.2 | 32607.3 | 0.9 | 43.91 | 33 | 28 | 0 | S  | P5   |
| 47 | 32651.8 | 32652.3 | 0.5 | 20.84 | 32 | 27 | 3 | F1 | P4F3 |
| 48 | 32680.4 | 32680.4 | 0   | 13.69 | 32 | 27 | 3 | S  | P4F3 |
| 49 | 32724.5 | 32725.4 | 0.9 | 40.48 | 33 | 28 | 1 | F1 | P5F1 |
| 50 | 32754.6 | 32753.4 | 1.2 | 26.24 | 33 | 28 | 1 | S  | P5F1 |
| 51 | 32785.2 | 32782.4 | 2.8 | 12.98 | 33 | 29 | 0 | F1 |      |
| 52 | 32799.5 | 32798.5 | 1   | 10.94 | 32 | 27 | 4 | F1 | P4F4 |
| 53 | 32827.5 | 32826.5 | 1   | 7.75  | 32 | 27 | 4 | S  | P4F4 |
| 54 | 32871.6 | 32871.5 | 0.1 | 28.89 | 33 | 28 | 2 | F1 | P5F2 |
| 55 | 32898.7 | 32899.6 | 0.9 | 18.68 | 33 | 28 | 2 | S  | P5F2 |
| 56 | 32944.2 | 32944.6 | 0.4 | 41.02 | 34 | 29 | 0 | F1 | P6   |
| 57 | 32972.9 | 32972.6 | 0.3 | 23.76 | 34 | 29 | 0 | S  | P6   |
| 58 | 33017.9 | 33017.6 | 0.3 | 18.41 | 33 | 28 | 3 | F1 | P5F3 |
| 59 | 33047.9 | 33045.7 | 2.2 | 13.48 | 33 | 28 | 3 | S  | P5F3 |
| 60 | 33090.3 | 33090.7 | 0.4 | 20.36 | 34 | 29 | 1 | F1 | P6F1 |
| 61 | 33119.0 | 33118.8 | 0.2 | 15.95 | 34 | 29 | 1 | S  | P6F1 |
| 62 | 33151.3 | 33147.8 | 3.5 | 4.59  | 34 | 30 | 0 | F1 |      |
| 63 | 33164.3 | 33163.8 | 0.5 | 12.85 | 33 | 28 | 4 | F1 | P5F4 |
| 64 | 33189.3 | 33191.8 | 2.5 | 8.38  | 33 | 28 | 4 | S  | P5F4 |
| 65 | 33236.8 | 33236.8 | 0   | 12.84 | 34 | 29 | 2 | F1 | P6F2 |
| 66 | 33265.8 | 33264.9 | 0.9 | 10.04 | 34 | 29 | 2 | S  | P6F2 |
| 67 | 33309.7 | 33309.9 | 0.2 | 29.56 | 35 | 30 | 0 | F1 | Ρ7   |
| 68 | 33337.1 | 33338.0 | 0.9 | 18.01 | 35 | 30 | 0 | S  | Ρ7   |
| 69 | 33383.1 | 33383.0 | 0.1 | 7.6   | 34 | 29 | 3 | F1 | P6F3 |
| 70 | 33411.8 | 33411.0 | 0.8 | 6.38  | 34 | 29 | 3 | S  | P6F3 |
| 71 | 33455.7 | 33456.0 | 0.3 | 17.38 | 35 | 30 | 1 | F1 | P7F1 |
| 72 | 33484.2 | 33484.1 | 0.1 | 11.52 | 35 | 30 | 1 | S  | P7F1 |
| 73 | 33516.1 | 33513.1 | 3   | 5.08  | 35 | 31 | 0 | F1 |      |
| 74 | 33529.7 | 33529.1 | 0.6 | 3.72  | 34 | 29 | 4 | F1 | P6F4 |
| 75 | 33557.4 | 33557.2 | 0.2 | 4.02  | 34 | 29 | 4 | S  | P6F4 |
| 76 | 33602.0 | 33602.2 | 0.2 | 11.03 | 35 | 30 | 2 | F1 | P7F2 |
| 77 | 33628.6 | 33630.2 | 1.6 | 7.47  | 35 | 30 | 2 | S  | P7F2 |
| 78 | 33674.2 | 33675.2 | 1   | 15.38 | 36 | 31 | 0 | F1 | P8F0 |
| 79 | 33703.6 | 33703.3 | 0.3 | 9.42  | 36 | 31 | 0 | S  | P8F0 |
| 80 | 33748.4 | 33748.3 | 0.1 | 6.52  | 35 | 30 | 3 | F1 | P7F3 |
| 81 | 33777.0 | 33776.4 | 0.6 | 4.56  | 35 | 30 | 3 | S  | P7F3 |
| 82 | 33822.1 | 33821.4 | 0.7 | 8.49  | 36 | 31 | 1 | F1 | P8F1 |

| 83  | 33850.0 | 33849.4 | 0.6 | 5.62 | 36 | 31 | 1 | S  | P8F1  |
|-----|---------|---------|-----|------|----|----|---|----|-------|
| 84  | 33881.6 | 33878.4 | 3.2 | 1.91 | 36 | 32 | 0 | F1 |       |
| 85  | 33893.3 | 33894.5 | 1.2 | 3.26 | 35 | 30 | 4 | F1 | P7F4  |
| 86  | 33923.3 | 33922.5 | 0.8 | 3.11 | 35 | 30 | 4 | S  | P7F4  |
| 87  | 33967.8 | 33967.5 | 0.3 | 5.81 | 36 | 31 | 2 | F1 | P8F2  |
| 88  | 33996.7 | 33995.6 | 1.1 | 4.52 | 36 | 31 | 2 | S  | P8F2  |
| 89  | 34039.6 | 34040.6 | 1   | 9.76 | 37 | 32 | 0 | F1 | P9F0  |
| 90  | 34068.3 | 34068.6 | 0.3 | 6.1  | 37 | 32 | 0 | S  | P9F0  |
| 91  | 34111.0 | 34113.7 | 2.7 | 3.71 | 36 | 31 | 3 | F1 | P8F3  |
| 92  | 34141.5 | 34141.7 | 0.2 | 2.56 | 36 | 31 | 3 | S  | P8F3  |
| 93  | 34185.9 | 34186.7 | 0.8 | 4.43 | 37 | 32 | 1 | F1 | P9F1  |
| 94  | 34212.0 | 34214.8 | 2.8 | 3.25 | 37 | 32 | 1 | S  | P9F1  |
| 95  | 34261.5 | 34259.8 | 1.7 | 2.75 | 36 | 31 | 4 | F1 | P8F4  |
| 96  | 34288.3 | 34287.9 | 0.4 | 1.9  | 36 | 31 | 4 | S  | P8F4  |
| 97  | 34330.4 | 34332.9 | 2.5 | 4.67 | 37 | 32 | 2 | F1 | P9F2  |
| 98  | 34361.9 | 34360.9 | 1   | 2.77 | 37 | 32 | 2 | S  | P9F2  |
| 99  | 34404.9 | 34405.9 | 1   | 4.06 | 38 | 33 | 0 | F1 | P10F0 |
| 100 | 34433.2 | 34434.0 | 0.8 | 3.42 | 38 | 33 | 0 | S  | P10F0 |
| 101 | 34477.0 | 34479.0 | 2   | 1.69 | 37 | 32 | 3 | F1 | P9F3  |