Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Regiodivergent Hydrosilylation, Hydrogenation, [2π+2π]-Cycloaddition and C–H Borylation using Counterion Activated Earth-abundant Metal Catalysis A. J. Challinor, R. Agahi, J. H. Docherty, J. Dunne, N. B. Carter and S. P. Thomas

EaStCHEM, School of Chemistry, University of Edinburgh, Joseph Black Building, Richard Brewster Road, Edinburgh, EH9 3FJ, U.K. Fax: (+44)-(0)-131-650-6543

Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EX, U.K.

E-mail: stephen.thomas@ed.ac.uk

Contents

General Experimental Information	S2
Alkene Synthesis	S4
Ligand and Pre-catalyst Synthesis	S 6
General Experimental Procedures	S9
Hydrosilylation Products: Experimental and Analytical Data	S13
Hydrogenation and Other Products: Experimental and Analytical Data	S51
Supporting Tables and Figures	S58
References	S92
Spectra	S93

General Experimental Information

Reaction Setup: All reactions were performed in oven (180 °C) dried glassware under an atmosphere of argon, unless otherwise indicated. All air- and moisture sensitive reactions were carried out using standard vacuum line and Schlenk techniques, or in a glovebox with a purified argon atmosphere. All glassware was cleaned using base (KOH, ^{*i*}PrOH) and acid (HCl_{aq}) baths. All reported reaction temperatures correspond to external bath temperatures. Room temperature (r.t) was approximately 20°C. "Brine" refers to a saturated solution of sodium chloride in H₂O. For the hydrosilylation of olefins, the reactions were typically carried out in a glass vial (10 ml, Fisher Scientific, product code 11563680), under an inert atmosphere of argon, unless otherwise stated.

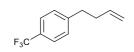
NMR Spectroscopy: ¹H, ¹³C, ¹⁹F and ²⁹Si NMR spectra were recorded on BrukerAvance III 400 and 500 MHz; Bruker AVI 400 MHz; BrukerAvance I 600 MHz spectrometers. Chemical shifts are reported in parts per million (ppm). ¹H and ¹³C NMR spectra were referenced to the residual deuterated solvent peak (CHCl₃: 7.27 ppm, 77.00 ppm; CH₂Cl₂: 5.32 ppm, 54.00 ppm; d_8 -THF: 1.73 ppm, 25.37 ppm; CD₃CN: 1.94 ppm, 1.39 ppm). Multiplicities are indicated by app. (apparent), br. (broad), s (singlet), d (doublet), t (triplet), q (quartet), quin. (quintet), sext. (sextet), sept. (septet), non. (nonet).Coupling constants, *J*, are reported in Hertz and rounded to the nearest 0.1 Hz. Integration is provided. ¹H and ¹³C assignments are corroborated through 2-D NMR experiments (COSY, HSQC, HMBC).

Infrared Spectroscopy: Infra-red (IR) spectra were recorded on a Perkin-Elmer Spectrum One FT-IR, or Shimadzu IRAffinity-1 spectrometer (serial no. A213749). Peaks are reported in cm⁻¹ with indicated relative intensities: s (strong, 0–33% T); m (medium, 34–66% T), w (weak, 67–100% T), and br. (broad).

Mass Spectrometry: Mass spectrometry (MS) was performed by the University of Edinburgh, School of Chemistry Mass Spectrometry Laboratory. High resolution mass spectra were recorded on a VG autospec, or Thermo/Finnigan MAT 900, mass spectrometer. Data are reported in the form of m/z (intensity relative to the base peak = 100).

Melting Points: Melting points (mp) were determined on a Stuart Scientific SMP10, or Griffin Gallankamp melting point apparatus in capillary tubes and are uncorrected.

Chromatography: Analytical thin-layer chromatography was performed on aluminiumbacked silica plates (Merck 60 F_{254}). Pet. ether refers to petroleum ether 40-60. Product spots were visualised by UV light at 254 nm, and subsequently developed using potassium permanganate solution if appropriate. Flash column chromatography was performed on silica gel (Merck Kielselgel 60, 40-63 µm).

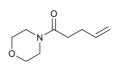

Solvents: All solvents for air- and moisture sensitive techniques were obtained from an

anhydrous solvent system (Innovative Technology). Anhydrous d_8 -tetrahydrofuran was distilled from sodium/benzophenone. Reaction solvents tetrahydrofuran (THF) (Fisher, HPLC grade), ether (Et₂O) (Fisher, BHT stabilized ACS grade), and dichloromethane (CH₂Cl₂) (Fisher, unstabilised HPLC grade) were dried by percolation through two columns packed with neutral alumina under a positive pressure of argon. Toluene (ACS grade) was dried by percolation through a column packed with neutral alumina and a column packed with Q5 reactant (supported copper catalyst for scavenging oxygen) under a positive pressure of argon. Solvents for filtration, transfers, chromatography, and recrystallization were dichloromethane (CH₂Cl₂) (ACS grade), ether (Et₂O) (Fisher, BHT stabilized ACS grade), ethyl acetate (EtOAc) (Fisher, ACS grade), hexane (Optima), methanol (MeOH) (ACS grade), pentane (ACS grade), and petroleum ether (40–60°C, ACS grade).

Chemicals: All reagents were purchased from Sigma Aldrich, Alfa Aesar, Acros Organics, Tokyo Chemical Industries UK,Fluorochem, Fisher Scientific UK and Apollo Scientific or synthesised within the laboratory. Iron (II) tetrafluoroborate hexahydrate 97% (product number 401668) was purchased from Sigma Aldrich; anhydrous iron (II) chloride 98% was purchased from Strem Chemicals Inc. (UK) (product number 39957, Lot 19226800); cobalt (II) tetrafluoroborate hexahydrate 99% was purchased from Sigma Aldrich (product number 93-2631, Lot MKBX9974V, 44.00000% Fe, expect 44.059%).

Alkene Synthesis

4-(4-Trifluoromethylphenyl)-1-butene (1g)

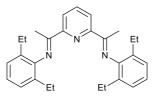


According to a modification of the procedure reported by White and coworkers,¹ 4-Trifluoromethylbenzylbromide (1.00 g, 4.20 mmol, 1.00 equiv.), was dissolved in THF (40 mL) and cooled in an ice bath. Allylmagnesium bromide (0.8 M in Et₂O, 10 mL, 8.00 mmol, 1.90 equiv.) was added dropwise, and the mixture was stirred for 2 hours at 0 °C. Aqueous saturated ammonium chloride (10 mmol) was added to quench the reaction. The aqueous phase was separated and extracted with CH₂Cl₂ (2 x 20 ml). The organic fractions were combined, dried (MgSO₄), filtered through celite, and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (24 g SiO₂, 25 mm Ø, pentane:Et₂O 95:5) to give the alkene **1g** (0.624 g, 3.12 mmol, 74%) as a colourless oil.

- ¹H NMR: (500 MHz, CDCl₃)
 7.56 (2H, d, J = 8.0 Hz), 7.32 (2H, d, J = 7.9 Hz), 5.86 (1H, ddt, J = 17.0, 10.3, 6.6 Hz),
 5.06 (1H, dq, J = 17.2, 1.7), 5.04 5.01 (1H, m), 2.8 (2H, t, J = 7.5), 2.44 2.39 (2H, m)
 ¹³C NMB (126 MHz, CDCl)
- ¹³C NMR: (126 MHz, CDCl₃)
 146.0, 137.4, 128.8, 128.3 (q, J = 32.4 Hz), 125.2 (q, J = 4.0 Hz), 124.5 (q, J = 271.8 Hz), 115.4, 35.12, 35.09

Data were in accordance with those previously reported.¹

1-Morpholinopent-4-en-1-one (11)

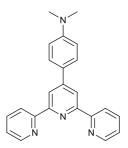

According to a modification of the procedure reported by White and coworkers,¹ dicarbonylimidazole (0.680g, 3.50 mmol, 1.00 equiv.) and 4-pentenoic acid (0.350 g, 3.50 mmol, 1.00 equiv.) were dissolved in anhydrous CH_2Cl_2 (15 mL) under a nitrogen atmosphere. The mixture was stirred for 3 hours at room temperature, at which time morpholine (0.610 g, 7.00 mmol, 2.00 equiv.) was added. The reaction was stirred for 72 hours at ambient temperature. The mixture was concentrated *in vacuo*. The crude product was purified by flash column chromatography (40 g SiO₂, 25 mm Ø, wet loaded, EtOAc:pentane7:3) to give the amide **11** (380 mg, 64%) as a colourless oil.

¹ H NMR:	(500 MHz, CDCl ₃)
	5.92–5.82 (1H, m), 5.11-4.97 (2H, m), 3.69-3.66 (4H, m), 3.65-3.60 (2H, m), 3.50-3.43
	(2H, m), 2.43-2.37 (4H, m)
¹³ C NMR:	(126 MHz, CDCl ₃)
	170.9, 137.3, 115.3, 67.0, 66.7, 46.0, 41.9, 32.3, 29.1
IR:	v_{max} (neat)
	2859 (s), 1627 (s), 1437 (s), 1224 (s), 1113 (s), 1029 (s)
MS:	(EI)
	169.11 ([M ⁺],
HRMS:	(EI)
	found: 169.10915 [M] ⁺ C ₉ H ₁₅ NO requires 169.10973

Data were in accordance with those previously reported.¹

Ligand and Pre-Catalyst Preparation

2,6-Bis-[1-(2,6- diethylphenylimino)ethyl]pyridine (^{Et}BIP)

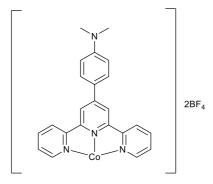


According to our previously reported procedure,² 2,6-Diethylaniline (4.5 mL, 27.0 mmol, 2.20 equiv.) was added to a stirred suspension of 2,6-diacetylpyridine (2.00 g, 12.3 mmol, 1.00 equiv.) and *p*-toluenesulfonic acid (0.11 g, 0.62 mmol, 0.05 equiv.) in anhydrous toluene (25 mL) and heated under Dean-Stark conditions for 18 hours. The mixture was allowed to cool to ambient temperature. The resulting yellow solid was isolated by filtration, washed with cold CH_2Cl_2 and recrystallised (CH_2Cl_2) to give 2,6-bis-[1-(2,6-diethylphenylimino)ethyl]pyridine (3.66 g, 8.61mmol, 70%) as yellow cuboids.

¹H NMR: (500 MHz, CDCl₃)
8.51 (2H, d, J = 7.8 Hz), 7.95 (1H, t, J = 7.8 Hz), 7.16 - 7.14 (4H, m), 7.09 - 7.05 (2H, m), 2.51 - 2.34 (8H, m), 2.28 (6H, s), 1.18 (12H,t, J = 7.5 Hz)
¹³C NMR: (126 MHz, CDCl₃)
166.9, 155.1, 147.8, 136.9, 131.2, 126.0, 123.4, 122.2, 24.6, 16.8, 13.7
M.P: (CH₂Cl₂) 196–198 °C; lit 185–186°C

Data were in accordance with those previously reported.²

2,6-Bispyridyl-4-(4-dimethylaminophenyl)pyridine (4-NMe₂-Ph-Terpy)

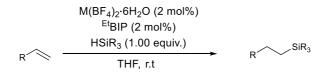

According to the procedure reported by Chrobok and cowerkers,³ 2-Acetylpyridine (1.121 mL, 10.0 mmol, 2 equiv.) was added to a stirred solution of 4-Dimethylaminobenzaldehyde (0.746 g, 5.0 mmol, 1 equiv.) in EtOH (37 ml). KOH (0.771 mg, 13.8 mmol, 2.75 equiv.) was added, followed by aqueous ammonia (15 ml) and the solution was stirred for 24 hours at ambient temperature. The resulting bright yellow solid was collected by filtration, washing with water and EtOH. The crude solid was recrystallized (CHCl₃:MeOH) to give the terpyridine (0.450g, 1.2 mmol, 27%) as a yellow needles.

¹H NMR: (600 MHz, CDCl₃)
8.76 (2H, ddd, J = 0.8, 1.8, 4.7), 8.73 (2H, s), 8.69 (2H, dt, J = 0.96, 7.9 Hz), 7.90 (2H, m), 7.36 (2H, ddd, J = 1.4, 4.7, 7.4), 6.85 (2H, m), 3.02 (6H, s)
¹³C NMR: (126 MHz, CDCl₃)
156.7, 155.7, 151.1, 150.0, 149.1, 136.8, 131.2, 128.1, 125.6, 123.6, 121.4, 117.5, 112.3, 40.4

M.P: (CHCl₃, MeOH) 200–205 °C; lit 205-209 °C⁴

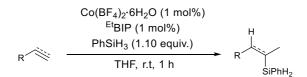
Data were in accordance with those previously reported.³

2,6-Bispyridyl-4-(4-dimethylaminophenyl)pyridine cobalt(II) tetrafluoroborate (1a)

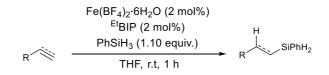


According to the procedure reported by Raithby and coworkers,⁵ CoCl₂ (0.0676 g, 0.4 mmol, 1.00 equiv.) and 2,6-Bispyridyl-4-(4-dimethylaminophenyl)pyridine (0.141 g, 0.4 mmol, 1.00 equiv.) were added to an oven-dried Schlenk flask under an inert atmosphere, and dissolved in MeOH (20 mL), and stirred under reflux for 15 minutes. A solution of NaBF₄ (0.0877 mg, 0.8 mmol, 2 equiv.) in MeOH (10 mL) was then added. The reaction mixture was allowed to cool to room temperature overnight, cooled to 0 °C and filtered, washing with cold MeOH (2 x 10 mL) and cold Et₂O (2x 10 mL) to give the precatalyst **1a** (0.109 g, 0.186 mmol, 47% yield) as an amorphous brown powder.

 ¹H NMR: (500 MHz, CD₂Cl₂) 95.2, 58.3, 52.3, 32.3, 15.2, 9.2, 5.5, 5.0, 1.5
 ¹¹B NMR: (160 MHz, CD₂Cl₂) 0.05
 ¹⁹F NMR: (470 MHz, CD₂Cl₂) -150.5


General Experimental Procedures

A. General Procedure for the Hydrosilylation of Octene Using Various Silanes


In an 8 ml vial equipped with a magnetic stir bar and under an atmosphere of argon, THF (1.0 mL) was added to a bis(imino)pyridine ligand (0.02 equiv.) and metal tetrafluoroborate hexahydrate salt (0.02 equiv.). This mixture was stirred for 1 minute at ambient temperature to form the catalyst. Octene (0.90 mmol, 1.00 equiv) and silane (0.90 – 0.99 mmol, 1.00 – 1.10 equiv.) were added and the mixture was stirred at ambient temperature for 1 - 3 hour(s). Et₂O (4 mL) was subsequently added. The mixture was passed through a short silica plug (made up in a glass pipette, Et₂O eluent) to remove any iron, and the solvent removed *in vacuo*. 1,3,5-Trimethoxybenzene (30.3 mg, 0.18 mmol, 0.20 equiv.) *or* menthol (28.1 mg, 0.18 mmol, 0.20 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

B. General Procedure for the Hydrosilylation of Olefins using Co(BF₄)₂·6H₂O

In an 8 ml vial equipped with a magnetic stir bar and under an atmosphere of argon, a bis(imino)pyridine ligand (0.01 equiv.) and cobalt tetrafluoroborate hexahydrate (0.01 equiv.) were dissolved in anhydrous THF (0.5 mL).. This mixture was stirred for 1 minute at ambient temperature to form the catalyst. The olefin (0.90 mmol, 1.00 equiv) and phenylsilane (0.99 mmol, 1.10 equiv.), were added and the mixture was stirred at ambient temperature for1 hour. Et₂O (4 mL) was subsequently added. The mixture was passed through a short silica plug (made up in a glass pipette, Et₂O eluent) to remove any iron, and the solvent removed *in vacuo*. 1,3,5-Trimethoxybenzene (30.3 mg, 0.18 mmol, 0.20 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

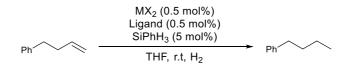
C. General Procedure for the Hydrosilylation of Olefins using Fe(BF₄)₂·6H₂O

In an 8 ml vial equipped with a magnetic stir bar and under an atmosphere of argon, bis(imino)pyridine ligand (0.02 equiv.) and iron tetrafluoroborate hexahydrate salt (0.02 equiv.) were dissolved in anhydrous THF (0.5 mL). This mixture was stirred for 1 minute at ambient temperature to form the catalyst. The olefin (0.90 mmol, 1.00 equiv) and phenylsilane (0.99 mmol, 1.10 equiv.) were added and the mixture was stirred at ambient temperature for 1 hour. Et₂O (4 mL) was subsequently added. The mixture was passed through a short silica plug (made up in a glass pipette, diethyl ether eluent) to remove any iron residues, and the solvent removed *in vacuo*. 1,3,5-Trimethoxybenzene (30.3 mg, 0.18 mmol, 0.20 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

D. General Procedure for the Iterative Hydrosilylation of Olefins to Obtain the Tertiary Silane using Fe(BF4)2.6H2O

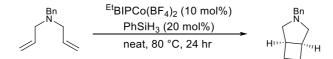
$$R^{1} \xrightarrow{Fe(BF_{4})_{2} \cdot 6H_{2}O} (2 \text{ mol\%})$$

$$\xrightarrow{Et}BIP (2 \text{ mol\%})$$

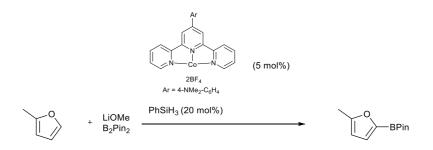

$$\xrightarrow{Ph}$$

$$H^{1} \xrightarrow{Ph} R^{2} \xrightarrow{I} H^{2} \xrightarrow{H} R^{2}$$

$$\xrightarrow{H} R^{2}$$


In an 8 ml vial equipped with a magnetic stir bar and under an atmosphere of argon, bis(imino)pyridine ligand (0.02 equiv.) and iron tetrafluoroborate hexahydrate salt (0.02 equiv.) were dissolved in anhydrous THF (1.0 mL). This mixture was stirred for 1 minute at ambient temperature to form the catalyst. The first equivalent of olefin (0.80 mmol, 1.00 equiv) and phenylsilane (0.80 mmol, 1.00 equiv.) were added and the mixture was stirred at ambient temperature for 30 minutes. A second equivalent of olefin (0.8 mmol, 1.00 equiv.) was subsequently added, and this mixture was stirred for a further 3 hours. Et₂O (4 mL) was subsequently added. The mixture was passed through a short silica plug (made up in a glass pipette, Et₂O eluent) to remove any iron residues, and the solvent removed *in vacuo*. 1,3,5-Trimethoxybenzene (26.9 mg, 0.16 mmol, 0.20 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

E. General Procedure for the Hydrogenation of Olefins


Hydrogenations were performed in an 8 mL glass vial insert equipped with a magnetic stir bar in an autoclave, pressurised with hydrogen gas. Under an atmosphere of argon, a mixture of ligand (0.005 equiv.) and metal salt (0.005 equiv.) was dissolved in anhydrous THF (1.0 mL) in a glass vial inert in an autoclave. The autoclave was sealed and this mixture was stirred for 1 minute at ambient temperature to form the catalyst. 4-Phenylbutene (225 μ L, 1.5 mmol, 1.00 equiv.) and phenylsilane (10 μ L, 0.08 mmol, 0.05 equiv.) were added to the mixture, which was subsequently purged three times with hydrogen gas. The autoclave was pressurised with hydrogen gas (20 bar), and the reaction mixture was stirred at ambient temperature for 7 hours. Et₂O (4 mL) was subsequently added. The mixture was passed through a short silica plug (Et₂O eluent) to remove any iron, and the solvent was removed *in vacuo*. 1,3,5-Trimethoxybenzene (25.2 mg, 0.15 mmol, 0.10 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

F. General Procedure for [2+2]-Cycloaddition

In an 8 ml vial equipped with a magnetic stir bar and under an atmosphere of argon, preformed 2,6bis[1-(2,6-diethylphenylimino)ethyl]pyridine cobalt(II) tetrafluoroborate (38.17 mg, 0.05 mmol, 0.1 equiv.) was added to a glass vial. Diallylamine (0.5 mmol, 1.00 equiv.) and phenylsilane (12.3 μ L, 0.1 mmol, 0.20 equiv.) were added and the reaction heated at 80 °C for 24 hours. Et₂O (2 mL) was subsequently added, and the crude reaction mixture washed with distilled water to separate the catalyst from the crude reaction mixture. 1,3,5-Trimethoxybenzene (16.8 mg, 0.1 mmol, 0.20 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

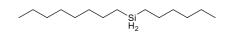
G. General Procedure for C-H Borylation

In an 8 mL vial equipped with a magnetic stir bar and under an atmosphere of argon, cobalt catalyst (11.1 mg, 0.019 mmol, 0.02 equiv) was added to a glass vial. 2-methylfuran (514.3 μ L, 5.7 mmol, 15 equiv.) was then added, followed by bis(pinacolato)diboron (86.15 mg, 0.38 mmol, 1 equiv.), lithium methoxide (14.4 mg, 0.38 mmol, 1 equiv.) and phenylsilane (10 μ L, 0.08 mmol, 0.21 equiv.). The reaction was heated at 80 °C for 24 hours. Et₂O (2 mL) was subsequently added, and the reaction mixture was washed with distilled water to separate the catalyst from the crude reaction mixture. 1,3,5-Trimethoxybenzene (12.8 mg, 0.076 mmol, 0.10 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

Iron and Cobalt-Catalysed Hydrosilylation Products: Experimental and Analytical Data

Iron-Catalysed Hydrosilylation Products

Octylsilylbenzene (2a)



According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (3.2 mg, 0.009 mmol, 0.01 equiv.) and ^{Et}BIP (3.9 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octene (144 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (10 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 8 mL fractions) to give the silane **2a** (173 mg, 0.783 mmol, 87%, 7:93 B:L) as a colourless oil.

Alternatively, the product silane **2a** could be obtained using Xantphos (5.8 mg, 0.01 mmol, 0.01 equiv.) and $Co(BF_4)_2 \cdot 6H_2O$ (3.4 mg, 0.01 mmol, 0.01 equiv.) using the same purification procedure (180 mg, 0.82 mmol, 82%, 1:>99 B:L)

¹H NMR: (500MHz, CDCl₃) 7.66 - 7.64 (2H, m), 7.48 - 7.41 (3H, m), 4.39 (2H, t, J = 3.6 Hz), 1.58 - 1.52 (2H, m), 1.46 - 1.35 (10H, m), 1.05 - 1.01 (2H, m), 0.98 (3H, t, J = 6.8 Hz) ¹³C NMR: (126 MHz, CDCl₃) 135.3, 132.9, 129.5, 128.0, 32.9, 32.0, 29.3, 29.2, 25.2, 22.7, 14.2, 10.1 ²⁹Si NMR: (99 MHz, CDCl₃) -30.8 TLC: $R_f = 0.7$ (pentane) [UV]

Characterisation data for the linear (major) product reported. Data were in accordance with those previously reported.⁴

According to General Procedure A, $Fe(BF_4)_2 \cdot 6H_2O(6.1 \text{ mg}, 0.018 \text{ mmol}, 0.02 \text{ equiv.})$ and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octene (141 µL, 0.90 mmol, 1.00 equiv.) and hexylsilane (165 µL, 0.99 mmol, 1.10 equiv.) were added. The mixture was stirred for 1 hour at ambient temperature, and then diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **2b** (197 mg, 0.86 mmol, 96%, 78:22 L:B) as a colourless oil.

¹ H NMR:	(500 MHz, CDCl ₃)
	3.67 (2H, pent., J = 3.6 Hz), 1.44 - 1.30 (20 H, m), 0.92 (6H, t, J = 7.1 Hz), 0.72 - 0.68
	(4H, m)
¹³ C NMR:	(126 MHz, CDCl ₃)
	32.9, 32.6, 31.9, 31.6, 29.3, 29.2, 25.5, 25.4, 22.7, 22.6, 16.5, 14.1, 9.2, 7.9
²⁹ Si NMR:	(99 MHz, CDCl ₃)
	-28.5
TLC:	$R_f = 0.9$ (pentane) [KMnO ₄]
IR:	v_{max} (neat)
	2920 (m), 2120 (w), 1458 (w), 941 (w)
MS:	(EI ⁺)
	143 ([CH ₃ (CH ₂) ₇ SiH ₂] ⁺ , 100), 239 ([CH ₃ (CH ₂) ₅ SiH ₂] ⁺ , 83)
HRMS:	$m/z~(\mathrm{EI^{+}})$
	found: 229.23460 (C ₁₄ H ₃₃ Si ₁), [M+H] ⁺ requires 229.23461

Characterisation data for the linear (major) product reported.

Methyloctylphenylsilane (2c)

According to General Procedure A, $Fe(BF_4)_2 \cdot 6H_2O(4.7 \text{ mg}, 0.014 \text{ mmol}, 0.02 \text{ equiv.})$ and ^{Et}BIP (6.0 mg, 0.014 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octene (110 µL, 0.70 mmol, 1.00 equiv.), methylphenylsilane (106 µL, 0.77 mmol, 1.10 equiv.) and phenylsilane (1 drop) were added. The mixture was stirred for 2 hours at ambient temperature, and then diluted with Et₂O and concentrated *in vacuo* to give **2c** (74%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the silane **2c** (119 mg, 0.51 mmol, 72%, 99:1 L:B) as a colourless oil.

¹**H NMR:** (500 MHz, CDCl₃)

7.57 – 7.55 (2H, m), 7.39 – 7.36 (3H, m), 4.37 (1H, sext. *J* = 3.6 Hz), 1.43 – 1.23 (12H, m), 0.91 – 0.89 (3H, t, *J* = 7.1 Hz), 0.89 – 0.83 (2H, m), 0.35 (3H, d, *J* = 3.8 Hz)

¹³C NMR: (126 MHz, CDCl₃)

136.9, 134.4, 129.2, 127.9, 33.3, 32.1, 29.4, 29.3, 24.4, 22.8, 14.2, 13.5, -5.6

²⁹Si NMR: (99 MHz, CDCl₃)

-13.5

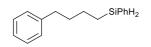
Data were in accordance with those previously reported.

Si(OEt)₃

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (4.8 mg, 0.014 mmol, 0.02 equiv.) and ^{Et}BIP (6.0 mg, 0.014 mmol, 0.02 equiv.) were complexed in THF (1 mL) by stirring for 1 minute. 1-Octene (110 μ L, 0.70 mmol, 1.00 equiv.) and triethoxysilane (129 μ L, 0.70 mmol, 1.00 equiv.) were added. The mixture was stirred for 3 hours at ambient temperature, and then diluted with Et₂O and concentrated *in vacuo* to give the crude silane **2d** (74%). The crude reaction product was purified by flash column chromatography (20 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 90:10, ca. 6 mL fractions) to give the silane **2d** (132 mg, 0.476 mmol, 68%) as a yellow oil.

¹H NMR: (500 MHz, CDCl₃)
3.84 (6H, q, J = 7.0 Hz), 1.46 – 1.40 (2H, m), 1.35 – 1.23 (20 H, m), 0.9 (3H, J = 7.0 Hz,), 0.67 – 0.64 (2H, m)
¹³C NMR: (126 MHz, CDCl₃)
58.2, 33.2, 31.9, 29.2, 29.2, 22.7, 22.6, 18.3, 14.0, 10.4
²⁹Si NMR: (99 MHz, CDCl₃)
-44.6

This reaction was also run on a large-scale (0.032 mol, 0.02 mol% catalyst loading, 5 min), to provide the same product as a yellow oil (7.551 g, 0.027 mol, 85%)


Data were in accordance with those previously reported.⁵

(EtO)₃Si Si(OEt)₃

According to General Procedure E, $Fe(BF_4)_2 \cdot 6H_2O$ (4.8 mg, 0.014 mmol, 0.02 equiv.) and ^{Et}BIP (6.0 mg, 0.014 mmol, 0.02 equiv.) were complexed in THF (1 mL) by stirring for 1 minute. Allyltriethoxysilane (158 µL, 0.70 mmol, 1.00 equiv.) and triethoxysilane (129 µL, 0.70 mmol, 1.00 equiv.) were added. The mixture was stirred for 3 hours at ambient temperature, and then diluted with Et₂O and concentrated *in vacuo* to give crude **2e** (65%). The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 90:10, ca. 6 mL fractions) to give the silane **2e** (155 mg, 0.42 mmol, 60%) as a yellow oil.

¹H NMR: (500 MHz, CDCl₃)
3.83 (12H, q, J = 7.0 Hz), 1.62 – 1.56 (2H, m), 1.23 (18H, t, J = 7.0 Hz), 0.74 (4H, t, J = 8.1 Hz)
¹³C NMR: (126 MHz, CDCl₃)
58.3, 18.3, 16.5, 14.3
²⁹Si NMR: (99 MHz, CDCl₃)
-45.5

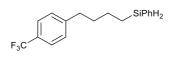
Data were in accordance with those previously reported.⁶

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-Phenyl-1-butene (137 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give crude **2f** (>95%).The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 6 mL fractions) to give the silane **2f** (147 mg, 0.65 mmol, 72%, 14:86 B:L). as a colourless oil.

¹**H NMR:** (500 MHz, CDCl₃)

7.73 – 7.71 (2H, m), 7.56 – 7.48 (3H, m), 7.43 – 7.40 (2H, m), 7.34 – 7.30 (3H, m), 4.48 (2H, t, *J* = 3.8 Hz), 2.76 (2H, t, *J* = 7.9 Hz), 1.89 – 1.83 (2H, m), 1.71 – 1.65 (2H, m), 1.16 – 1.11 (2H, m)

- ¹³C NMR: (126 MHz, CDCl₃) 142.7, 135.8, 135.4, 129.7, 128.5, 128.4, 128.1, 125.9, 35.7, 34.7, 24.9,10.1
- ²⁹Si NMR: (99 MHz, CDCl₃)

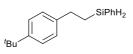

-30.8

TLC: $R_f = 0.4$ (pentane) [UV]

Characterisation data for the linear (major) product.

Data were in accordance with those previously reported.⁷

1-Trifluoromethyl-4-(4-silylbenzenebutane)benzene (2g)



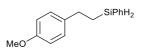
According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O(4.0 \text{ mg}, 0.012 \text{ mmol}, 0.02 \text{ equiv.})$ and ^{Et}BIP (5.1 mg, 0.012 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-(4-Triflouromethylphenyl)-1-butene (110 µL, 0.60 mmol, 1.00 equiv.) and phenylsilane (81 µL, 0.66 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 95:5, ca. 5 mL fractions) to give the *silane* **2g** as a clear oil (143 mg, 0.463 mmol, 77%, 9:91 B:L).

¹H NMR: (500 MHz, CDCl₃) 7.59 - 7.52 (4H, m), 7.44 - 7.36 (3H, m), 7.27 (2H, d, J = 7.9 Hz), 4.31 (2H, t, J = 3.7Hz), 2.68 (2H, t, *J* = 7.6 Hz), 1.76 – 1.69 (2H, m), 1.51 – 1.49 (2H, m), 1.03 – 0.96 (2H, m) ¹³C NMR: (126 MHz, CDCl₃) 146.7, 135.7, 135.3, 132.5, 129.7, 128.7, 128.1, 125.2 (q, *J* = 4.0 Hz), 35.4, 34.2, 27.7, 16.0, 9.9 ²⁹Si NMR: (99 MHz, CDCl₃) -30.9 TLC: $R_f = 0.8$ (pentane: Et₂O 95:5) [UV] IR: v_{max} (neat) 2928(w), 2129 (w), 1323 (s), 1117 (m), 835 (m) MS: (EI^+) 107 ([SiPhH₂]⁺, 43), 230 ([C₁₁H₁₃F₃Si]⁺, 100) **HRMS**: m/z (EI⁺) found: 308.11960, (C₁₇H₁₉F₃Si₁) [M+H]⁺ requires 308.12027

Characterisation data for the linear (major) product reported.

1-(4-tert-butylphenyl)-2-(phenylsilyl)ethane (2h)

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-*tert*-Butylstyrene (137 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour at ambient temperature. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give **2h** (86%). The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the silane **2h** (205 mg, 0.762 mmol, 85%, linear product only) as a pale yellow oil.

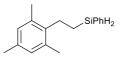

¹H NMR: (500 MHz, CD₂Cl₂)
7.71 - 7.69 (2H, m), 7.51 - 7.44 (5H, m), 7.29 - 7.27 (2H, m), 4.52 (2H, t, J = 3.6 Hz),
2.93 - 2.89 (2H, m), 1.48 (11H, br. app. s)
¹³C NMR: (126 MHz, CDCl₃)
149.9, 141.1, 125.2, 122.4, 120.9, 122.2, 127.9, 125.4, 24.6, 21.7, 20.9, 12.2

148.8, 141.1, 135.3, 132.4, 129.8, 128.2, 127.8, 125.4, 34.6, 31.7, 30.8, 12.2

- ²⁹Si NMR: (99 MHz, CDCl₃) -30.7
 - **TLC:** $R_f = 0.7$ (pentane) [UV]

Data were in accordance with those previously reported.⁴

(4-Methoxyphenethyl)(phenyl)silane (2i)

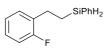


According to General Procedure C, Fe(BF₄)₂·6H₂O (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-Methoxystyrene (123 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated in vacuo. The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 90:10, ca. 5 mL fractions) to give the silane 2i (172 mg, 0.710 mmol, 79%, linear product only) as a light yellow oil.

- ¹H NMR: (600 MHz, CDCl₃) 7.59 – 7.56 (2H, m), 7.44 – 7.37 (3H, m), 7.11 (2H, d, J = 8.7 Hz), 6.84 (2H, d, J = 8.7 Hz), 4.33 (2H, t, *J* = 3.6 Hz), 3.81 (3H, s), 2.76 – 2.73 (2H, m), 1.32 – 1.28 (2H, m) ¹³C NMR: (126 MHz, CDCl₃) 157.9, 136.1, 135.3, 132.3, 129.7, 128.9, 128.1, 113.9, 55.3, 30.3, 12.4 ²⁹Si NMR: (99 MHz, CDCl₃)
 - -30.9
 - $R_f = 0.7$ (pentane:Et₂O 90:10) [UV] TLC:

Data were in accordance with those previously reported.⁸

(1,3,5-Trimethylphenethyl)(phenyl)silane (2j)


According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (5.4 mg, 0.016 mmol, 0.02 equiv.) and ^{Et}BIP (6.8 mg, 0.016 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 2,4,6-Trimethylstyrene (136 µL, 0.80 mmol, 1.00 equiv.) and phenylsilane (109 µL, 0.88 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* and crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **2j** (160 mg, 0.630 mmol, 78%, linear product only) as a colourless oil.

¹H NMR: $(600 \text{ MHz}, \text{CDCl}_3)$

7.64 – 7.62 (2H, m), 7.45 – 7.39 (3H, m), 6.84 (2H, br. s), 4.40 (2H, t, *J* = 3.7 Hz), 2.72 – 2.69 (2H, m), 2.26 (9H, br. s), 1.17 – 1.12 (2H, m)

- ¹³C NMR: (126 MHz, CDCl₃) 138.3, 135.4, 135.3, 135.0, 132.3, 129.8, 129.1, 128.2, 24.5, 20.9, 19.7, 10.1
- ²⁹Si NMR: (99 MHz, CDCl₃) -30.8
 - **TLC:** $R_f = 0.2$ (pentane) [UV]
 - IR: v_{max} (neat) 2127 (m), 1427 (w), 1115 (m), 889 (s), 839 (s)
 - MS: (EI⁺) 107 ([SiPhH₂]⁺, 17), 133 ([C₁₀H₁₃]⁺, 100) HRMS: m/z (EI⁺)
 - **RMS:** *m/z* (EI⁺) found: 254.14979, (C₁₇H₂₂Si₁) [M+H]⁺ requires 254.14853

1-(2-Fluorophenyl)-2-(phenylsilyl)ethane (2k)

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 2-Flourostyrene (108 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give the crude silane **2k** (38%).The crude reaction product was purified by flash column chromatography (10 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the silane **2k** (62.3 mg, 0.288 mmol, 32%, linear product only) as a clear oil.

¹**H NMR:** (500 MHz, CDCl₃)


7.65 – 7.63 (2H, m), 7.48 – 7.38 (3H, m), 7.26 – 7.19 (2H, m), 7.12 – 7.09 (2H, m), 4.41(2H, t, *J* = 3.6 Hz), 2.89 – 2.85 (2H, m), 1.40 – 1.35 (2H, m)

¹³C NMR: (126 MHz, CDCl₃)
161 (d, J = 244.8 Hz), 135.3, 132.0, 130.8 (d, J = 16.0 Hz), 30.01 (d, J = 5.0 Hz), 129.7, 128.1, 127.6 (d, J = 8.0 Hz), 124.0 (d, J = 4.0 Hz), 115.2 (d, J = 21.9 Hz), 24.5 (d, J = 2.5 Hz), 10.9
²⁹Si NMR: (99 MHz, CDCl₃)

- -31.1
- **TLC:** $R_f = 0.57$ (pentane) [UV]

Data were in accordance with those previously reported.⁷

Methyl ester 11-(phenylsilyl)-undecanoic acid (2l)

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. Methyl 10undecenoate (211µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo* to give crude **2I** (82%). The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 90:10, ca. 8 mL fractions) to give the silane **2I** (207 mg, 0.675 mmol, 75%, 6:94 B:L) as a clear oil.

- ¹**H NMR:** (600 MHz, CDCl₃) 7.60 - 7.58 (2H, m), 7.43 - 7.37 (3H, m), 4.31 (2H, t, *J* = 3.7 Hz), 3.69 (3H, s), 2.32 (2H, t, *J* = 7.6 Hz) 1.67 -1.62 (2H, m), 1.50 - 1.45 (2H, m), 1.36 - 1.35 (2H, m), 1.34 - 1.28 (10H, m), 0.98 - 0.94 (2H, m)
- ¹³C NMR: (126 MHz, CDCl₃)
 174.2, 135.2, 132.8, 129.5, 128.0, 51.4, 34.1, 32.8, 29.5, 29.4, 29.3, 29.2, 29.1, 25.1, 25.0, 10.0
- ²⁹Si NMR: (99 MHz, CDCl₃) -30.8
 - **TLC:** $R_f = 0.6$ (pentane:Et₂O 90:10) [UV]

Characterisation data for the linear (major) product.

Data were in accordance with those previously reported.⁴

Phenyl-(10-pinanyl)-silane (2m)

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Mes}BIP (7.2 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. β -Pinene (142µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give crude **2m** (82%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 4 mL fractions) to give the *silane* **2m** (180 mg, 0.736 mmol, 82%) as a clear oil.

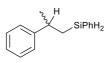
¹**H NMR:** (500 MHz, CDCl₃)

7.59 – 7.57 (2H, m), 7.41 – 7.36 (3H, m), 4.32 – 4.30 (2H, m), 2.33 – 2.31(1H, m), 2.26 – 2.24 (1H, m), 2.09 – 2.05 (1H, m), 2.00 – 1.94 (1H, m), 1.19 – 1.90 (2H, m), 1.87 – 1.83 (1H, m), 1.58 – 1.52 (1H, m), 1.21 – 1.17 (5H, m), 1.08 (3H, s), 0.87 (1H, d, *J* = 9.6 Hz)

- ¹³C NMR: (126 MHz, CDCl₃) 135.3, 133.1, 129.5, 128.0, 48.8, 41.4, 38.9, 38.2, 34.0, 28.3, 26.7, 25.1, 23.2, 19.9
- ²⁹Si NMR: (99 MHz, CDCl₃)

-33.1

- **TLC:** $R_f = 0.6$ (pentane) [UV]
 - IR: v_{max} (neat) 2903 (m), 2128 (w), 1429 (w), 1115 (w), 843 (s)
- MS: (EI⁺) 107 ([SiPhH₂]⁺, 100), 166 ([C₁₀H₁₈Si]⁺, 47)
- HRMS: m/z (EI⁺) found: 244.16481 (C₁₆H₂₄Si₁), [M+H]⁺ requires 244.16418

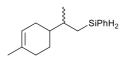

exo-2-(Phenylsilyl)bicyclo[2.2.l]heptane (2n)

According to General Procedure C, pre-catalyst complex [^{Et}BIPFe(BF₄)₂] (6.6 mg, 0.010 mmol, 0.02 equiv.) was stirred in THF (0.5 mL) for 1 minute. Norbornene (47 mg, 0.50 mmol, 1.00 equiv.) and phenylsilane (78 μ L, 0.55 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give the crude silane **2n** (82%). The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 6 mL fractions) to give the silane **2n** (58.7 mg, 0.29 mmol, 58%) as a colourless oil.

- ¹H NMR: (500 MHz, CDCl₃)
 7.60 (2H, d, J = 7.8 Hz), 7.43 7.36 (3H, m), 4.26 4.16 (2H, m), 2.31 2.29 (2H, m), 1.60 – 1.53 (4H, m), 1.38 – 1.19 (4H, m), 1.09 – 1.07 (1H, m)
 ¹³C NMR: (126 MHz, CDCl₃) 135.5, 132.8, 129.5, 128.0, 38.9, 37.4, 37.3, 33.8, 33.6, 29.2, 24.3
 ²⁹Si NMR: (99 MHz, CDCl₃) -26.8
 - **TLC:** $R_f = 0.7$ (pentane) [UV]

Data were in accordance with those previously reported.⁹

1-(Phenylsilyl)-2-phenylpropane (20)

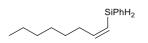


According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Mes}BIP (7.2 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. α -methylstyrene (117µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give the crude silane **20** (82%).The crude reaction product was purified by flash column chromatography (20 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 4 mL fractions) to give the silane **20** (173 mg, 0.657 mmol, 73%, linear product only) as a colourless oil.

- ¹**H NMR:** (500 MHz, CDCl₃) 7.63 – 7.61 (2H, m), 7.48 – 7.42 (3H, m), 7.41 – 7.37 (2H, m), 7.32 – 7.27 (3H, m), 4.37 – 4.33(2H, m), 3.08 (1H, sext. *J* = 7.3 Hz), 1.49 – 1.44 (5H, m)
- ¹³C NMR: (126 MHz, CDCl₃) 148.7, 135.3, 132.5, 129.6, 128.5, 128.1, 126.7, 126.1, 36.9, 25.1, 20.4
- ²⁹Si NMR: (99 MHz, CDCl₃) -33.2
 - **TLC:** $R_f = 0.4$ (pentane) [UV]

Data were in accordance with those previously reported.⁷

(4*R*)-1-Methyl-4-[(1*R*,*S*)-1-methyl-2-(phenylsilyl)ethyl]-cyclohex-1-ene (2p)



According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Mes}BIP (7.4 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. (*R*)-Limonene (150 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give the crude silane **2p** (86%).The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 4 mL fractions) to give the silane **2p** (156 mg, 0.638 mmol, 71%, 1:1 mixture of diastereoisomers) as a colourless oil.

¹H NMR: (500 MHz, CDCl₃)
7.61 - 7.59 (2H, m), 7.42 - 7.36 (3H, m), 5.41 - 5.40 (1H, m), 4.38 - 4.33 (2H, m), 2.02 - 1.97(3H, m), 1.81 - 1.68 (3H, m), 1.67 (3H, br. s), 1.47 - 1.41 (1H, m), 1.32 - 1.24 (1H, m), 1.18 - 1.13 (1H, m), 1.00 - 0.98 (3H, m), 0.90 - 0.84 (1H, m)
¹³C NMR: (126 MHz, CDCl₃)
135.3, 134.0, 133.1, 129.5, 128.0, 121.0 (d, J = 4.5 Hz), 40.8 (d, J = 5.5 Hz), 34.7, 34.5, 31.0, 30.9, 29.1, 28.1, 26.9, 25.7, 23.5, 19.0, 18.7, 15.6, 15.2
²⁹Si NMR: (99 MHz, CDCl₃)
-33.4, -32.5

TLC: $R_f = 0.6$ (pentane) [UV]

Data were in accordance with those previously reported.⁷

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octyne (137 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (10 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 8 mL fractions) to give the silane **2q** (156 mg, 0.712 mmol, 79%, (*E:Z*) 27:73) as a colourless oil.

¹ H NMR:	(500 MHz, CDCl ₃)
	7.69 – 7.66 (2H, m), 7.48 – 7.42 (3H, m), 6.73 – 6.67 (1H, dt, <i>J</i> = 14.2, 7.4 Hz), 5.80 –
	5.75 (1H, m), 4.71 (2H, d, <i>J</i> = 4.1 Hz), 2.35 – 2.31 (2H, ddd, <i>J</i> = 1.1, 7.4, 14.8 Hz), 1.55
	- 1.44 (2H, m), 1.42 - 1.31 (6H, m), 1.00 - 0.94 (3H, m)
¹³ C NMR:	(126 MHz, CDCl ₃)
	153.7,135.3, 132.4,129.5, 128.0, 118.9, 33.4, 31.7, 29.3, 28.8, 22.6, 14.1
²⁹ Si NMR:	(99 MHz, CDCl ₃)
	-50.4
TLC:	$R_f = 0.5$ (pentane) [UV]

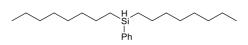
Characterisation data for the (Z)-isomer.

Data were in accordance with those previously reported.⁴

Phenyl [(E)-1-propyl-1-pentenyl]silane (2r)

$$\overset{\mathsf{H}}{\underset{\mathsf{C}_3\mathsf{H}_7}{\overset{\mathsf{SiPhH}_2}{\overset{\mathsf{C}_3\mathsf{H}_7}}}}$$

According to General Procedure C, $Fe(BF_4)_2 \cdot 6H_2O$ (6.1 mg, 0.018 mmol, 0.02 equiv.) and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-Octyne (132 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 3 hours. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give crude the crude **2r** silane (42%).The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **2r** (65.6 mg, 0.301 mmol, 33%, *E* isomer) as a colourless oil.

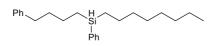

¹ H NMR:	(500 MHz, CDCl ₃)
	7.65 – 7.63 (2H, m), 7.47 – 7.40 (3H, m), 6.11 (1H, t, <i>J</i> = 6.9 Hz), 4.62 (2H, s), 2.26 –
	2.19 (4H, m), 1.53 – 1.42 (4H, m), 1.00 (3H, t, <i>J</i> = 7.4 Hz), 0.94 (3H, t, <i>J</i> = 7.4 Hz)
¹³ C NMR:	(126 MHz, CDCl ₃)
	146.3, 135.6, 134.2, 132.8, 129.5, 128.0, 32.5, 30.9, 22.8, 22.6, 14.2, 13.9
²⁹ Si NMR:	(99 MHz, CDCl ₃)
	-31.4
TLC:	$R_f = 0.7$ (pentane) [UV]
IR:	v_{max} (neat)
	2957 (w), 2127 (w), 1429 (s), 843 (m), 696 (m)
MS:	(EI ⁺)
	107 ([SiPhH ₂] ⁺ , 100), 218 ([M] ⁺ , 15)
HRMS:	m/z (EI ⁺)

found: 218.14875 (C14H22Si1), [M+H]⁺ requires 218.14853

(*E*)-isomer formation was confirmed using NOSEY NMR techniques. NOE Contacts: SiPhH₂ \rightarrow =CH

Tertiary Silane Products

Dioctylphenylsilane (2s)



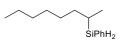
According to General Procedure D, $Fe(BF_4)_2 \cdot 6H_2O$ (5.4 mg, 0.016 mmol, 0.02 equiv.) and ^{Et}BIP (6.8 mg, 0.016 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octene (126 µL, 0.80 mmol, 1.00 equiv.) and phenylsilane (99 µL, 0.80 mmol, 1.00 equiv.) were added and the reaction was stirred for 30 minutes. 1-Octene (126 µL, 0.80 mmol, 1.00 equiv.) was subsequently added and stirred for a further 3 hours. The mixture was diluted with Et₂O and concentrated *in vacuo* to give crude **2s** (79%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 6 mL fractions) to give the silane **2s** (197 mg, 0.59 mmol, 74%) as a clear oil.

¹H NMR: (500 MHz, CDCl₃) 7.56 – 7.54 (2H, m), 7.39 – 7.36 (3H, m), 4.27 (1H, quin. J = 3.4 Hz), 1.42 – 1.27 (24H, m), 0.9 (6H, t, J = 7.0 Hz), 0.88 – 0.85 (4H, m) ¹³C NMR: (126 MHz, CDCl₃) 136.2, 134.7, 129.1, 127.8, 33.3, 32.0, 29.3, 24.6, 22.7, 14.1, 12.0 ²⁹Si NMR: (99 MHz, CDCl₃) -9.4 TLC: $R_f = 0.8$ (pentane) [UV]

Data were in accordance with those previously reported.¹⁰

1-Phenyl-4-(octylphenylsilyl)butane (2t)

According to General Procedure D, $Fe(BF_4)_2 \cdot 6H_2O$ (5.4 mg, 0.016 mmol, 0.02 equiv.) and ^{Et}BIP (6.8 mg, 0.016 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-Phenylbutene (120 µl, 0.80 mmol, 1.00 equiv.) and phenylsilane (99 µL, 0.80 mmol, 1.00 equiv.) were added and the reaction was stirred for 30 minutes. 1-Octene (126 µL, 0.80 mmol, 1.00 equiv.) was subsequently added and stirred for a further 3 hours. The mixture was diluted with Et₂O and concentrated *in vacuo* to give the crude silane **2t** (95%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 6 mL fractions) to give the *silane* **2t** (243 mg, 0.69 mmol, 86%) as a colourless oil.

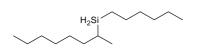

¹**H NMR:** (500 MHz, CDCl₃)

7.52 – 7.50 (2H, m), 7.39 – 7.33 (3H, m), 7.27 – 7.24 (2H, m), 7.18 – 7.13 (3H, m), 4.28 – 4.21 (1H, m), 2.58 (2H, t, *J* = 7.6 Hz), 1.66 (2H, pent., *J* = 7.7 Hz), 1.48 – 1.24 (16H, m), 0.90 – 0.81 (5H, m)

- ¹³C NMR: (126 MHz, CDCl₃)
 142.8, 136.1, 135.8, 134.5, 129.3, 128.6, 128.5, 128.0, 125.8, 35.8, 35.2, 33.5, 32.1, 29.5, 24.8, 24.5, 22.9, 16.3, 14.4, 12.0,
- ²⁹Si NMR: (99 MHz, CDCl₃)
 -9.3
 IR: v_{max} (neat)
 2920 (w), 2106 (w), 1113 (w), 696 (m)
 - MS: (EI⁺) 107 ([SiPhH₂]⁺, 38), 239 ([Ph(CH₂)₄SiHPh]⁺, 100)
 - HRMS: m/z (EI⁺) found: 352.25733 (C₂₄H₃₆Si₁), [M+H]⁺ requires 352.25808

Cobalt-Catalysed Hydrosilylation Products

Octan-2-yl(phenyl)silane (3a)


According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(2.7 \text{ mg}, 0.008 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (3.4 mg, 0.008 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octene (126 µL, 0.80 mmol, 1.00 equiv.) and phenylsilane (109 µL, 0.88 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give crude **3a** (>95%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the silane **3a** (152 mg, 0.688 mmol, 86%, 8:92 B:L) as a colourless oil.

¹H NMR: (500 MHz, CDCl₃) 7.68 - 7.66 (2H, m), 7.49 - 7.42 (3H, m), 4.36 (1H, dd, J = 2.5, 6.0 Hz), 4.32 (1H, dd, J = 3.2, 6.0 Hz), 1.64 - 1.59 (1H, m), 1.57 - 1.49 (1H, m), 1.47 - 1.32 (8H, br. m), 1.29 - 1.21 (1H, m), 1.18 - 1.16 (3H, m), 0.99 (3H, app. t, J = 7.0 Hz) ¹³C NMR: (126 MHz, CDCl₃) 135.7, 132.4, 129.5, 127.9, 33.6, 31.9, 29.5, 28.6, 22.8, 16.4, 16.2, 14.2 ²⁹Si NMR: (99 MHz, CDCl₃) -23.0 TLC: $R_f = 0.6$ (pentane) [UV] IR: v_{max} (neat)

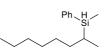
2127 (w), 117 (w), 930 (m), 698 (s)

Characterisation data for the branched (major) product reported.

Data were in accordance with those previously reported.¹¹

According to General Procedure A, $Co(BF_4)_2 \cdot 6H_2O(3.1 \text{ mg}, 0.009 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (3.9 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octene (141 µL, 0.90 mmol, 1.00 equiv.) and hexylsilane (165 µL, 0.99 mmol, 1.10 equiv.) were added. The mixture was stirred for 1 hour at ambient temperature, and then diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **3b** (182 mg, 0.79 mmol, 88%, 2:98 L:B) as a colourless oil.

- ¹**H NMR:** (500 MHz, CDCl₃) 3.62 - 3.57 (2H, m), 1.47 - 1.27 (18H, m), 1.05 (3H, d, *J* = 7.4 Hz), 0.96 - 0.94 (1H, m), 0.92 (6H, t, *J* = 7.2 Hz), 0.73 - 0.69 (2H, m)
- ¹³C NMR: (126 MHz, CDCl₃) 34.0, 32.7, 31.9, 31.6, 29.5, 28.6, 25.6, 22.7, 22.6, 16.5, 15.4, 14.1, 7.9
- ²⁹Si NMR: (99 MHz, CDCl₃) -20.8
 - **TLC:** $R_f = 0.8$ (pentane) [KMnO₄]


IR: v_{max} (neat)
2920 (w), 2117 (w), 1458 (w), 939 (w), 829 (w)
MS: (EI⁺)

115 ([(CH₂)₆SiH₂]⁺, 100), 228 ([M]⁺, 7)

HRMS: m/z (EI⁺) found: 229.23361, (C₁₄H₃₃Si₁) [M+H]⁺ requires 229.23461

Characterisation data for the branched (major) product reported.

Octan-2-yl(methylphenyl)silane (3c)

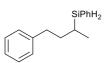
According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(4.7 \text{ mg}, 0.014 \text{ mmol}, 0.02 \text{ equiv.})$ and ^{Et}BIP (6.0 mg, 0.014 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octene (110 µL, 0.70 mmol, 1.00 equiv.), methylphenylsilane (106 µL, 0.77 mmol, 1.10 equiv.) and phenylsilane (1 drop) were added. The mixture was stirred for 2 hours at ambient temperature, and then diluted with Et₂O and concentrated *in vacuo* to give crude **3c** (66%). The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **3c** (81.4 mg, 0.35 mmol, 50%, 11:89 L:B) as a colourless oil.

¹**H NMR:** (500 MHz, CDCl₃)

7.57 – 7.54 (2H, m), 7.41 – 7.36 (3H, m), 4.28 – 4.26 (1H, m), 1.51 – 1.41 (2H, m), 1.32 – 1.22 (8H, m), 1.01 (4H, s), 0.89 (3H, t, *J* = 7.2 Hz), 0.34 (3H, dd, *J* = 3.8, 7.7 Hz)

- ¹³C NMR: (126 MHz, CDCl₃) 136.1, 134.7, 129.1, 127.8, 32.7, 31.9, 29.4, 28.4, 22.5, 17.8, 14.8, 14.1, -7.9
- ²⁹Si NMR: (99 MHz, CDCl₃)

TLC: $R_f = 0.7$ (pentane) [UV] IR: v_{max} (neat) 2922 (w), 2110 (w), 1427 (w), 829 (m), 698 (m) MS: (EI⁺)

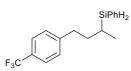

 $121 ([HSi(Ph)Me]^+, 100), 234 ([M]^+, 2)$

HRMS: m/z (EI⁺) found: 234.17882, (C₁₅H₂₆Si₁) [M+H]⁺ requires 234.17983

Characterisation data for the branched (major) product reported.

^{-8.0}

(4-Phenylbut-2-yl)silylbenzene (3d)



According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O$ (1.6 mg, 0.0045 mmol, 0.005 equiv.) and ^{Et}BIP (1.9 mg, 0.0045 mmol, 0.005 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-Phenylbutene (135 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give crude **3d** (90%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 6 mL fractions) to give the *silane* **3d** (184.4 mg, 0.767 mmol, 85%, 99:1 B:L) as a colourless oil.

¹H NMR: (500 MHz, CDCl₃) 7.46 - 7.44 (2H, m), 7.30 - 7.22 (3H, m), 7.17 - 7.14 (2H, m), 7.08 - 7.03 (3H, m), 4.19 (1H, dd, J = 2.4, 6.0 Hz), 4.16 (1H, dd, J = 3.1, 6.0 Hz), 2.67 - 2.48 (2H, m), 1.79 (2H, m), 1.791.72 (1H, m), 1.58 – 1.50 (1H, m), 1.13 – 1.06 (1H, m), 1.04 – 1.02 (3H, m) ¹³C NMR: (126 MHz, CDCl₃) 142.6, 135.8, 132.0, 129.7, 128.5 (d, *J* = 12.5 Hz), 128.1, 125.8, 35.5, 34.9, 16.2, 16.1 ²⁹Si NMR: (99 MHz, CDCl₃) -22.9 $R_f = 0.3$ (pentane) [UV] TLC: IR: v_{max} (neat) 2137 (w), 1514 (w), 1115 (w), 928 (m), 698 (s) MS: (EI^+) 107 ([SiPhH₂]⁺, 92) HRMS: m/z (EI⁺) found: 240.13176 (C₁₆H₂₀Si₁), [M+H]⁺ requires 240.13288

Characterisation data for the branched (major) product reported. See **3f** for linear product data.

1-Trifluoromethyl-4-(3-silylbenzenebutane)benzene (3e)

According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(2.0 \text{ mg}, 0.006 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (2.6 mg, 0.006 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-(4-Trifluoromethanephenyl)-1-butene (110 µL, 0.60 mmol, 1.00 equiv.) and phenylsilane (81 µL, 0.66 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 97:3, ca. 5 mL fractions) to give the *silane* **3e** (134 mg, 0.434 mmol, 72%, branched product only) as a colourless oil.

- ¹H NMR: (400 MHz, CDCl₃) 7.59 – 7.53 (4H, m), 7.46 – 7.36 (3H, m), 7.27 – 7.25 (2H, m), 4.30 (1H, dd, J = 2.5, 6.0 Hz), 4.27 (1H, dd, J = 2.9, 6.0 Hz), 2.86 – 2.66 (2H, m), 1.92 – 1.62 (2H, m), 1.24 (1H, t, J = 7.0 Hz), 1.17 – 1.16 (3H, m) ¹³C NMR: (126 MHz, CDCl₃) 146.7, 135.3, 132.5, 129.7, 128.7, 128.1, 125.3 (q, J = 4.0 Hz), 124.5 (q, J = 271.8Hz), 128.1 (q, J = 31.4 Hz), 35.4, 34.6, 24.7, 16.0, 15.9, 9.9 ²⁹Si NMR: (99 MHz, CDCl₃) -23.1 TLC: $R_f = 0.8$ (pentane:diethyl ether 97:3) [UV]
 - IR: v_{max} (neat) 2129 (w), 1323 (s), 1117 (m), 931 (s), 837 (s)
 - MS: (EI⁺) 107 ([SiPhH₂]⁺, 100), 230 ([C₁₁H₁₃F₃Si]⁺, 41)
 - HRMS: m/z (EI⁺) found: 308.12008 (C₁₇H₁₉F₃Si₁), [M+H]⁺ requires 308.1027

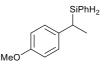
1-(4-tertButylphenyl)-1-(phenylsilyl)ethane (3f)

According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O$ (1.6 mg, 0.0045 mmol, 0.005 equiv.) and ^{Et}BIP (1.9 mg, 0.0045 mmol, 0.005 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. *tert*-Butylstyrene (165 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with diethyl ether and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give crude **3f** (88%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **3f** (202 mg, 0.751 mmol, 83%, 55:45 B:L) as a colourless oil.

¹H NMR: $(500 \text{ MHz}, \text{CDCl}_3)$

7.73 – 7.71 (2H, m, *L*), 7.59 – 7.57 (2H, m, *B*) 7.54 – 7.50 (4H, m, *B/L*), 7.47 – 7.43 (6H, m, *B/L*), 7.30 – 7.28 (2H, m, *L*), 7.22 – 7.20 (2H, m, *B*), 4.52 (2H, t, *J* = 3.6 Hz, *L*), 4.50*(2H, AB dd, Δv_{AB} 14.0 Hz, J_{AB} = 3.8, 6.8Hz, *B*), 2.94 – 2.90 (2H, m, *L*), 2.79 – 2.73 (1H, m, *B*), 1.62 (3H, d, *J* 7.4 Hz, *B*), 1.48 (20H, br. app. s, *B/L*)

- ¹³C NMR: (126 MHz, CDCl₃)
 148.7 (L), 147.9 (B), 141.5 (B), 141.0 (L), 135.8 (B), 135.4 (L), 132.4 (L), 131.8 (B),
 129.8 (L), 129.7 (B), 128.2 (L), 128.0 (B), 127.7 (L), 126.9 (B), 125.4 (L), 125.4 (B),
 34.5 (L), 34.4 (B), 31.6 (L), 30.7 (L), 24.8 (B), 16.6 (B), 12.1 (L/B)
- ²⁹Si NMR: (99 MHz, CDCl₃) -21.0 (*B*), -30.8 (*L*)
 - **TLC:** $R_f = 0.7$ (pentane) [UV]
 - **IR:** v_{max} (neat)
 - 2137 (w), 1514 (w), 1115 (w), 928 (m), 698 (s)
 - $MS: (EI^+)$


107 ([SiPhH₂]⁺, 100), 268 ([M]⁺, 27)

HRMS: m/z (EI⁺)

found: 268.16440 (C₁₈H₂₄Si₁), [M+H]⁺ requires 268.16418

*Signal overlaps with linear Si-H peak

Characterisation data for both branched and linear products reported; (L) and (B) indicate which product is represented. See 2h for linear product data.

According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O$ (1.6 mg, 0.0045 mmol, 0.005 equiv.) and ^{Et}BIP (1.9 mg, 0.0045 mmol, 0.005 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-Methoxystyrene (121 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O, 90:10, ca. 5 mL fractions) to give the *silane* **3g** (182 mg, 0.750 mmol, 83%, 45:55 B:L) as a colourless oil.

¹**H NMR:** (500 MHz, CDCl₃)

7.59 – 7.58 (2H, m, *L*), 7.44 – 7.37 (6H, m, *L/B*), 7.35 – 7.32 (2H, m, *B*), 7.13 – 7.12 (2H, m, *L*), 7.05 – 7.03 (2H, m, *B*), 6.85 – 6.83 (4H, m, *L/B*), 4.33 – 4.32 (4H, m, *L/B*), 3.81 (6H, br. s, *L/B*), 2.76 – 2. 73 (2H, m, *L*), 2.63 – 2.56 (1H, m, *B*), 1.45 (3H, d, J = 7.6 Hz, *B*), 1.32 – 1.28 (2H, m, *L*)

- ¹³C NMR: (126 MHz, CDCl₃)
 158.0 (L), 157.4 (B), 136.6 (B), 136.2 (L), 135.8 (B), 135.4 (L), 132.4 (L), 131.7 (B),
 129.9 (B), 129.8 (L), 129.0 (L/B), 128.2 (B), 128.2 (L), 128.0 (B), 114.1 (B), 113.9 (L),
 55.3 (L), 30.4 (L), 24.4 (B), 17.0 (B), 12.5 (L)
- ²⁹Si NMR: (99 MHz, CDCl₃) -31.0 (*L*), -21.3 (*B*)
 - **TLC:** $R_f = 0.7$ (pentane:diethyl ether 90:10) [UV]
 - IR: v_{max} (neat) 2129 (m), 1508 (s), 1242 (s), 698 (s)
 - **MS:** (EI⁺) 107 ([SiPhH₂]⁺, 11), 135 ([C₉H₁₁O]⁺, 100)
 - HRMS: m/z (EI⁺) found: 242.11094 (C₁₅H₁₈O₁Si₁), [M+H]⁺ requires 242.11215

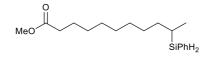
Characterisation data for both branched and linear products reported; (L) and (B) indicate which product is represented. See **2i** for linear product data.

Data for the linear product were in accordance with those previously reported.⁵

(3-Triethoxysilyl-2-phenylsilyl)propane (3h)

According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(3.2 \text{ mg}, 0.009 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (3.9 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. Allyltriethoxysilane (204 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 95:5), ca. 5 mL fractions) to give the *silane* **3h** (221 mg, 0.707 mmol, 79%) as a colourless oil. The branched product was formed exclusively.

- ¹H NMR: (500 MHz, CDCl₃)
 7.62 7.59 (2H, m), 7.43 7.35 (3H, m), 4.26 (1H, dd, J = 2.5, 6.4 Hz), 4.23 (1H, dd, J = 3.3, 6.4 Hz), 3.83 (6H, q, J = 7.0 Hz), 1.40 1.35 (1H, m), 1.24 (9H, t, J = 7.0 Hz), 1.19 1.17 (3H, m), 0.75 (2H, m)
- ¹³C NMR: (126 MHz, CDCl₃) 135.7, 132.3, 129.5, 127.9, 58.3, 18.7, 18.3, 13.9, 10.4
- ²⁹Si NMR: (99 MHz, CDCl₃) -19.7, -46.3
 - **TLC:** $R_f = 0.4$ (pentane:diethyl ether) [UV]
 - IR: v_{max} (neat) 2972 (w), 2125 (w), 1074 (m), 839 (m)
 - MS: (EI⁺) 107 ([SiPhH₂]⁺, 16), 163 ([(EtO)₃Si]⁺, 100)
 - HRMS: m/z (EI⁺) found: 312.15557 (C₁₅H₂₈O₃Si₂),[M+H]⁺ requires 312.15825



According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(3.1 \text{ mg}, 0.009 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (3.8 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 5-Hexen-2-one (104 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 95:5, ca. 5 mL fractions) to give the *silane* **3i** (134 mg, 0.650 mmol, 72%, 10:90 B:L) as a colourless oil.

¹ H NMR:	(500 MHz, CDCl ₃)
	7.60 – 7.57 (2H, m), 7.44 – 7.37 (3H, m), 4.28 (1H, dd, <i>J</i> = 2.7, 6.0 Hz), 4.24 (1H, dd,
	<i>J</i> = 3.2, 6.0 Hz), 2.60 – 2.42 (2H, m), 2.12 (3H, s), 1.88 – 1.81 (1H, m), 1.69 – 1.60 (1H,
	m), 1.21 – 1.1 (1H, m), 1.11 – 1.06 (3H, m)
¹³ C NMR:	(126 MHz, CDCl ₃)
	208.8, 135.6, 131.5, 129.7, 128.0, 42.6, 29.9, 27.4, 16.0, 15.9
²⁹ Si NMR:	(99 MHz, CDCl ₃)
	-23.4
TLC:	$R_f = 0.4$ (pentane:diethyl ether 95:5) [UV]
IR:	v_{max} (neat)
	2126 (w), 1715 (m), 930 (m), 698 (m)
MS:	(EI ⁺)
	107 ($[SiPhH_2]^+$, 20), 129($[C_6H_{13}OSi]^+$, 100)
HRMS:	m/z (EI ⁺)
	found: 206.11151 (C ₁₂ H ₁₈ O ₁ Si ₁), [M+H] ⁺ requires 206.11215

Characterisation data for the branched (major) product reported.

Methyl ester 10-(phenylsilyl)undecanoic acid (3j)

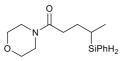
According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(3.1 \text{ mg}, 0.009 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (3.8 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. Methyl 10undecenoate (202 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 99:1, ca. 5 mL fractions) to give the *silane* **3j** (215 mg, 0.702 mmol, 78%, 94:6 B:L) as a colourless oil.

- ¹**H NMR:** (500 MHz, CDCl₃) 7.59 – 7.58 (2H, m), 7.41 – 7.36 (3H, m), 4.25 (1H, dd, *J* = 2.5, 6.0 Hz), 4.21 (1H, dd, *J* = 3.2, 6.0 Hz), 3.69 (3H, s), 2.34 – 2.31 (2H, m), 1.66 – 1.61 (2H, m), 1.36 – 1.29 (12H, m), 1.16 – 1.15 (1H, m), 1.09 (1H, s), 1.07 (1H, s), 0.91 (1H, t, *J* = 7.0 Hz)
- ¹³C NMR: (126 MHz, CDCl₃)
 174.2, 135.6, 132.2, 129.5, 127.9, 51.3, 34.1, 33.5, 29.6, 29.4, 29.3, 29.2, 28.5, 25.0, 16.3, 16.2
- ²⁹Si NMR: (99 MHz, CDCl₃) -23.1
 - **TLC:** $R_f = 0.2$ (pentane:diethyl ether 99:1) [UV]
 - IR: v_{max} (neat)
 2924 (w), 2127 (w), 1740 (m), 731 (m), 698 (m)
 MS: (EI⁺)

107 ([SiPhH₂]⁺, 76), 193 ([C₆H₉O₂]⁺, 100)

HRMS: m/z (EI⁺) found: 306.20082 (C₁₈H₃₀O₂Si₁), [M+H]⁺ requires 306.20096

Characterisation data for the branched (major) product.



According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(3.1 \text{ mg}, 0.009 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (3.8 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1,2-Epoxy-5-hexene (102 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (20 g SiO₂, 25 mm Ø, wet loaded, pentane:Et₂O 95:5, ca. 6 mL fractions) to give the *silane* **3k** (125 mg, 0.605 mmol, 67%, 5:95 B:L, 1:1 mixture of diastereoisomers) as a colourless oil.

- ¹H NMR: (400 MHz, CDCl₃) 7.60 – 7.58 (2H, m), 7.45 – 7.36 (3H, m), 4.29 – 4.22 (2H, m), 2.92 – 2.88 (1H, m), 2.77 – 2.74 (1H, m), 2.48 (1H, td, J = 2.7, 7.7 Hz), 1.78 – 1.44 (4H, m), 1.25 – 1.19 (1H, m), 1.12 – 1.10 (3H, m) ¹³C NMR: (126 MHz, CDCl₃) 135.6, 131.7, 129.7, 128.0, 52.3, 52.1, 47.1, 47.0, 31.5, 29.6, 29.5, 16.2, 16.1, 16.0 ²⁹Si NMR: (99 MHz, CDCl₃) –23.1 TLC: $R_f = 0.6$ (pentane:diethyl ether 95:5) [UV/KMNO4]
 - IR: v_{max} (neat) 2126 (w), 930 (m), 833 (s), 698 (m)
 MS: (EI⁺) 107 ([SiPhH₂]⁺, 100), 206 ([M]⁺, 12)
 - **HRMS:** m/z (EI⁺) found: 206.11132 (C₁₂H₁₈O₁Si₁), [M+H]⁺ requires 206.11215

Characterisation data for the branched (major) product.

1-(4-Morpholinyl)-4-(phenylsilyl)pentan-1-one (3l)

According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(2.0 \text{ mg}, 0.006 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (2.6 mg, 0.006 mmol, 0.01 equiv.) were complexed in THF by stirring for 1 minute. 1-Morpholinopent-4-en-1-one (99 µL, 0.60 mmol, 1.00 equiv.) and phenylsilane (81 µL, 0.66 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane:EtOAc 30:70, ca. 5 mL fractions) to give the *silane* **31** (67.1 mg, 0.230 mmol, 38%, 7:93 B:L) as a colourless oil.

- ¹H NMR: (500 MHz, CDCl₃) 7.59 - 7.57 (2H, m), 7.42 - 7.35 (3H, m), 4.28 (1H, dd, J = 2.9, 5.9 Hz), 4.25 (1H, dd, J = 3.0, 5.9 Hz), 3.64 - 3.58 (6H, m), 3.33 - 3.31 (2H, m), 2.43 - 2.27 (2H, m), 1.91-1.66 (2H, m), 1.25 - 1.19 (1H, m), 1.13 - 1.12 (3H, m) ¹³C NMR: (126 MHz, CDCl₃) 171.5, 135.6, 131.6, 129.7, 128.1, 66.9, 66.6, 45.9, 41.9, 32.1, 29.0, 16.2, 16.1 ²⁹Si NMR: (99 MHz, CDCl₃) -23.2 TLC: $R_f = 0.4$ (pentane:EtOAc 30:70) [UV] IR: v_{max} (neat) 2129 (w), 1633 (w), 1115 (w), 906 (m), 839 (m), 725 (s)
 - MS: (EI⁺) 107 ([SiPhH₂]⁺, 60), 276 ([M-1]⁺, 100), 277 ([M]⁺, 33)
 - HRMS: m/z (EI⁺) found: 277.14839 (C₁₅H₂₃O₂N₁Si₁), [M+H]⁺ requires 277.14926

Characterisation data for the branched (major) product.

trans-1-Octen-1-ylsilylbenzene (3m)

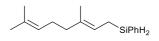
According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O$ (3.1 mg, 0.009 mmol, 0.01 equiv.) and ^{Et}BIP (3.80 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 1-Octyne (133 µl, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µl, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 1 hour. The mixture was diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (15 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **3m** (124 mg, 0.565 mmol, 63%, (*E:Z*) 83:17) as a colourless oil. Hydrosilylation by-products were also detected in trace amounts.

¹ H NMR:	(500 MHz, CDCl ₃)
	7.66 – 7.64 (2H, m, Ar), 7.47 – 7.41 (3H, m, Ar), 6.47 – 6.41 (1H, dt, <i>J</i> = 6.3, 18.4 Hz,
	=CH), 5.83 – 5.77 (1H, m, =CH), 4.63 (2H, br. d, <i>J</i> = 3.2 Hz, SiPh <i>H</i> ₂), 2.21 (2H, app.
	q, J = 7.6 Hz, CH ₂), 1.46 – 1.42 (2H, m, CH ₂), 1.33 – 1.30 (6H, m, CH ₂), 0.91 (3H, t, J
	= 7.1 Hz, CH ₃)
¹³ C NMR:	(126 MHz, CDCl ₃)
	154.2, 135.4, 132.5, 129.6, 128.0, 119.9, 37.0, 31.8, 28.9, 28.5, 22.7, 14.1
²⁹ Si NMR:	(99 MHz, CDCl ₃)
	-38.0
TLC:	$R_f = 0.5$ (pentane) [UV]
IR:	v_{max} (neat)
	2924 (w), 2131 (w), 1429 (w), 842 (s)
MS:	(EI ⁺)
	107 ([SiPhH ₂] ⁺ , 100), 175 ([C ₁₁ H ₁₅ Si] ⁺ , 29)
HRMS:	$m/z~(\mathrm{EI}^+)$
	found: 218.14815 (C ₁₄ H ₂₂ Si ₁), [M+H] ⁺ requires 218.14853

Characterisation data for the (E)-isomer.

Phenyl[(*E*)-1-propyl-1-pentenyl]silane (3n)

$$\overset{\mathsf{H}}{\underset{\mathsf{C}_{3}\mathsf{H}_{7}}{\overset{\mathsf{SiPhH}_{2}}{\overset{\mathsf{C}_{3}\mathsf{H}_{7}}{\overset{\mathsf{C}_{3}\mathsf{H}_{7}}{\overset{\mathsf{C}_{3}\mathsf{H}_{7}}{\overset{\mathsf{C}_{3}\mathsf{H}_{7}}}}}$$


According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(6.1 \text{ mg}, 0.018 \text{ mmol}, 0.02 \text{ equiv.})$ and ^{Et}BIP (7.7 mg, 0.018 mmol, 0.02 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. 4-Octyne (132 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 3 hours. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give crude **3n** (68%).The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **3n** (118 mg, 0.539 mmol, 60%, (*E*)-isomer) as a colourless oil.

- ¹**H NMR:** (600 MHz, CDCl₃) 7.65 - 7.63 (2H, m), 7.44 - 7.36 (3H, m), 6.11 (1H, t, *J* = 6.9 Hz), 4.62 (2H, s), 2.26 - 2.19 (4H, m), 1.53 - 1.42 (4H, m), 1.00 (3H, t, *J* = 7.4 Hz), 0.94 (3H, t, *J* = 7.4 Hz)
- ¹³C NMR: (126 MHz, CDCl₃) 146.3, 135.6, 134.2, 132.8, 129.5, 128.0, 32.5, 30.9, 22.8, 22.6, 14.2, 13.9
- ²⁹Si NMR: (99 MHz, CDCl₃)

-31.4

TLC: $R_f = 0.6$ (pentane) [UV]

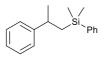
3,7-(Dimethyl)-1-[phenylsilane]octa-2,6-diene (30)

According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O(3.2 \text{ mg}, 0.009 \text{ mmol}, 0.01 \text{ equiv.})$ and ^{Et}BIP (3.9 mg, 0.009 mmol, 0.01 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. Myrcene (172 µL, 0.90 mmol, 1.00 equiv.) and phenylsilane (122 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 2 hours. The mixture was diluted with Et₂O and passed through a short plug of silica. The filtrate was concentrated *in vacuo* to give the crude silane **30** (73%). The crude reaction product was purified by flash column chromatography (30 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the *silane* **30** (150 mg, 0.612 mmol, 68%) as a colourless oil.

- ¹H NMR: (500 MHz, CDCl₃)
 7.52 7.49 (2H, m), 7.16 7.11 (3H, m), 5.27 (1H, t, J = 7.5 Hz), 5.21 5.18 (1H, m),
 4.49 (2H, t, J = 3.8 Hz), 2.09 2.02 (4H, m), 1.79 1.76 (2H, m), 1.66 (6H, s), 1.54 (3H, s)
- ¹³C NMR: (126 MHz, CDCl₃) 135.2, 134.9, 132.5, 131.5, 129.7, 127.9, 124.4, 119.2, 31.8, 26.5, 25.6, 23.4, 17.4, 11.7
- ²⁹Si NMR: (99 MHz, CDCl₃)

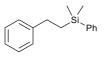
-33.4

- **TLC:** $R_f = 0.4$ (pentane) [UV]
- IR: v_{max} (neat) 2926 (w), 2133 (m), 1429 (w), 1115 (m), 931 (s), 835 (s)
- **MS:** (EI⁺) 244 ([M]⁺, 21), 107 ([SiPhH₂]⁺, 100)
- HRMS: m/z (EI⁺) found: 244.16430 (C₁₆H₂₄Si₁),[M+H]⁺ requires 244.16418


4-Fluorobenzyl alcohol (11)

In an 8 mL vial equipped with a magnetic stir bar and under an atmosphere of argon, 4-fluorobenzaldehyde (53 μ L, 0.5 mmol, 1.0 equiv.), phenylsilane (61.7 μ L, 0.5 mmol, 1.0 equiv.), and tetra-*n*-butylammonium tetrafluoroborate (165 mg, 0.5 mmol, 1 equiv.) were dissolved in anhydrous THF (0.5 mL). The reaction was stirred at ambient temperature for 24 hours. The crude reaction mixture was diluted with Et₂O (10 mL) and water (10 mL). The organic phase extracted and concentrated *in vacuo*. The yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard (54.4 mg, 0.43 mmol, 86%).

¹ H NMR:	(500 MHz, CDCl ₃)
	7.38-7.24 (2H, m), 7.09-7.05 (2H, m) 4.70 (2H, s)
¹³ C NMR:	(125 MHz, CDCl ₃)
	162.3 (d, <i>J</i> = 243 Hz), 136.6, 128.7, 115.3, 64.68
¹⁹ F NMR:	(470 MHz, CDCl ₃)
	-114.9
MS:	(EI ⁺)
	126.6 ([M] ⁺)
HRMS:	Found: 126.04758, (C ₆ H ₇ OF) [M] ⁺ requires: 126.04754


2-Phenylpropylphenyldimethylsilane (2u)

According to General Procedure B, $Co(BF_4)_2 \cdot 6H_2O$ (10 mg, 0.03 mmol, 0.03 equiv.) and 1cyanoadamantane (15.0 mg, 0.09 mmol, 0.09 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. α -Methylstyrene (130 μ L, 1.00 mmol, 1.00 equiv.) and phenyldimethylsilane (199 μ L, 1.30 mmol, 1.30 equiv.) were added. The mixture was stirred for 3 hours at 80 °C, and then diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified by flash column chromatography (petroleum ether, Et₂O, 99:1) to give the silane **2u** (61.0 mg, 0.24 mmol, 24%, >99:1 L:B) as a colourless oil.

¹H NMR: (400 MHz, CDCl₃) 7.51 – 7.48 (2H, m), 7.39 – 7.35 (3H, m), 7.30 – 7.26 (2H, m), 7.21 – 7.18 (3H, m), 2.94 – 2.85 (1H, m), 1.28 – 1.27 (3H, d, J = 14.6 Hz), 1.29 – 1.16 (2H, m), 0.19 (3H, s), 0.13 (3H, s) ¹³C NMR: (126 MHz, CDCl₃) 149.6, 139.7, 133.5, 128.8, 128.3, 127.6, 126.6, 125.8, 36.4, 26.4, 26.1, -2.2, -2.8 ²⁹Si NMR: (79 MHz, CDCl₃) –3.89 TLC: $R_f = 0.8$ (pentane, diethyl ether 90:10) [UV]

Data were in accordance with those previously reported.¹²

According to General Procedure A, $Fe(BF_4)_2 \cdot 6H_2O$ (10 mg, 0.03 mmol, 0.03 equiv.) and 1cyanoadamantane (10.0 mg, 0.06 mmol, 0.06 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. Styrene (115 µL, 1.00 mmol, 1.00 equiv.) and phenyldimethylsilane (199 µL, 1.30 mmol, 1.30 equiv.) were added. The mixture was stirred for 3 hours at 80 °C, and then diluted with Et₂O and concentrated *in vacuo*. The crude reaction product was purified through a silica plug using pentane as the eluent to give the silane **2v** (228 mg, 0.95 mmol, 95%, >99:1 L:B) as a colourless oil.

- ¹H NMR: (400 MHz, CDCl₃) 7.57 – 7.54 (2H, m), 7.40 – 7.37 (3H, m), 7.30 – 7.26 (2H, m), 7.21 – 7.17 (3H, m), 2.69 – 2.64 (2H, m), 1.17 – 1.13 (2H, m), 0.31 (6H, s)
- ¹³C NMR: (126 MHz, CDCl₃) 145.0, 139.7, 133.5, 128.9, 128.2, 127.1, 125.6, 29.4, 17.3, -3.23
- ²⁹Si NMR: (79 MHz, CDCl₃) -2.80
- **TLC:** $R_f = 0.8$ (pentane, diethyl ether 90:10) [UV]

Data were in accordance with those previously reported.¹³

Iron Catalyzed 1,4-Hydrosilylation of Myrcene

(*E*)-(3,7-dimethylocta-2,6-dien-1-yl)triethoxysilane and (*E*)-(2-ethylidene-6-methylhept-5enyl)triethoxysilane (2w)

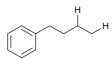
Under an argon atmosphere, $Fe(BF_4)_2 \cdot 6H_2O$ (16.9 mg, 0.05 mmol, 0.05 equiv.) and 2,6-diisopropyl-N-(pyridin-2-ylmethylene)aniline (13.25 mg, 0.05 mmol, 0.05 equiv.) were complexed in THF (0.5 mL) by stirring for 1 minute. Myrcene (172 µL, 0.90 mmol, 1.00 equiv.) and triethoxysilane (246 µL, 0.99 mmol, 1.10 equiv.) were added and the reaction was stirred for 16 hours at room temperature. The mixture was diluted with Et₂O and water was added. The layers were separated and Et₂O was concentrated *in vacuo*. The isolated products were purified by vacuum distillation (50 °C, 0.15 mbar) to give a mixture of two regioisomers (*E*)-(3,7-dimethylocta-2,6-dien-1-yl)triethoxysilane and (*E*)-(2-ethylidene-6-methylhept-5-enyl)triethoxysilane **2w**, (156 mg, 0.52 mmol, 52%, 39:61 L:B)

Linear Regioisomer:

¹**H NMR:** (600 MHz, C₆D₆) 5.49-5.44 (1H, m), 5.25 – 5.21 (1H, m), 3.85 – 3.79 (6H, m), 2.21 – 2.10 (4H, m), 1.73 – 1.69 (2H, m), 1.68 – 1.65 (6H, m), 1.55 (3H, s), 1.27 – 1.13 (9H, m)

Branched Regioisomer:

¹**H NMR:** (600 MHz, C₆D₆) 5.36-5.29 (2H, m), 3.97 – 3.89 (2H, m), 3.85 – 3.79 (4H, m), 2.35 – 2.28 (4H, m), 1.73 – 1.69 (2H, m), 1.68 – 1.65 (6H, m), 1.59 (3H, s), 1.27 – 1.13 (9H, m)


Mixture of Regioisomers:

¹³C NMR: (126 MHz, CDCl₃)
135.5, 133.7, 130.7, 124.9, 124.7, 117.9, 116.8, 59.0, 58.3, 40.1, 39.1, 27.0, 26.9, 25.5, 18.3, 18.2, 18.0, 17.4, 15.7, 15.3, 13.6, 12.9

Data were in accordance with those previously reported.¹⁴

Hydrogenation and Other Products: Experimental and Analytical Data

4-Phenylbutane (6a)

According to General Procedure F, $Co(BF_4)_2 \cdot 6H_2O$ (2.6 mg, 0.0075 mmol, 0.005 equiv.) and ^{Mes}BIP (3.0 mg, 0.0075 mmol, 0.005 equiv.) were complexed in THF (1.0 mL) by stirring for 1 minute. 4-Phenylbutene (225µL, 1.50 mmol, 1.00 equiv.) and phenylsilane (10 µL, 0.075 mmol, 0.05 equiv.) were added. The autoclave reaction vessel was then pressurised with an atmosphere of hydrogen (20 bar), and the reaction was stirred at ambient temperature for 7 hours. The mixture was diluted with Et₂O and concentrated *in vacuo* to give the crude alkane **6a** (91%). The crude reaction product was purified by flash column chromatography (12 g SiO₂, 25 mm Ø, wet loaded, pentane, ca. 5 mL fractions) to give the alkane **6a** (145 mg, 1.08 mmol, 72%) as a colourless oil.

¹H NMR: (500 MHz, CDCl₃) 7.30 (2H, t, J = 7.0 Hz), 7.22 – 7.20 (3H, m), 2.64 (2H, t, J = 7.8 Hz), 1.67 – 1.61 (2H, m), 1.4 (2H, sext., J = 7.5 Hz), 0.96 (3H, t, J = 7.3 Hz) ¹³C NMR: (126 MHz, CDCl₃) 142.9, 128.4, 128.2, 125.6, 35.7, 33.7, 22.4, 14.0 TLC: $R_f = 0.7$ (pentane) [UV]

Data were in accordance with those previously reported.¹⁵

Cumene (6b)

According to General Procedure F, $Co(BF_4)_2 \cdot 6H_2O$ (2.6 mg, 0.0075 mmol, 0.005 equiv.) and ^{Mes}BIP (3.0 mg, 0.0075 mmol, 0.005 equiv.) were complexed in THF (1.0 mL) by stirring for 1 minute. α -Methylstyrene (195µL, 1.50 mmol, 1.00 equiv.) and phenylsilane (10 µL, 0.075 mmol, 0.05 equiv.) were added. The autoclave reaction vessel was then pressurised with an atmosphere of hydrogen (20 bar), and the reaction was stirred at ambient temperature for 16 hours. The mixture was diluted with Et₂O and passed through a silica plug (10 g SiO₂, Et₂O) to give the alkane **6b** (157 mg, 1.3 mmol, 87%) as a yellow oil.

¹H NMR: (500 MHz, CDCl₃) 7.35 - 7.32 (2H, m), 7.28 - 7.27 (2H, m), 7.23 - 7.21 (1H, m), 2.98 - 2.92 (1H, m), 1.31 - 1.28 (6H, m)
¹³C NMR: (126 MHz, CDCl₃) 148.9, 128.3, 126.4, 125.8, 34.1, 24.0

Data were in accordance with those previously reported.¹⁶

4-isoPropyl-1-methylcyclohexene (6c)

According to General Procedure F, $Co(BF_4)_2 \cdot 6H_2O$ (10.2mg, 0.03 mmol, 0.01 equiv.) and ^{Mes}BIP (6.0 mg, 0.03 mmol, 0.01 equiv.) were complexed in THF (1.0 mL) by stirring for 1 minute. (*R*)-(+)-Limonene (243 µL, 1.50 mmol, 1.00 equiv.) and phenylsilane (10 µL, 0.075 mmol, 0.05 equiv.) were added. The autoclave reaction vessel was then pressurised with an atmosphere of hydrogen (20 bar), and the reaction was stirred at ambient temperature for 16 hours. The mixture was diluted with Et₂O and passed through a silica plug (10 g SiO₂, Et₂O) to give the alkane **6c** (124 mg, 0.9 mmol, 60%) as a yellow oil.

¹H NMR: (500 MHz, CDCl₃)
5.41 - 5.40 (1H, m), 2.04 - 1.92 (3H, m), 1.79 - 1.73 (2H, m), 1.66 (3H, s), 1.52 - 1.45 (1H, m), 1.29 - 1.19 (2H, m), 0.91 (6H, t, J = 6.9 Hz)
¹³C NMR: (126 MHz, CDCl₃)

133.9, 121.0, 40.0, 32.3, 30.8, 29.0, 26.5, 23.5, 20.0, 19.7

Data were in accordance with those previously reported.¹⁷

Propylbenzene (6d)

According to General Procedure F, Co(BF₄)₂·6H₂O (2.6 mg, 0.0075 mmol, 0.005 equiv.) and ^{Mes}BIP (3.0 mg, 0.0075 mmol, 0.005 equiv.) were complexed in THF (1.0 mL) by stirring for 1 minute. β -Methylstyrene (195 μ L, 1.50 mmol, 1.00 equiv.) and phenylsilane (10 μ L, 0.075 mmol, 0.05 equiv.) were added. The autoclave reaction vessel was then pressurised with an atmosphere of hydrogen (20 bar), and the reaction was stirred at ambient temperature for 16 hours. The mixture was diluted with Et₂O and passed through a silica plug (10 g SiO₂, Et₂O) to give the alkane **6d** (130 mg, 1.1 mmol, 72%) as a yellow oil.

¹H NMR: (500 MHz, CDCl₃) 7.36 - 7.35 (2H, m), 7.26 - 7.25 (3H, m), 2.68 - 2.65 (2H, m), 1.75 - 1.70 (2H, m), 1.04 - 1.00 (3H, m)
¹³C NMR: (126 MHz, CDCl₃) 142.7, 128.5, 128.3, 125.6, 38.1, 24.6, 13.9

Data were in accordance with those previously reported.¹⁸

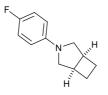
Propyltriethoxysilane (6e)

According to General Procedure F, $Co(BF_4)_2 \cdot 6H_2O$ (5.2mg, 0.03 mmol, 0.01 equiv.) and ^{Mes}BIP (6.0 mg, 0.03 mmol, 0.01 equiv.) were complexed in THF (1.0 mL) by stirring for 1 minute. Allyltriethoxysilane (340 µL, 1.50 mmol, 1.00 equiv.) and phenylsilane (10 µL, 0.075 mmol, 0.05 equiv.) were added. The autoclave reaction vessel was then pressurised with an atmosphere of hydrogen (20 bar), and the reaction was stirred at ambient temperature for 16 hours. The mixture was diluted with Et₂O and passed through a silica plug (10 g SiO₂, Et₂O) to give the alkane **6e** (265 mg, 1.3 mmol, 85%) as a yellow oil.

¹H NMR: (500 MHz, CDCl₃)
3.84 (6H, q, J = 6.9 Hz), 1.50 – 1.46 (2H, m), 1.25 (9H, t, J = 6.9 Hz), 1.00 (3H, t, J = 14.5 Hz), 0.67 – 0.64 (2H, m)
¹³C NMR: (126 MHz, CDCl₃)
58.3, 18.3, 17.8, 16.4, 12.9

Data were in accordance with those previously reported.¹⁹

N-Benzyl-3-azabicyclo[0.2.3]heptane (8a)


Under an atmosphere of argon, preformed 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine cobalt(II) tetrafluoroborate (38.2 mg, 0.05 mmol, 0.1 equiv.) was added to an 8 mL glass vial, equipped with a stirrer bar. Diallylbenzylamine (102.14 μ L, 0.5 mmol, 1.00 equiv.) and phenylsilane (12.3 μ L, 0.1 mmol, 0.2 equiv.) were added and the reaction heated at 80 °C for 24 hours. Et₂O (2 mL) was subsequently added, and the reaction mixture was washed with distilled water to separate the catalyst from the crude reaction mixture. 1,3,5-Trimethoxybenzene (16.8 mg, 0.1 mmol, 0.20 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

¹**H NMR**: (500 MHz, C₆D₆) 7.46-7.41 (2H, m) 7.25-7.18 (2H, m), 7.14-7.09 (1H, m), 3.56 (2H, s), 2.73 (2H, d, *J* = 9.5 Hz), 2.60-2.50 (2H, m), 2.07-1.98 (2H, m), 1.95-1.89 (2H, m), 1.88-1.81 (2H, m).

TLC: $R_f = 0.35$ (pentane/diethylether 1:1) [KMnO4]

Data were in accordance with those previously reported.²⁰

N-4-fluorophenyl-3-azabicyclo[0.2.3]heptane (8b)

Under an atmosphere of argon, preformed 2,6-bis[1-(2,6-diethylphenylimino)ethyl]pyridine cobalt(II) tetrafluoroborate (38.2 mg, 0.05 mmol, 0.1 equiv.) was added to an 8 mL glass vial, equipped with a stirrer bar. *N,N*-Diallyl-4-fluoroaniline (95 μ L, 0.5 mmol, 1.00 equiv.) and phenylsilane (12.3 μ L, 0.1 mmol, 0.2 equiv.) were added and the reaction was heated at 80 °C for 24 hours. Et₂O (2 mL) was subsequently added, and the reaction mixture was washed with distilled water to separate the catalyst from the crude reaction mixture. 1,3,5-Trimethoxybenzene (16.8 mg, 0.1 mmol, 0.20 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield. The crude reaction mixture was purified by flash column chromatography using pentane and Et₂O (99:1) to give the *N*-4-fluorophenyl-3-azabicyclo[0.2.3]heptane **8b** (78 mg, 82% isolated yield) as a yellow liquid.

¹ H NMR:	(600 MHz, CDCl ₃)
	6.99-6.96 (2H, m) 6.70-6.67 (2H, m), 3.47 (2H, d, <i>J</i> = 9.5 Hz), 3.07-3.03 (2H, m),
	3.01-2.97 (2H, m), 2.31-2.26(2H, m), 1.84-1.80 (2H, m).
¹³ C NMR:	(126 MHz, CDCl ₃)
	115.53, 115.28, 114.53, 114.43, 56.65, 37.52, 24.96
¹⁹ F NMR:	(377 MHz, CDCl ₃)
	-128.87
TLC:	$R_f = 0.8$ (pentane/Et ₂ O 90:10) [UV]

Data were in accordance with those previously reported.²⁰

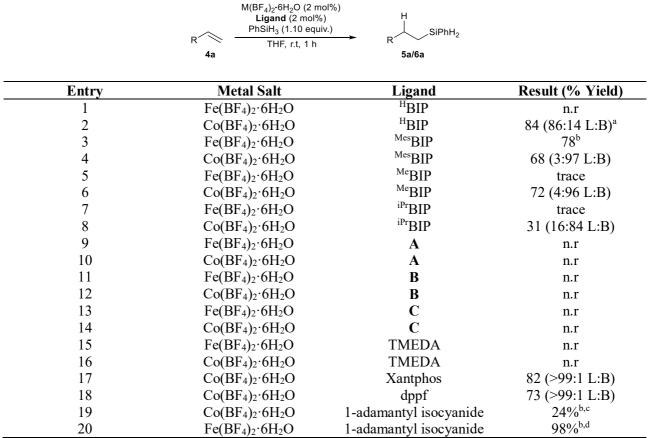
4,4,5,5-Tetramethyl-2-(5-methylfuran-2-yl)-1,3,2-dioxaborolane (10)

Under an atmosphere of argon, cobalt catalyst (11.1 mg, 0.019 mmol, 0.02 equiv) was added to an 8 mL glass vial, equipped with a magnetic stirrer bar. 2-Methylfuran (514.3 μ L, 5.7 mmol, 15 equiv.) was then added, followed by bispinacolatodiboron (86.15 mg, 0.38 mmol, 1 equiv.) and lithium methoxide (14.4 mg, 0.38 mmol, 1 equiv.) and phenylsilane (10 μ L, 0.08 mmol, 0.21 equiv.) were added and the reaction heated at 80 °C for 24 hours. Et₂O (2 mL) was subsequently added, and the crude reaction mixture washed with distilled water to separate the catalyst from the crude reaction mixture. 1,3,5-Trimethoxybenzene (12.8 mg, 0.076 mmol, 0.10 equiv.) was added for use as a ¹H NMR (CDCl₃) internal standard to determine the reaction yield.

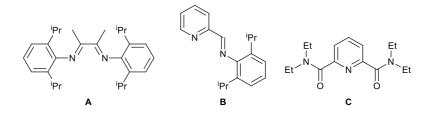
¹**H NMR**: (500 MHz, CHCl₃) 7.01 (1H, d, *J* = 3.7 Hz), 6.11 (1H), 2.38 (3H, s), 1.34 (12H, s)

Data were in accordance with those previously reported.²¹

Supporting Schemes and Tables


Table SI 1.1: Control Reactions for Hydrosilylation

	Metal Salt (2 mol%) H Ligand (2 mol%) H PhSiH ₃ (1.10 equiv.) H THF, r.t, 1 h R	H ₂
	4a 5a/6a	
Entry	Conditions	Result (% Yield)
1	$AgBF_4 + {}^{Et}BIP$	n.r
2	$TBABF_4 + {}^{Et}BIP$	n.r
3	$Co(BF_4)_2 \cdot 6H_2O + {}^{Et}BIP$	>95% (8:92 B:L)
4	$Cu(BF_4) \cdot xH_2O + {}^{Et}BIP$	n.r
5	Fe(BF ₄) ₂ ·6H ₂ O	n.r
6	$Co(BF_4)_2 \cdot 6H_2O$	n.r
7	^{Et} BIP	n.r
Conditions: 1-Octene (1.00 equiv.) with phenylsilane (1.10 equiv	v.), stirred in THF at ambien
Ň	temperature, 1 h.	··


Table SI 1.2: Optimisation for Hydrosilylation

	Metal Salt (X mol ^{Et} BIP (X mol%) PhSiH ₃ (1.10 equ X THF, r.t, 1 h	,) Н	
 Entry	Metal Salt	Catalytic Loading	Result (% Yield)
 1	Fe(BF ₄) ₂ ·6H ₂ O	0.5	67
2	Fe(BF ₄) ₂ ·6H ₂ O	1	82
3	Fe(BF ₄) ₂ ·6H ₂ O	2	87 (93:7 L:B)
4	$Fe(BF_4)_2 \cdot 6H_2O$	3	68
5	Fe(BF ₄) ₂ ·6H ₂ O	4	75
6	$[^{\text{Et}}\text{BIPFe}(\text{BF}_4)_2]^a$	2	77
7	Co(BF ₄) ₂ ·6H ₂ O	1	90 (8:92 L:B)
8	$Co(BF_4)_2 \cdot 6H_2O$	2	82 (95:5 L:B)

Conditions: 1-Octene (1.00 equiv.) with phenylsilane (1.10 equiv.), stirred at ambient temperature; a) Pre-complexed catalyst had been exposed to air for 2 hours prior to use.

Conditions: 1-Octene (1.00 equiv.) with phenylsilane (1.10 equiv.), stirred at ambient temperature for 1 h; a) Opposite regioselectivity obtained with ^HBIP *vs*. ^{Et}BIP; b) Selective for the linear product; c) α -methylstyrene (1.00 equiv.) with phenyldimethylsilane (1.10 equiv.), 3 mol% M(BF₄)₂·6H₂O, 6 mol% ligand; d) styrene (1.00 equiv.) with phenyldimethylsilane (1.10 equiv.), 3 mol% M(BF₄)₂·6H₂O, 6 mol% ligand. TMEDA = *N*,*N*,*N*',*N*'-Tetramethylethylenediamine, Xantphos = 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene, dppf = 1,1'-Ferrocenediylbis(diphenylphosphine)

Table SI 1.4: Solvent Screening (Hydrosilylation)

	Fe(BF ₄) ₂ ·6H ₂ O (2 mol%) ^{Et} BIP (2 mol%) PhSiH ₃ (1.10 equiv.) Solvent , r.t, 1 h	R SiPhH ₂ 6a
Entry	Solvent	Result (% Yield)
1	CH_2Cl_2	n.r
2	$CH_2Cl_2^a$	2.5
3	$CH_2Cl_2 + THF^b$	n.r
4	Hexanes	n.r
5	Hexanes ^a	n.r
6	Acetone	n.r
7	Toluene ^a	n.r
8	THF	87 (93:7 L:B)
9	THF^{c}	75% (83:17 L:B)
10	DME	76 (84:16 L:B)
11	Anisole	n.r
12	MTBE	n.r
13	EtOAc	n.r
14	NEt ₃	n.r
15	Acetic Acid	n.r
16	2-Methyltetrahydrofuran	75 (83:17 L:B)
17	MeOH	n.r
18	Dioxane	24 ^d
19	Et ₂ O	n.r
20	MeCN	n.r

 20
 MeCN
 n.r

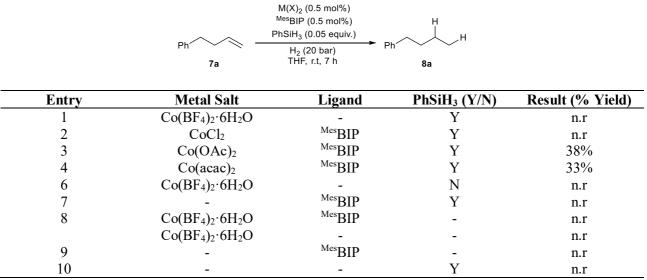

 Conditions: 1-Octene (1.00 equiv.) with phenylsilane (1.10 equiv.), stirred for 1 hour at ambient temperature; a) Pre-complexed catalyst was used; b) 1.00 equiv. of THF added to the reaction; c) Solvent used straight from Winchester bottle; d) Selective for linear product.

Table SI 1.5: Optimisation for Hydrogenation

	Ph	××BII PhSił THF	6H ₂ O (X mol %) P (Y mol%) H ₃ (Z equiv.) F, r.t, xx h xx bar)	H Ph H 8a		
Entry	Metal Salt (X equiv.)	Ligand (Y equiv.)	PhSiH3 (Z equiv.)	Time (h)	H ₂ (bar)	Result (% Yield)
1	Fe(BF ₄) ₂ ·6H ₂ O (0.02)	^{Et} BIP (0.02)	-	18 h	5	n.r
2	Co(BF ₄) ₂ ·6H ₂ O (0.02)	^{Et} BIP (0.02)	-	18 h	5	n.r
3	$Fe(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Et} BIP (0.02)	(0.05)	18 h	5	22
4	$Co(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Et} BIP (0.02)	(0.05)	18 h	5	53
5	$Co(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Et} BIP (0.02)	(0.05)	48 h	5	>95
6	$Co(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Mes} BIP (0.02)	(0.05)	18 h	20	91
7	$Co(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Mes} BIP (0.02)	(0.05)	18 h	15	22
8	$Co(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Mes} BIP (0.02)	(0.05)	18 h	10	38
9	$Co(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Et} BIP (0.02)	(0.05)	18 h	10	36
10	$Co(BF_4)_2 \cdot 6H_2O$ (0.02)	^{Mes} BIP (0.02)	(0.05)	7 h	20	90
11	Co(BF ₄) ₂ ·6H ₂ O (0.005)	^{Mes} BIP (0.005)	(0.05)	7h	20	>95 (72)
12	$Fe(BF_4)_2 \cdot 6H_2O$ (0.02)	$^{Mes}BIP (0.02)$	(0.05)	5 h	20	23
13	(0.02) Co(BF ₄) ₂ ·6H ₂ O (0.02)	^{Mes} BIP (0.02)	(0.05)	5 h	20	78

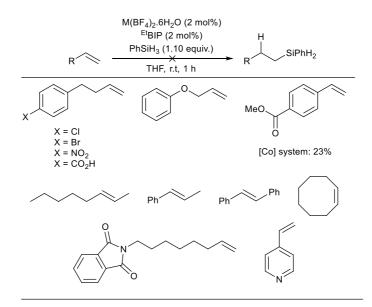

(0.02) **Conditions:**4-Phenylbutene (1.00 equiv.) stirred under an atmosphere of H₂, ambient temperature.

Table SI 1.6: Control Reactions for Hydrogenation

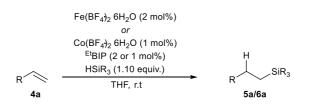
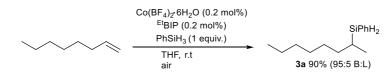

Conditions: 4-Phenylbutene (1.00 equiv.) stirred under an atmosphere of H₂, ambient temperature;

Table SI 1.7: Unreactive Substrates Towards Hydrosilylation

Conditions: Olefin (1.00 equiv.), phenylsilane (1.10 equiv.) stirred under an atmosphere of argon, ambient temperature.

Table SI 1.8: Other Silanes Investigated

Entry	Metal Salt	Silane	'Activator' (1 drop)	Time (h)	Result (% Yield)
1	Fe(BF ₄) ₂ ·6H ₂ O	Ph ₂ SiH ₂	none	2	n.r
2	Fe(BF ₄) ₂ ·6H ₂ O	Ph ₂ SiH ₂	PhSiH ₃	2	n.r
3	Co(BF ₄) ₂ ·6H ₂ O	Ph_2SiH_2	none	2	53 (53:47 L:B) ^a
4	$Fe(BF_4)_2 \cdot 6H_2O$	Me ₂ PhSiH	none	1	n.r
5	Co(BF ₄) ₂ ·6H ₂ O	Me ₂ PhSiH	none	1	n.r
6	Fe(BF ₄) ₂ ·6H ₂ O	Me ₂ PhSiH	PhSiH ₃	1	n.r
7	$Fe(BF_4)_2 \cdot 6H_2O$	Me ₂ PhSiH	HBPin	1	n.r
8	$Fe(BF_4)_2 \cdot 6H_2O$	(EtO) ₂ MeSiH	none	3	55 (80:20 L:B) ^a
9	$Fe(BF_4)_2 \cdot 6H_2O$	Hexylsilane	none	1	(96) (78:22 L:B)
10	Co(BF ₄) ₂ ·6H ₂ O	Hexylsilane	none	1	(88) (2:98 L:B)
11	$Fe(BF_4)_2 \cdot 6H_2O$	MePhSiH ₂	none	2	n.r
12	Co(BF ₄) ₂ ·6H ₂ O	MePhSiH ₂	none	2	(50) (11:89 L:B)
13	Fe(BF ₄) ₂ ·6H ₂ O	MePhSiH ₂	PhSiH ₃	2	(72) (99:1 L:B)
14	$Co(BF_4)_2 \cdot 6H_2O$	(EtO) ₃ SiH ^b	none	3	<15
15	$Fe(BF_4)_2 \cdot 6H_2O$	(Me ₃ SiO) ₂ SiMeH ^b	none	3	n.r
16	Co(BF ₄) ₂ ·6H ₂ O	(Me ₃ SiO) ₂ SiMeH ^b	none	3	n.r
17	Fe(BF ₄) ₂ ·6H ₂ O	(Me ₃ SiO) ₂ SiMeH ^b	PhSiH ₃	3	n.r
18	$Co(BF_4)_2 \cdot 6H_2O$	(Me ₃ SiO) ₂ SiMeH ^b	PhSiH ₃	3	n.r
19	Fe(BF ₄) ₂ ·6H ₂ O	(Me ₃ SiO) ₂ SiMeH ^b	HBPin	3	n.r
20	$Co(BF_4)_2 \cdot 6H_2O$	(Me ₃ SiO) ₂ SiMeH ^b	HBPin	3	n.r


Conditions: 1-Octene (1.00 equiv.), silane, stirred in THF, ambient temperature, [Fe] system 0.02 equiv., [Co] system 0.01 equiv.; a) Product(s) not isolated, unknown isomerisation product also detected; b) 1.00 equivalents of silane added.

Scheme SI 1.9: Large Scale Hydrosilylation using Triethoxysilane

Conditions: 1-Octene (1.00 equiv.) with triethoxysilane (1.00 equiv.), stirred for 5 mins at ambient temperature.

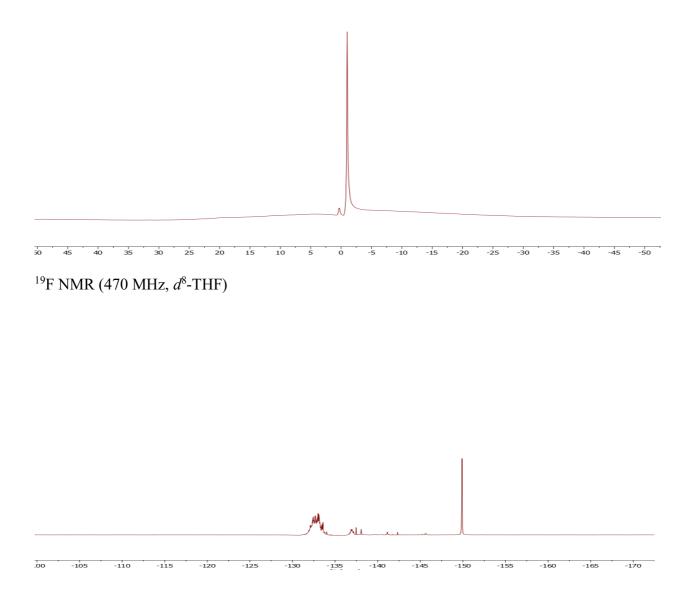
Scheme SI 1.10: Hydrosilylation in air

Conditions: 1-Octene (1.00 equiv.) with PhSiH₃ (1.00 equiv.), stirred for 4h at ambient temperature in air

Table SI 1.10 Radical Trap Addition

	n-hex	M(BF ₄) ₂ .6H ₂ O (0.02 equiv.) ^{Et} BIP (0.02 equiv.) PhSiH ₃ (1.10 equiv.) Radical Trap (X equiv.) THF, r.t, 1 h	'nH ₂
Entry	2a Metal Salt	3a/4a Radical Trap (X equiv.)	Result (% Yield)
<u> </u>	Fe(BF ₄) ₂ ·6H ₂ O	TEMPO (0.01)	65 (89:11 L:B)
2	$Co(BF_4)_2 \cdot 6H_2O^a$	TEMPO (0.01)	66 (8:92 L:B)
$\frac{2}{3}$	$Fe(BF_4)_2 \cdot 6H_2O$	TEMPO (0.01) TEMPO (0.02)	72 (92:8 L:B)
4	$Co(BF_4)_2 \cdot 6H_2O$	TEMPO (0.02)	68 (6:94 L:B)
5	$Fe(BF_4)_2 \cdot 6H_2O$	TEMPO (0.25)	n.r
6	$Co(BF_4)_2 \cdot 6H_2O$	TEMPO (0.25)	12 ^b
7	$Fe(BF_4)_2 \cdot 6H_2O$	TEMPO (1.00)	n.r
8	$Co(BF_4)_2 \cdot 6H_2O$	TEMPO (1.00)	n.r
9	$Fe(BF_4)_2 \cdot 6H_2O$	Galvinoxyl (0.01)	79 (91:9 L:B)
10	$Co(BF_4)_2 \cdot 6H_2O$	Galvinoxyl (0.01)	70 (9:91 L:B)
11	$Fe(BF_4)_2 \cdot 6H_2O$	Galvinoxyl (0.02)	72 (90:10 L:B)
12	$Co(BF_4)_2 \cdot 6H_2O$	Galvinoxyl (0.02)	35 (14:86 L:B)
13	$Fe(BF_4)_2 \cdot 6H_2O$	Galvinoxyl (0.25)	n.r
14	$Fe(BF_4)_2 \cdot 6H_2O$	9,10-Dihydroanthracene (0.01)	78 (95:5 L:B)
15	$Co(BF_4)_2 \cdot 6H_2O$	9,10-Dihydroanthracene (0.01)	85 (5:95 L:B)
16	$Fe(BF_4)_2 \cdot 6H_2O$	9,10-Dihydroanthracene (0.02)	86 (94:6 L:B)
17	$Co(BF_4)_2 \cdot 6H_2O$	9,10-Dihydroanthracene (0.02)	69 (3:97 L:B)
18	$Fe(BF_4)_2 \cdot 6H_2O$	9,10-Dihydroanthracene (0.25)	88 (93:7 L:B)
19	$Co(BF_4)_2 \cdot 6H_2O$	9,10-Dihydroanthracene (0.25)	89 (6:94 L:B)

Conditions: 1-Octene (1.00 equiv.) and phenylsilane (1.20 equiv.) stirred in THF, 1 h, with addition of radical trap; a) [Co] system (0.01 equiv.);b) Selective for branched product.


Table SI 1.12 TeflonTM Reaction Vessel

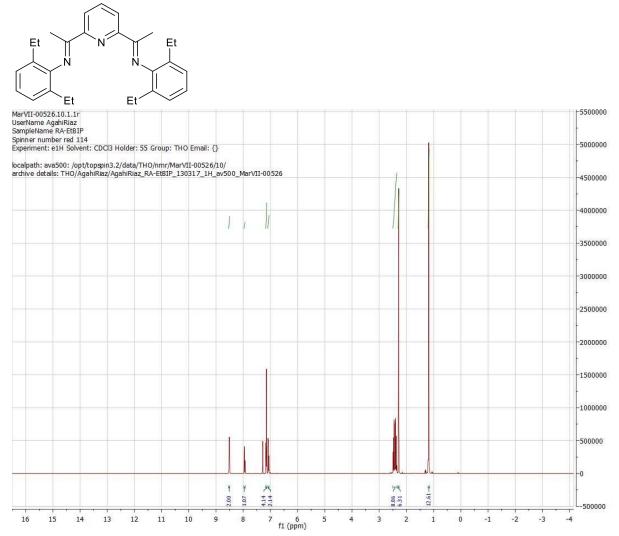
\sim	M(BF ₄) ₂ ·6H ₂ O (2 mol%) ^{Et} BIP (2 mol%) PhSiH ₃ (1.10 equiv.)	H SiPhH2
R´ >> 4a	THF, r.t, 1 h TEFLON	R' > - 5a/6a
Entry	Metal Salt	Result (% Yield X)
1	Fe(BF ₄) ₂ ·6H ₂ O	85 ^a
2	$Co(BF_4)_2 \cdot 6H_2O^b$	89 (93:7 B:L)

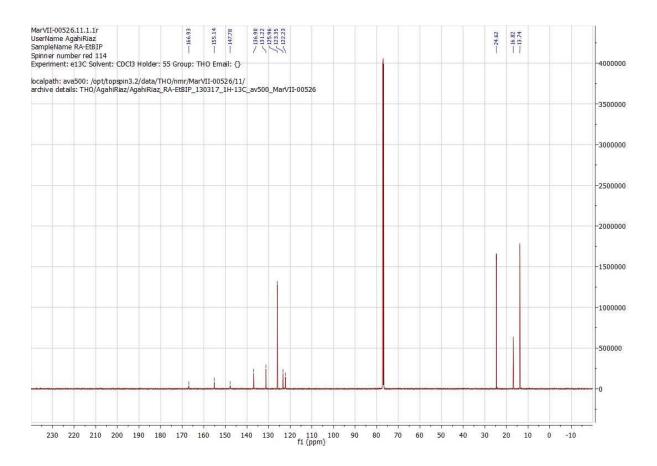
Conditions: 1-Octene (1.00 equiv.) and phenylsilane (1.20 equiv.) stirred in THF, 1 h, in a TeflonTM reaction vessel; a) Selective for linear product; b) [Co] system (0.01 equiv.).

Phenylsilane was added to a mixture of $Fe(BF_4)_2 \cdot 6H_2O$ (20 mg, 0.06 mmol) and ^{Et}BIP (25.5 mg, 0.06) in d^8 -THF (0.6 mL) in a J-Young's NMR tube. The tube was shaken and left for 4 h before addition of water to destroy reactive species (0.05 mL) and the below NMR spectra recorded. *n.b pressure build up within tube*

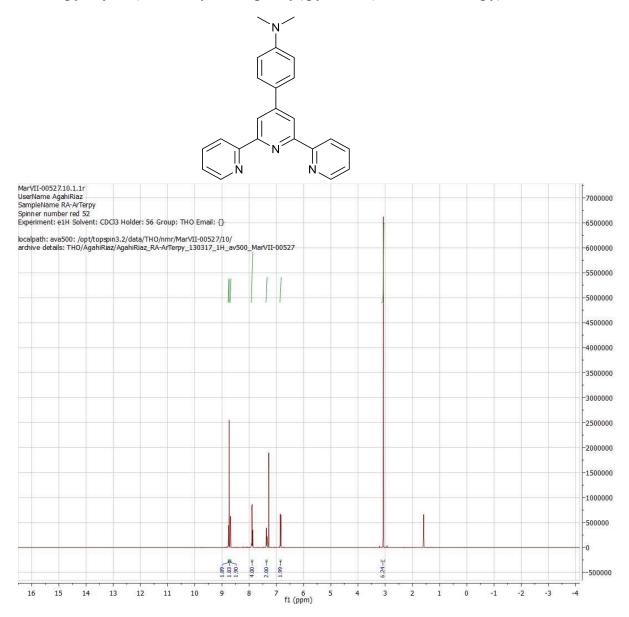
¹¹B NMR (160 MHz, *d*⁸-THF)

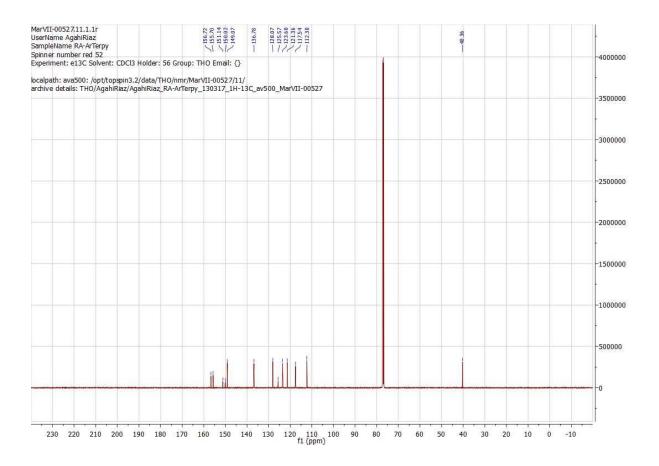
²⁹Si NMR (99 MHz, *d*⁸-THF)


References

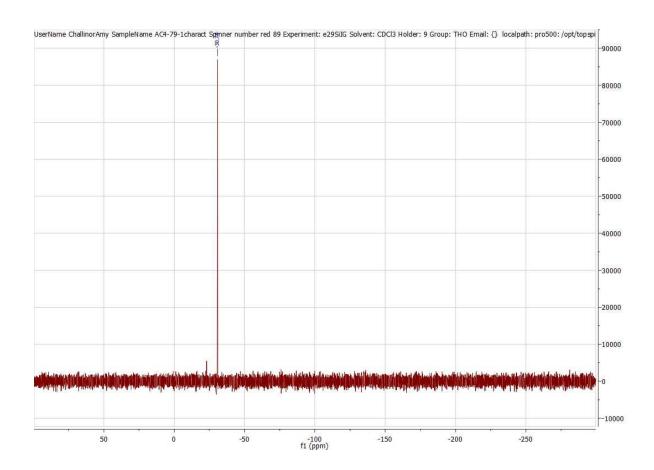

- 1. M. A. Bigi and M. C. White, J. Am. Chem. Soc., 2013, 135, 7831-7834.
- 2. M. D. Greenhalgh, S. P. Thomas, Chem. Commun., 2013, 49, 11230-11232.
- 3. A. Maroń, A. Szlapa, T. Klemens, S. Kula, B. Machura, S. Krompiec, J. G. Małecki, A. Świtlicka-Olszewska, K. Erfurt and Chrobok, *Org. Biomol. Chem.*, 2016, **14**, 3793–3808.
- A. J. Challinor, M. Calin, G. S. Nichol, N. B. Carter and S. P. Thomas, *Adv. Synth. Catal.* 2016, 15, 2404-2409.
- J. R. Carney, B. R. Dillon, L. Campbell and S. P. Thomas, Angew. Chem., Int. Ed., 2018, 57, 10620-10624
- D. A. Loy, J. P. Carpenter, T. M. Alam, R. Shaltout, P. K. Dorhout, J. Greaves, J. H. Small and K. J. Shea, J. Am. Chem. Soc., 1999, 121, 5413–5425.
- 7. M. D. Greenhalgh, D. J. Frank and S. P. Thomas, Adv. Synth. Catal. 2014, 356, 584-590.
- D. Peng, Y. Zhang, X. Du, L. Zhang, X. Leng, M. D. Walter and Z. Huang, J. Am. Chem. Soc., 2013, 135, 19154-19166.
- 9. G. A. Molander, M. Julius, J. Org. Chem., 1992, 57, 6347-6351.
- 10. K. Kamata, A. Suzuki, Y. Nakai, and H. Nakazawa, Organometallics, 2012, 31, 3825-3828.
- 11. X. Du, Y. Zhang, D. Peng and Z. Huang, Angew. Chem. Int. Ed., 2016, 55, 6671-6675.
- 12. K. Yamamoto, T. Hayashi, Y. Uramoto, R. Ito, and M. Kumada, J. Organomet. Chem., 1976, 118, 331-348
- 13. W. Xue, and M. Oestreich, Angew. Chem. Int. Ed., 2017, 56, 11649-11652
- 14. J. H. Docherty, J. Peng, A. P. Dominey and S. P. Thomas, Nat. Chem, 2017, 9, 595-600
- 15. A. J. MacNair, M. Tran, J. E. Nelson, G. U. Sloan, A. Ironmonger, and S. P. Thomas, *Org. Biomol. Chem.*, 2014, **12**, 5082-5088.
- 16. G. Cahiez, L. Foulgoc, and A. Moyeux, Angew. Chem. Int. Ed. 2009, 48, 2969-2972.
- 17. G. Villa, G. Povie, and P. Renaud, J. Am. Chem. Soc., 2011, 15, 5913-5920.
- 18. S. Perdriau, M. Chang, E. Otten, H. J. Heeres and J. G. de Vries, *Chem. Eur. J.*, 2014, **20**, 15434 15442.
- Princeton University; Momentive Performance Materials Inc.; Atienza, Crisita Carmen Hojilla; Chirik, Paul J.; Nye, Susan; Lewis, Kenrick M.; Weller, Keith J.; Boyer, Julie L.; Delis, Johannes G.P.; Roy, Aroop; Pohl, Eric, Patent: US2014/51822 A1, 2014.
- M. W. Bouwkamp, A. C. Bowman, E. Lobkovsky and P. J. Chirik, J. Am. Chem. Soc., 2006, 128, 13340-13341.
- T. Dombray, C. G. Werncke, S. Jiang, M. Grellier, L. Vendier, S. B. Bontemps, J.-B. Sortais, S. Sabo-Etienne and C. Darcel, *J. Am. Chem. Soc.*, 2015, 137, 4062.

¹H and ¹³C NMR Spectra for novel compounds are provided on the following pages

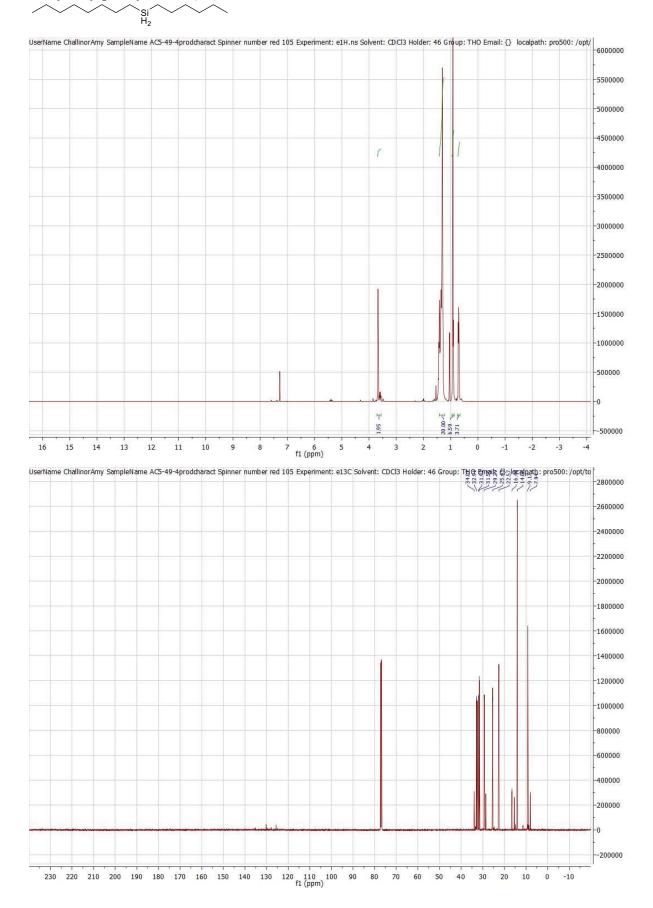

Ligand and Pre-Catalyst Preparation

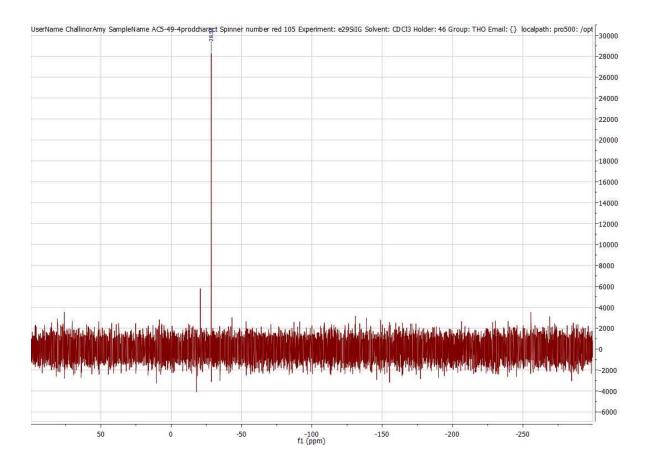

2,6-Bis-[1-(2,6- diethylphenylimino)ethyl]pyridine (^{Et}BIP)

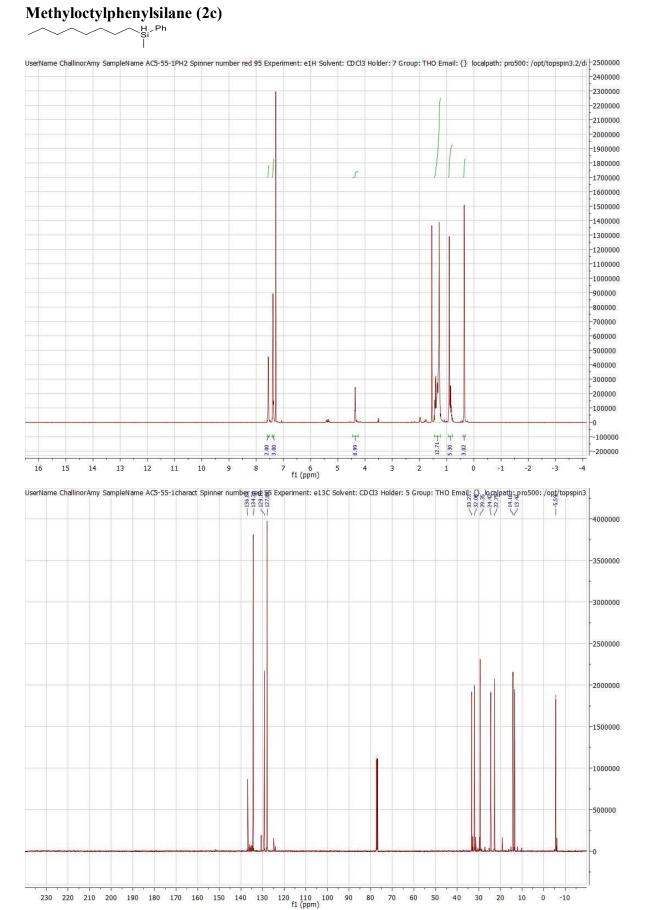
2,6-Bispyridyl-4-(4-dimethylaminophenyl)pyridine (4-NMe₂-Ph-Terpy)

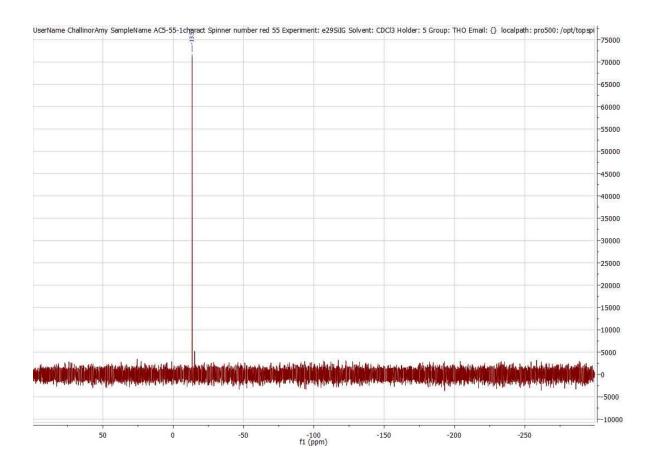


<u>Hydrosilylation</u> <u>Iron-Catalysed Hydrosilylation Products</u> Octylsilylbenzene (2a)

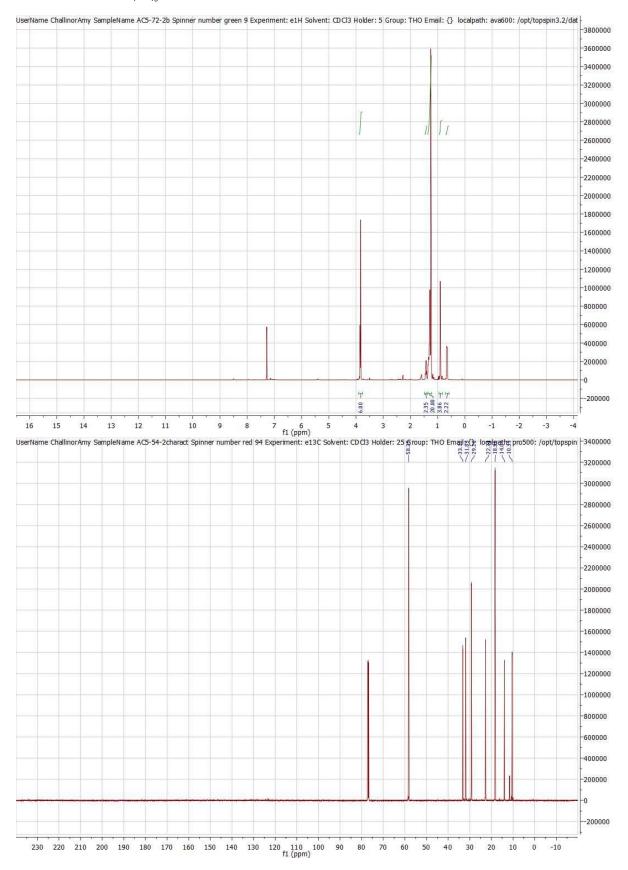

SiPhH₂

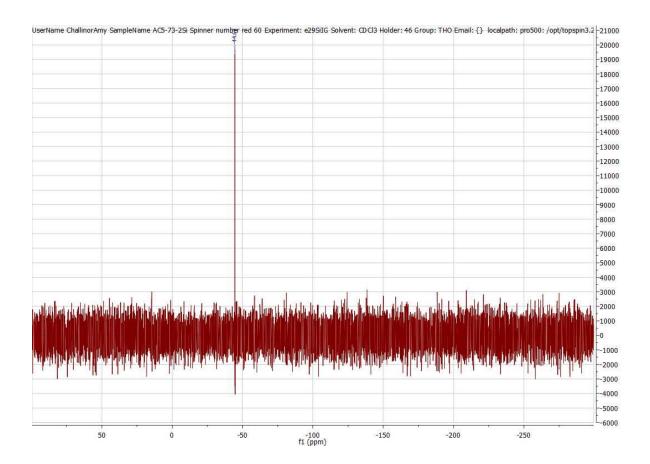



S77



Hexyloctylphenylsilane (2b)



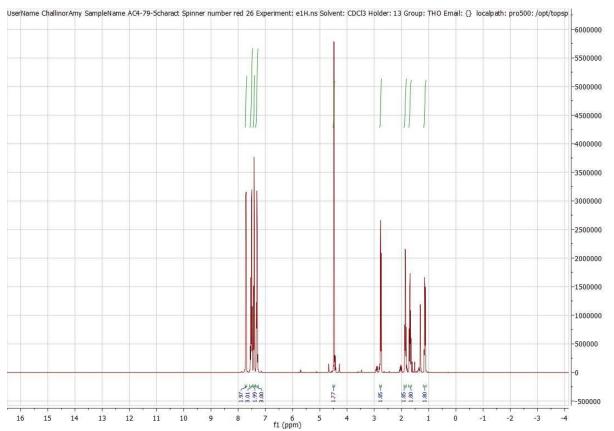


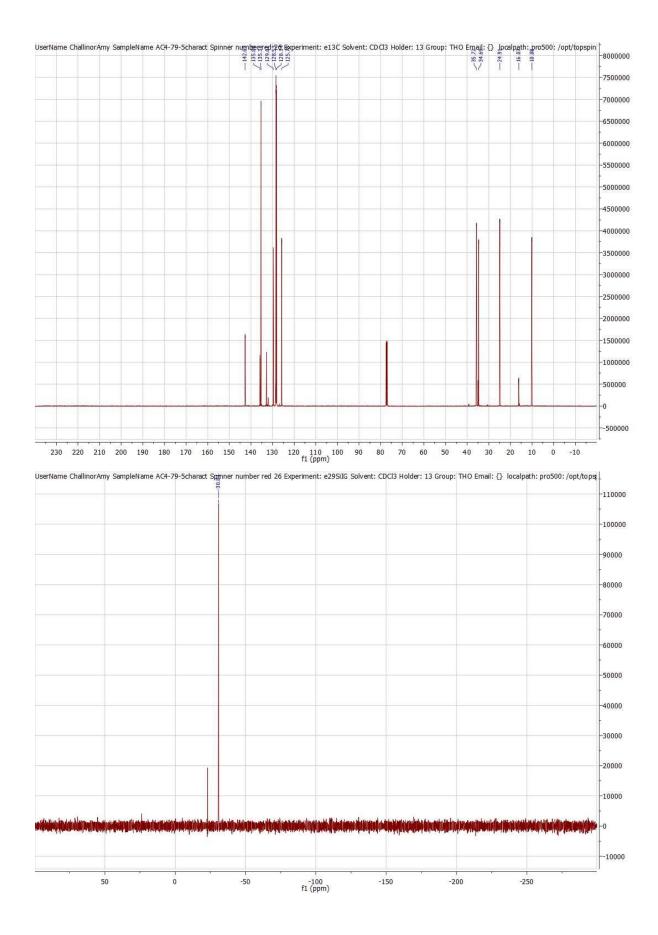
Triethoxy(octyl)silane (2d)

∽Si(OEt)₃

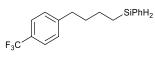
1,3-Bis(triethoxysilyl)propane (2e)

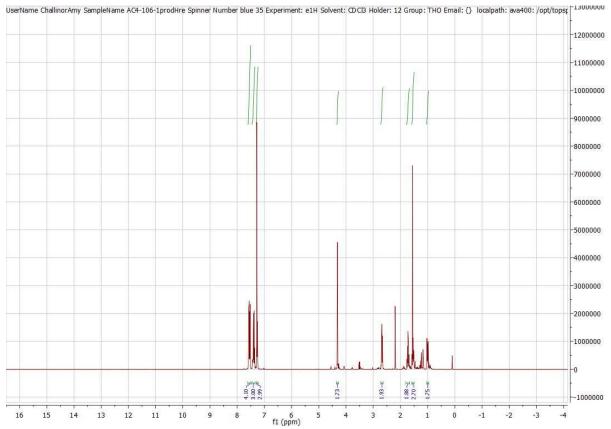
(EtO)₃Si Si(OEt)₃

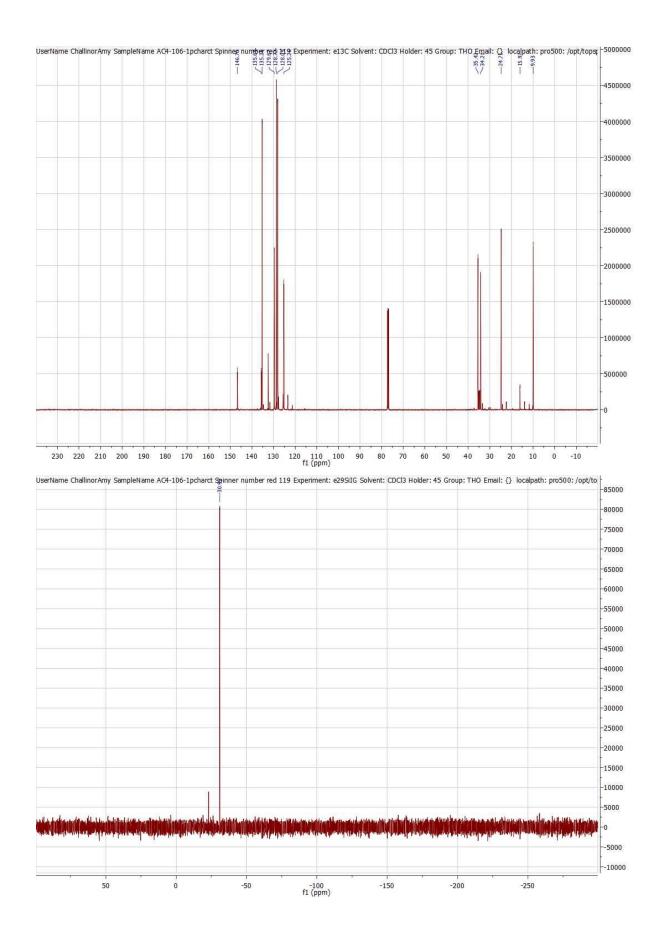


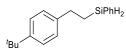

		5					
							-13
							-12
							-11
							-10
							-90
							-80
							-70
							-60
							-50
							-40
							-30
							-20
			-				-10
ilindinaide di	ni kana dina si kana di na si kana di k	indiberinderindi		a indicative de la contractive de la co		i de la calega de la compositiva (nação de la calega de la	-0
		11			. The local sector sector sector	a de a caracteria a caracteria	

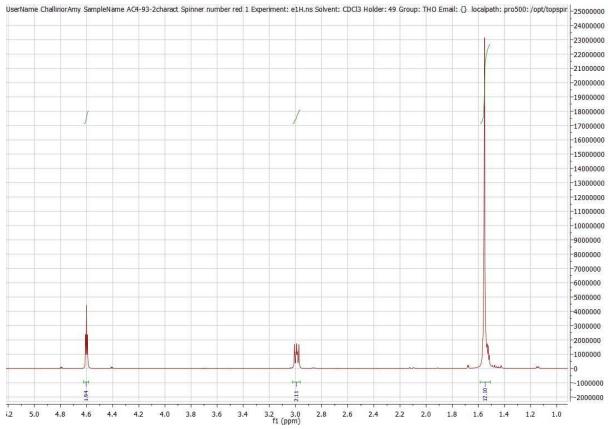
1-Phenyl-4-(phenylsilyl)butane (2f)

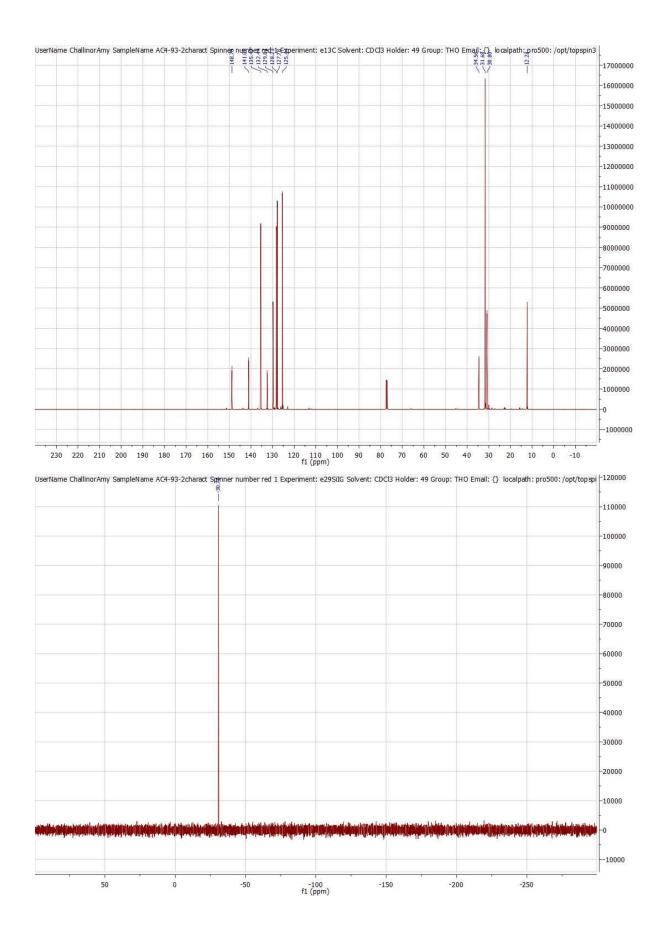

_SiPhH₂

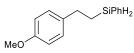


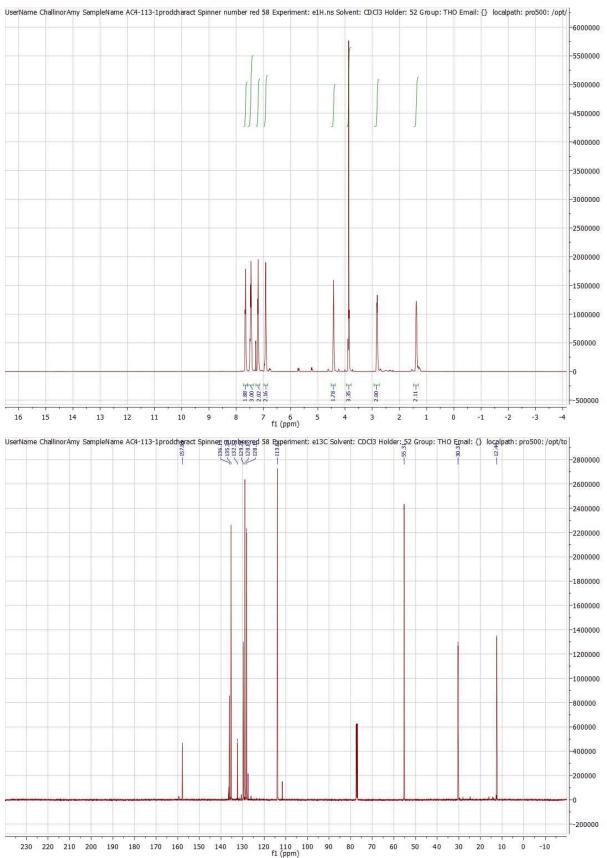


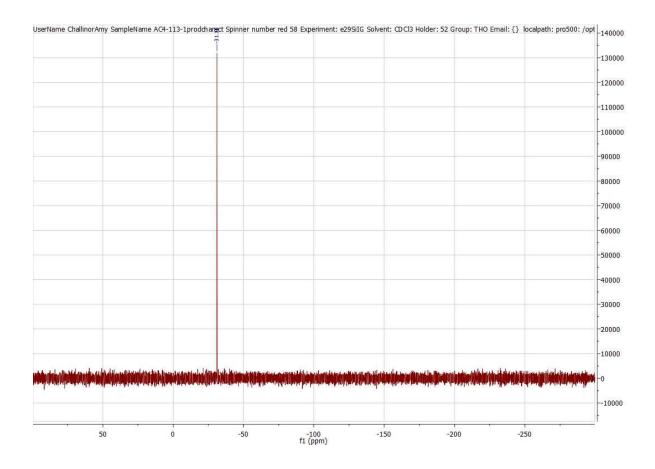

1-Trifluoromethyl-4-(4-silylbenzenebutane)benzene (2g)



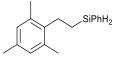


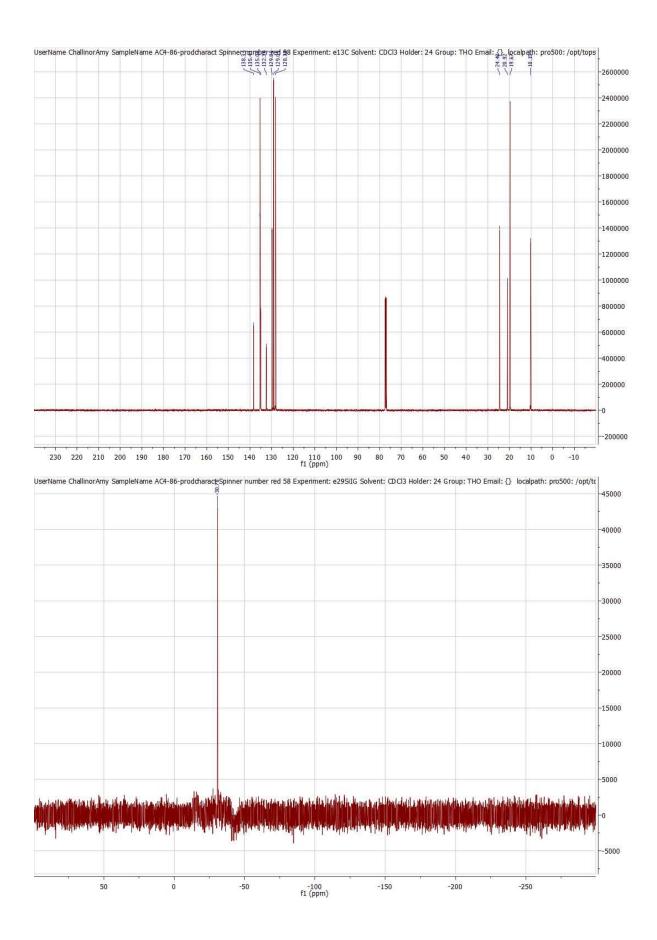

1-(4-*tert*butylphenyl)-2-(phenylsilyl)ethane (2h)

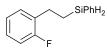


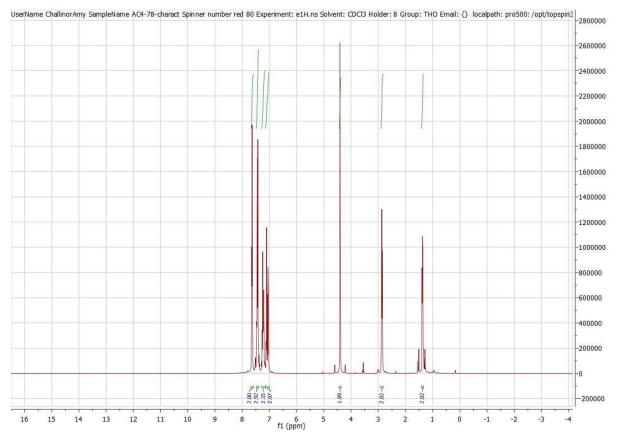


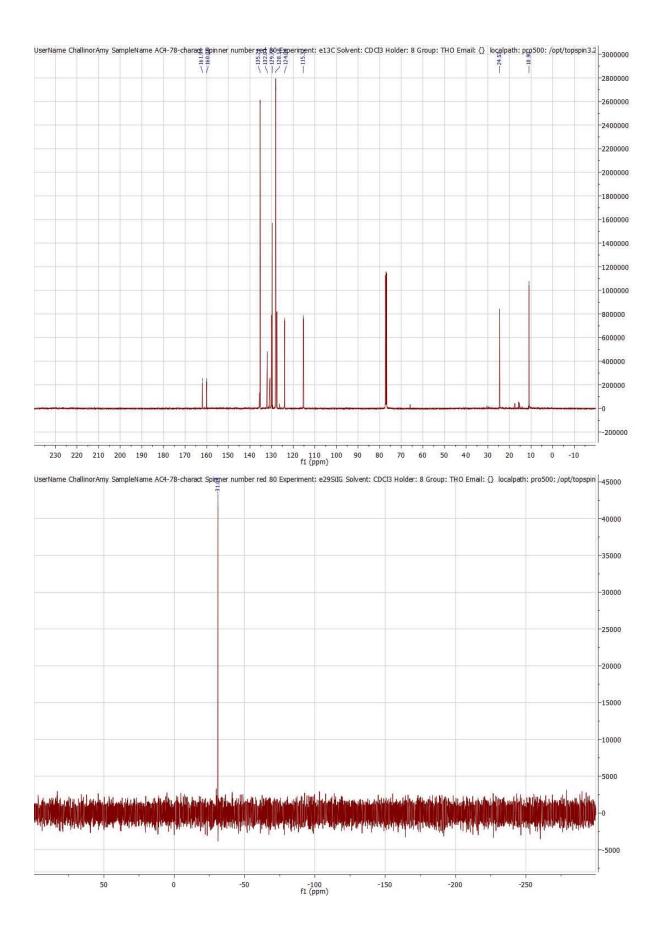
(4-Methoxyphenethyl)(phenyl)silane (2i)

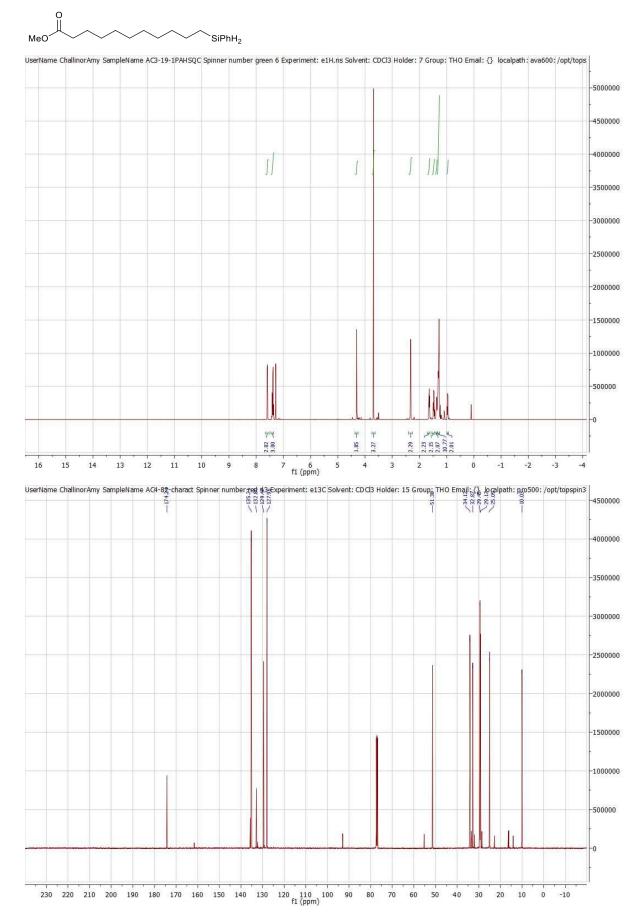



S93

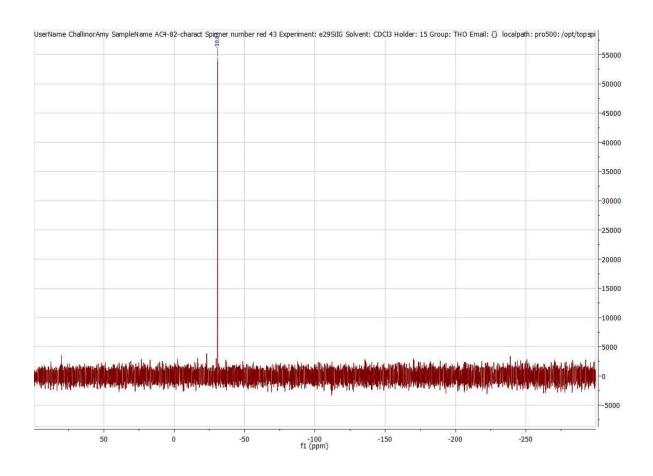

(1,3,5-Trimethylphenethyl)(phenyl)silane (2j)

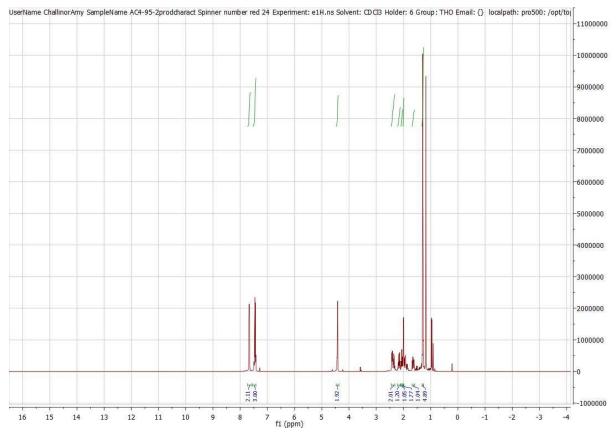


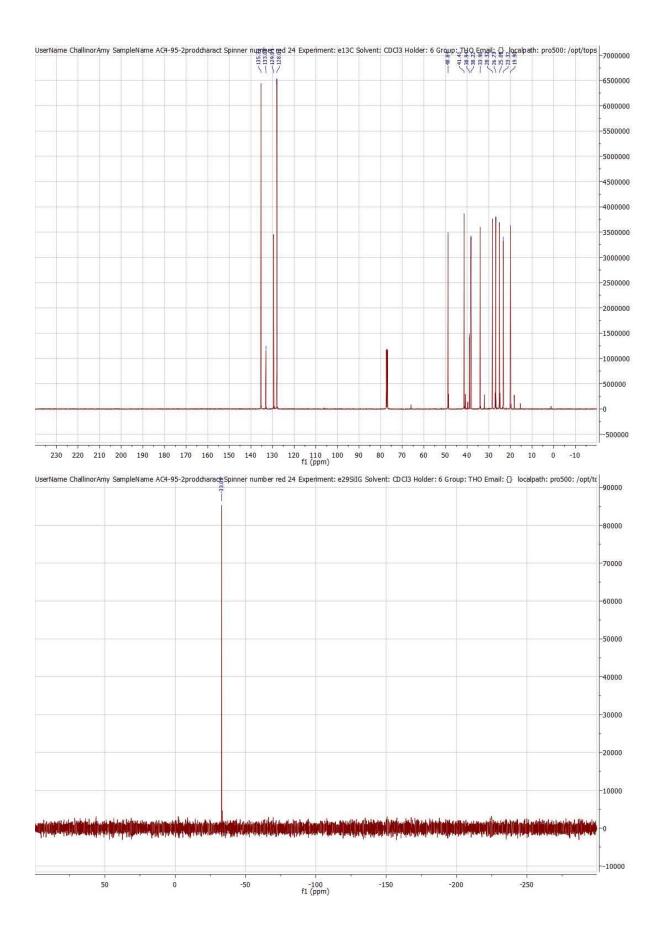

					-650000
				_	-600000
					 -550000
					 -50000
1	1	1	1	1	1
	1				-45000 -
				_	 -40000
					-35000
				_	-30000
					 -25000
					 -20000
					 -1500
				_	 -10000
	1	_			-50000
					-0
2.00 ¥ 3.04 ∔	2.01	- 193	2.16 -⊭ 9.53 -⊭	2.16 . ⊭	-
3.04	2.01	1.93	2.16	2.16	-500



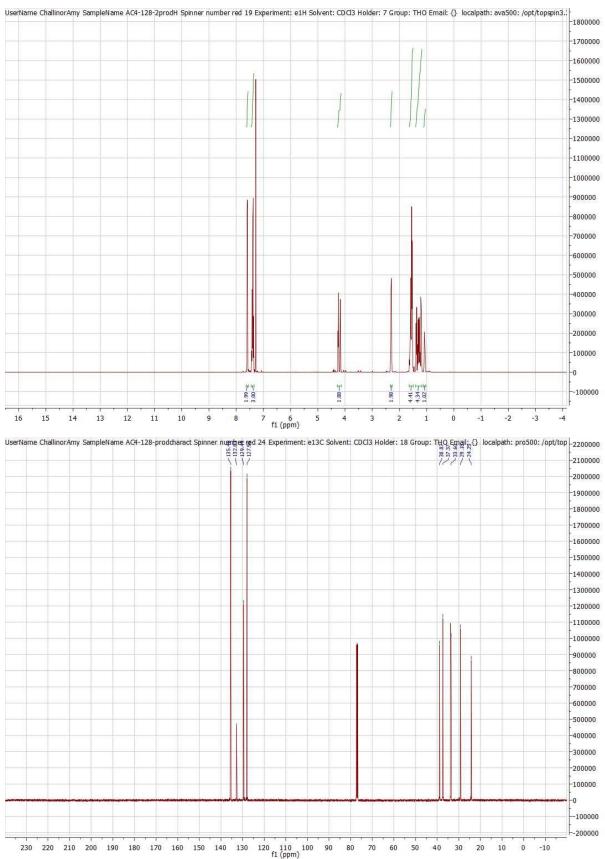
1-(2-Fluorophenyl)-2-(phenylsilyl)ethane (2k)

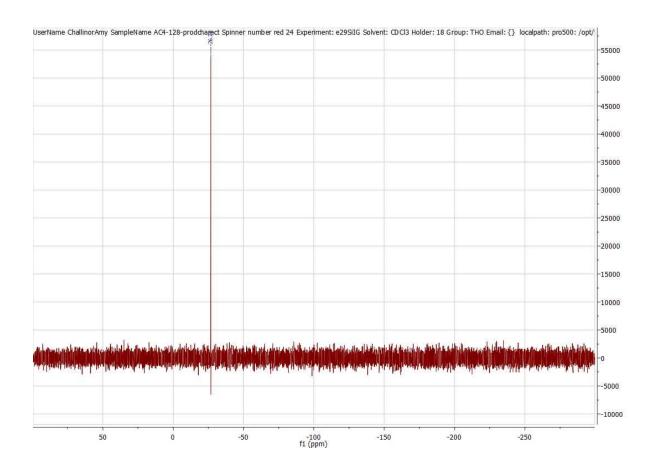


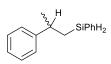



Methyl ester 11-(phenylsilyl)-undecanoic acid (2l)

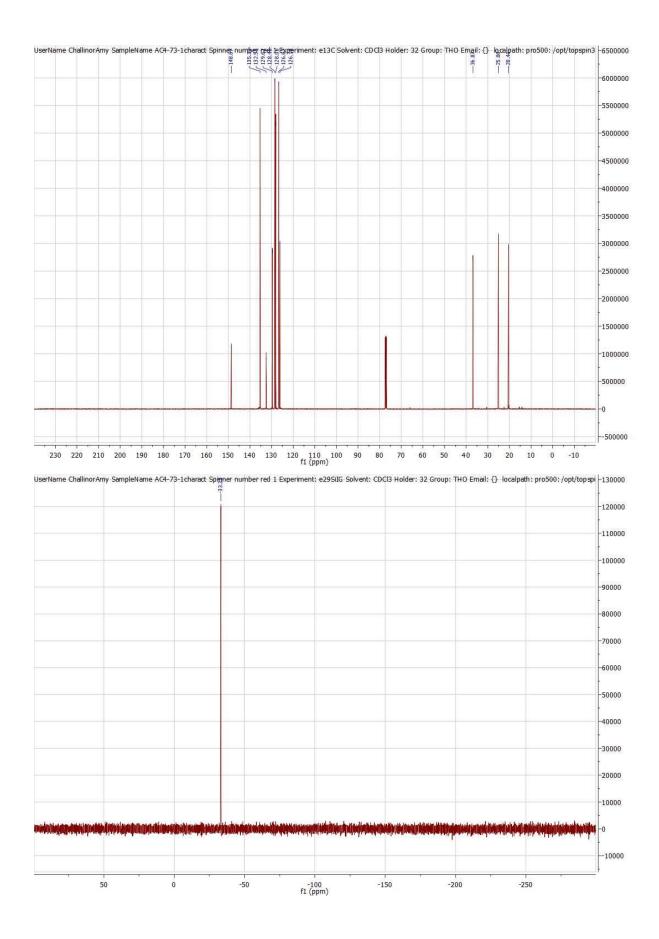
Phenyl-(10-pinanyl)-silane (2m)

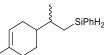





exo-2-(Phenylsilyl)bicyclo[2.2.l]heptane (2n)

ZsiPhH₂




1-(Phenylsilyl)-2-phenylpropane (20)

UserName ChallinorAmy SampleName AC4-73-1 charact Spinner number red 1 Experiment: e1H.ns Solvent: CDCl3 Holder: 32 Group: THO Email: {} localpath: pro500: /opt/topspir -18000000 -17000000 -16000000 -15000000 11 -14000000 -13000000 -12000000 -11000000 -10000000 9000000 -8000000 -7000000 6000000 -5000000 4000000 -3000000 -2000000 -1000000 -0 2.00 3.18 3.09 1.92 -5.48 ± 1.04 ---1000000 7 6 f1 (ppm) 3 16 15 14 13 12 11 10 9 8 5 4 2 1 0 -1 -2 -3 -4

(4*R*)-1-Methyl-4-[(1*R*,*S*)-1-methyl-2-(phenylsilyl)ethyl]-cyclohex-1-ene (2p)

16

15

14

13

12

11 10

 UserName ChallmorAmy SampleName ACG-83-1proton Spinner number red 115 Experiment: e1H Solvent: CDCI3 Holder: 14 Group: THO Email: Q. localpath: proS00: /opt/toppint
 3500000

 1
 1
 1
 1
 1
 1
 3000000

 2000000
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <td

8

9

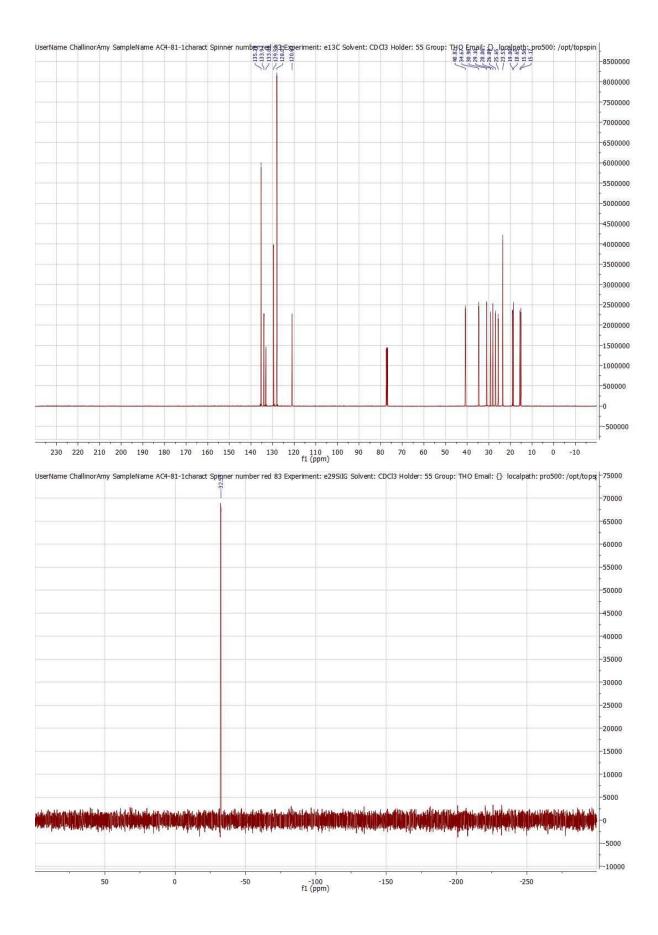
7 6 f1 (ppm) 5

3

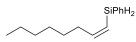
4

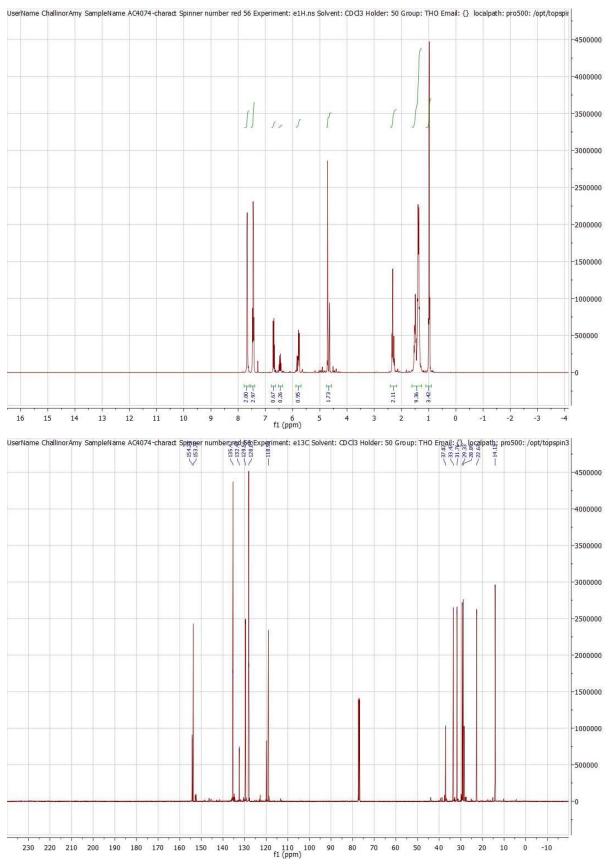
2

1


-1

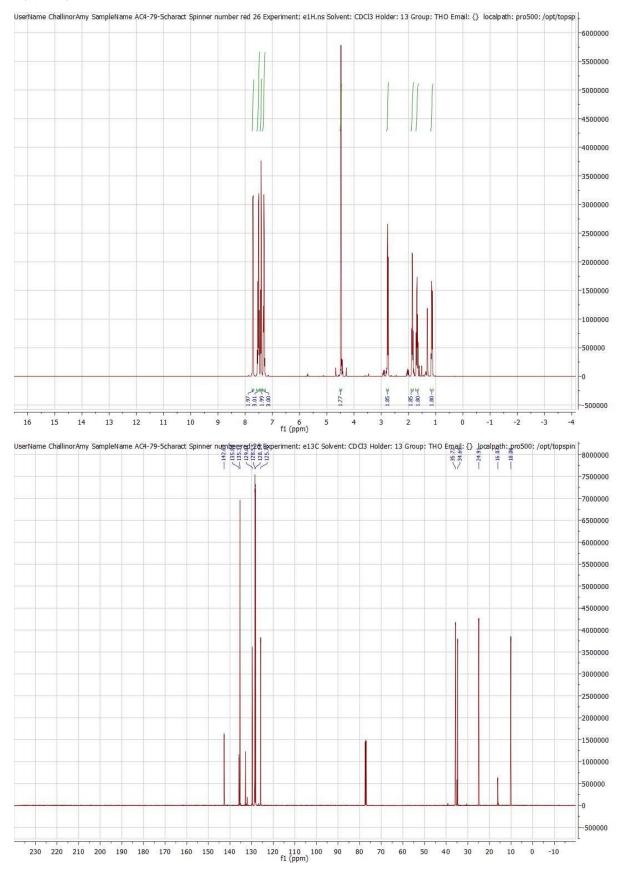
0

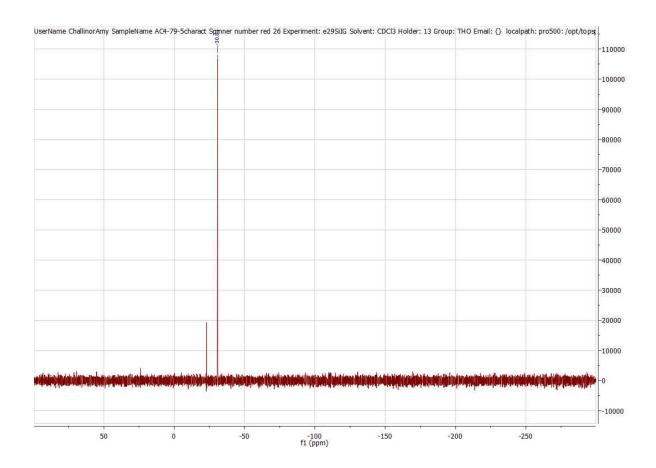

-2


-3

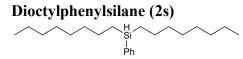
-4

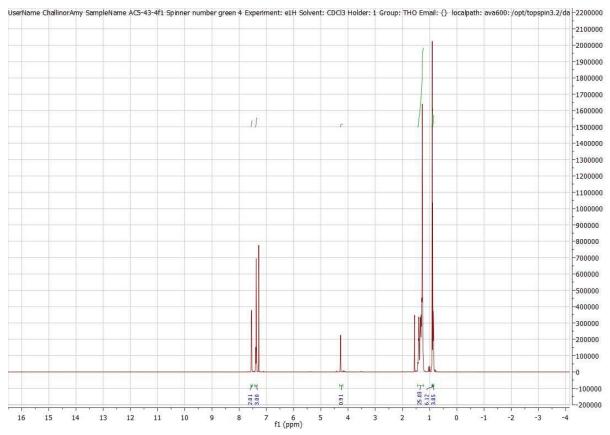
cis-1-Octen-1-ylsilylbenzene (2q)

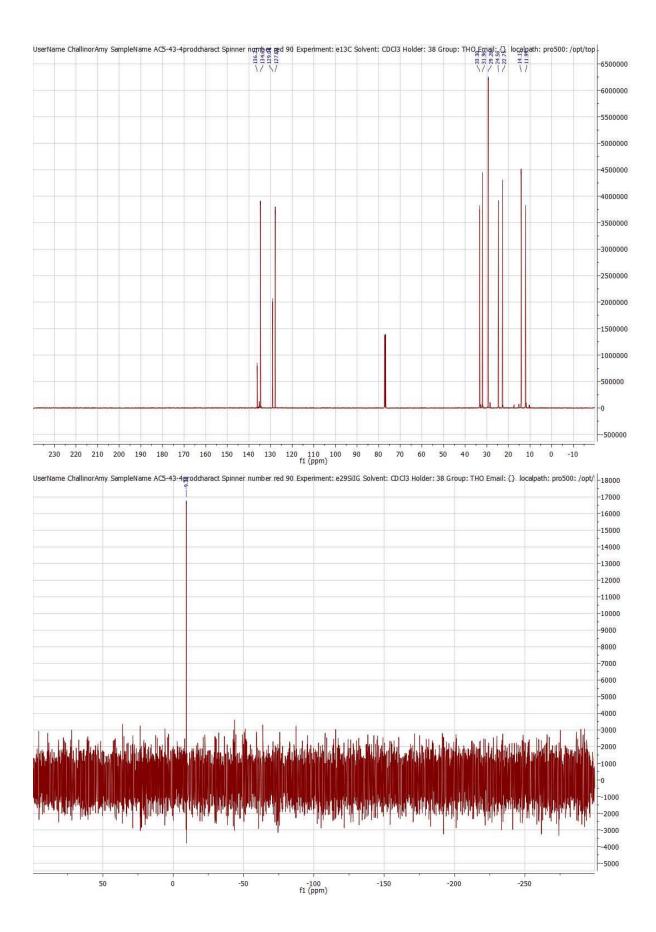


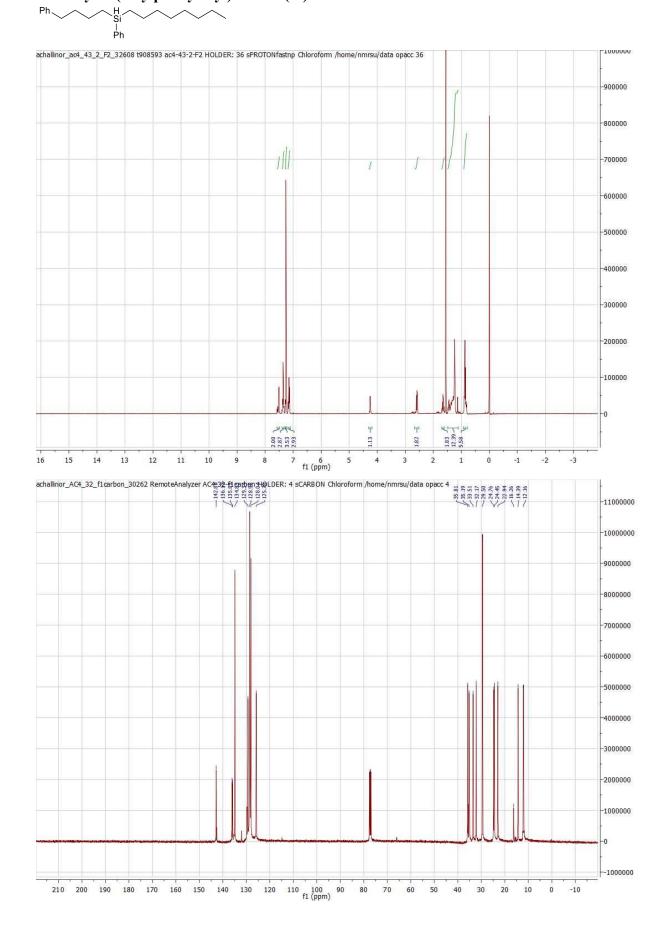


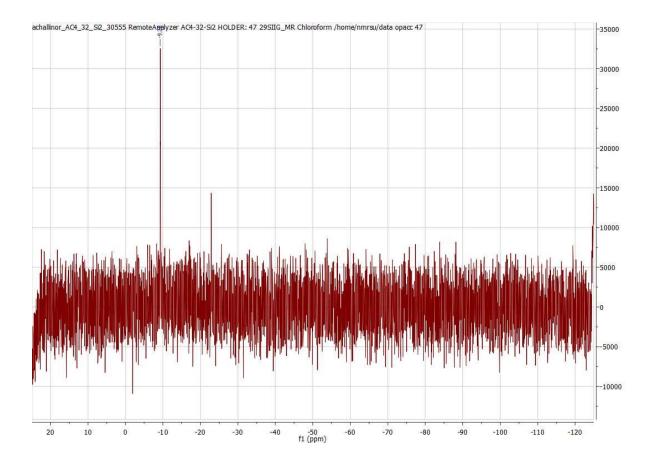
		5				6
						-5
						-5
						-4
						-4
		_				
			to data di dalaman kirika seren	tha dia dia 140 dia 64 dia 44 dia Manjarah Propositi ang	the second of the state of the second se	
ALLER AND	Linger and the second second second	and the second	وحطيان فقطا بلغي فللملك بعين الدغابة	aller and a state of the state of	مبار الدير فاطرا وللملحد ووالالما فالمسموه	affe fatelfäriffeten forsat

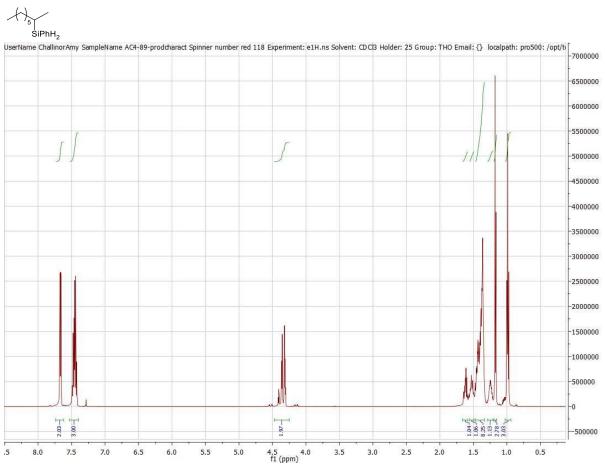

Phenyl[(*E*)-1-propyl-1-pentenyl]silane (2r)

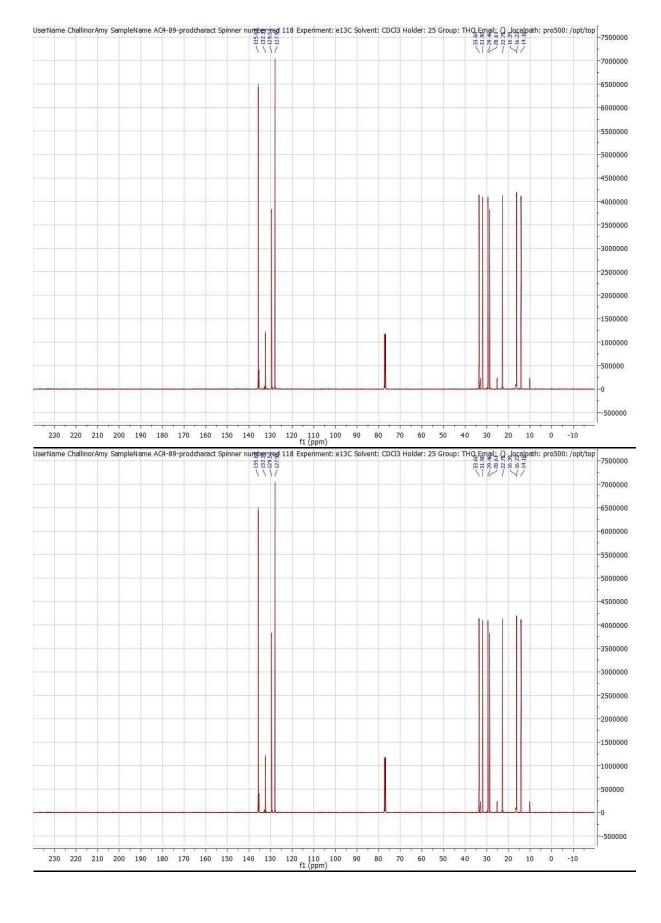

 $\overset{\mathsf{H}}{\underset{\mathsf{C}_3\mathsf{H}_7}{\overset{\mathsf{SiPhH}_2}{\overset{\mathsf{C}_3\mathsf{H}_7}}}}$

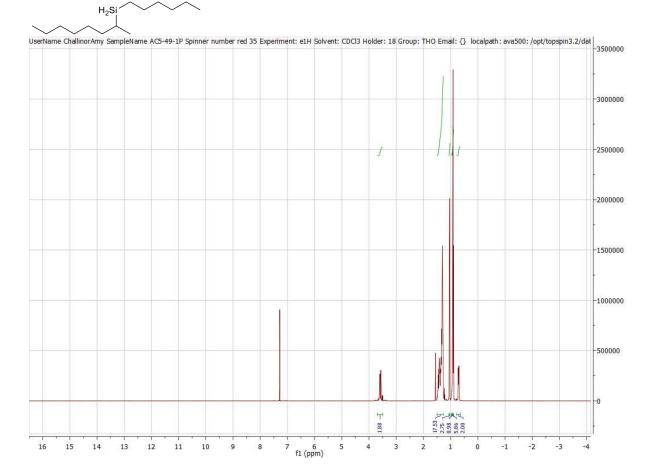


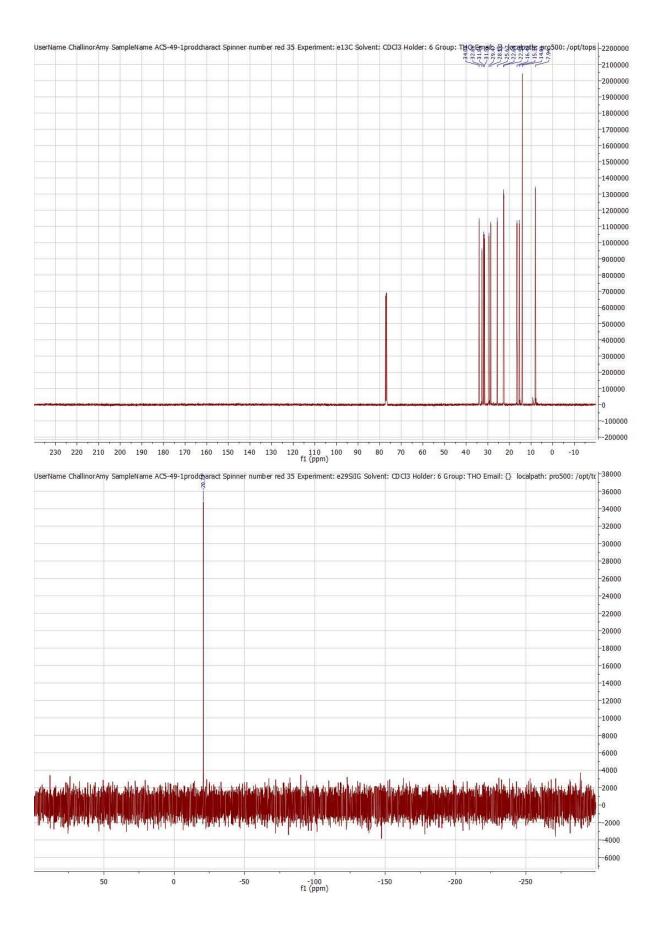

Tertiary Silane Products

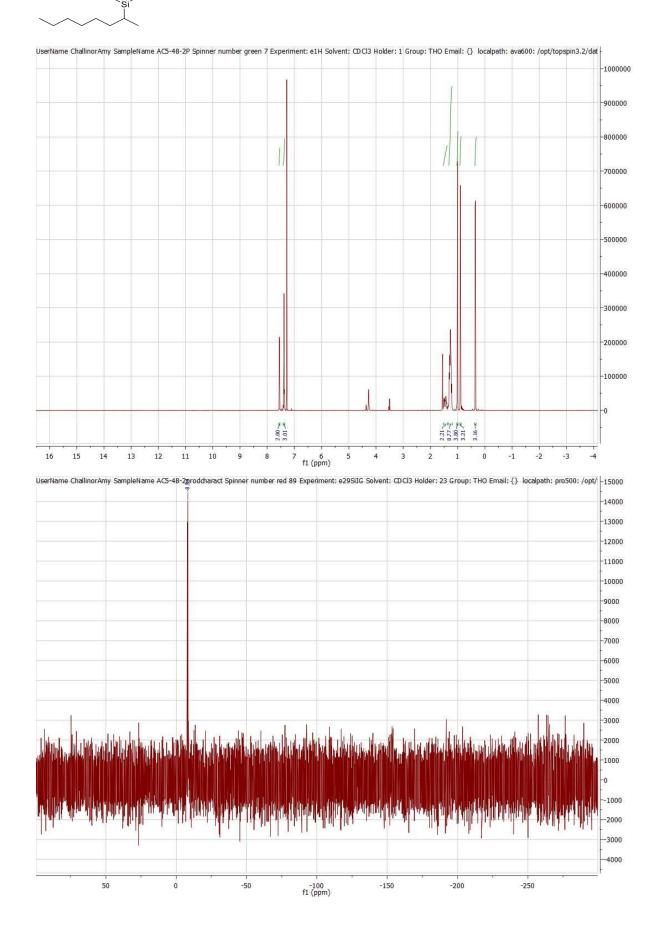




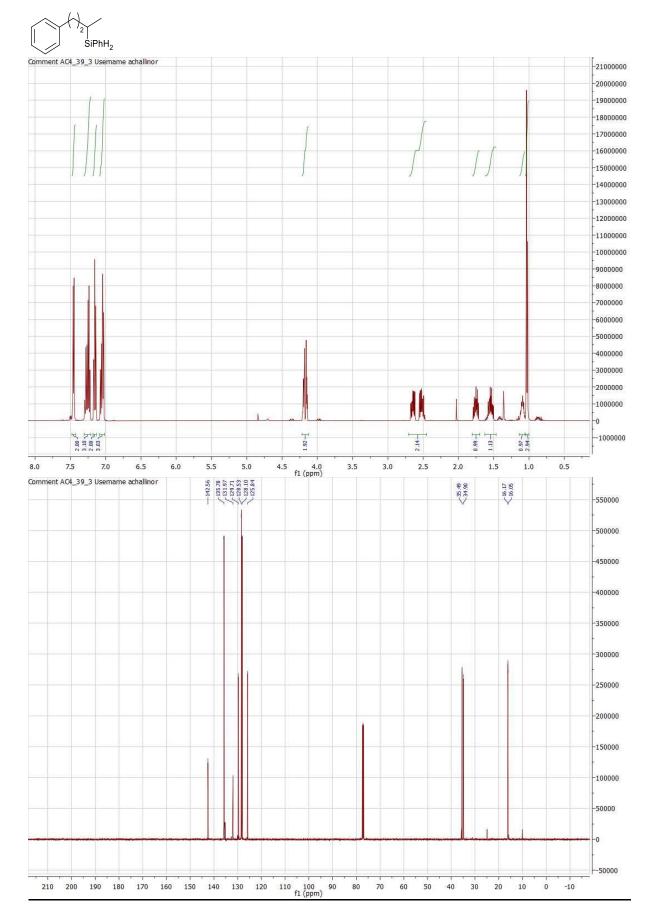

1-Phenyl-4-(octylphenylsilyl)butane (2t)



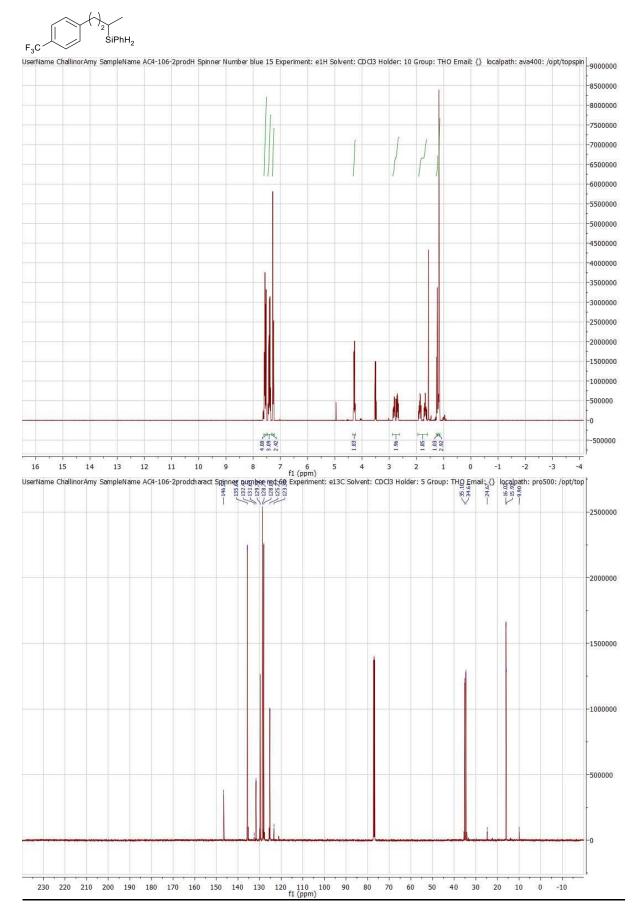

<u>Cobalt-Catalysed</u> Octan-2-yl(phenyl)silane (3a)

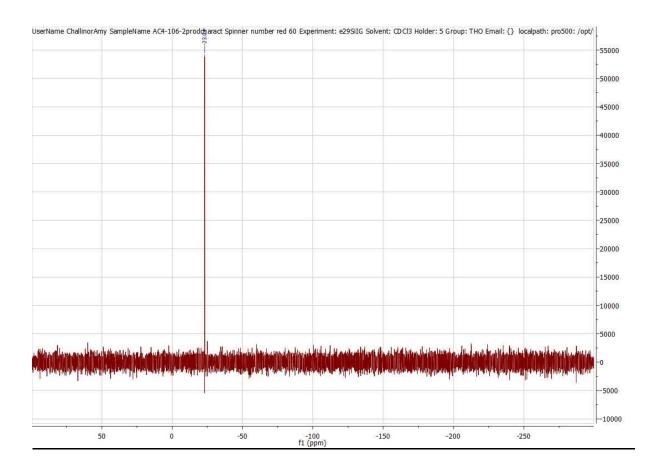


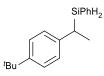
2-(Hexylsilyl)octane (3b)

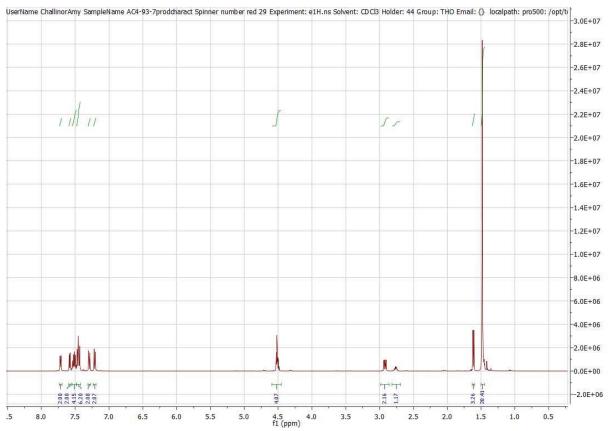


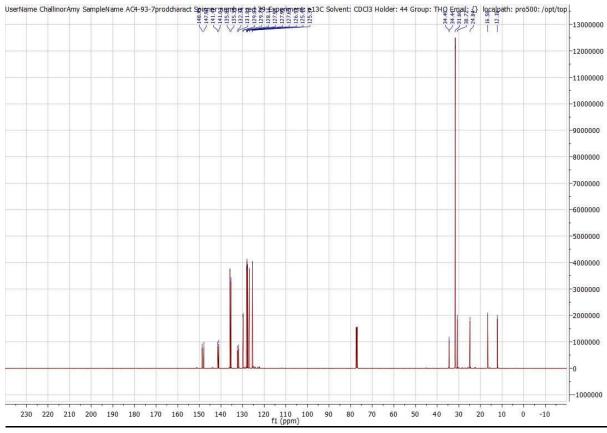
Octan-2-yl(methylphenyl)silane (3c) Ph_{Si}

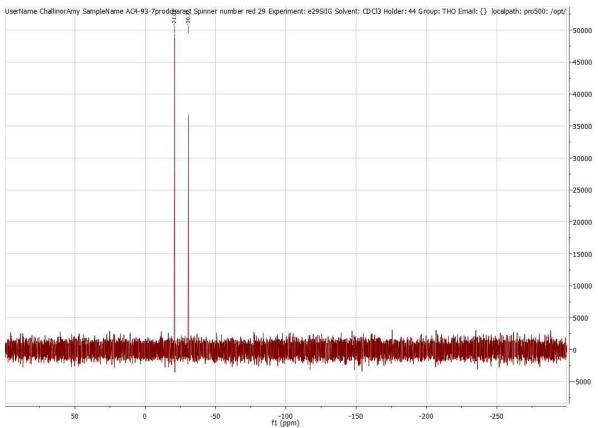



(4-Phenylbut-2-yl)silylbenzene (3d)

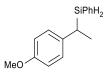

										-80
										-7
										-6
										-6
										-0
										-5
										-5
										-4
										-4
										-3
										-
										-3
										-2
										-2
										-1
										-1
										-5
Heather that he	And Annual A	والتركير الاحتماد التداري	di hundat p	alight all with any filmer	(decil) beight	alidade bait billionan	and the line of th	the dealed and belleville		
	and the second	Louis and History And	and Jakenson	In State Of Long Street	link description of the line	and an distribution of the	Addition and the second second	And and the second day is not	and a start allow the lade on	dentat a
										-

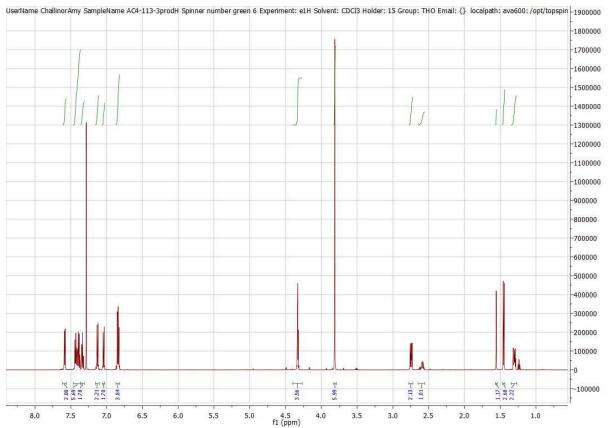

1-Trifluoromethyl-4-(3-silylbenzenebutane)benzene (3e)

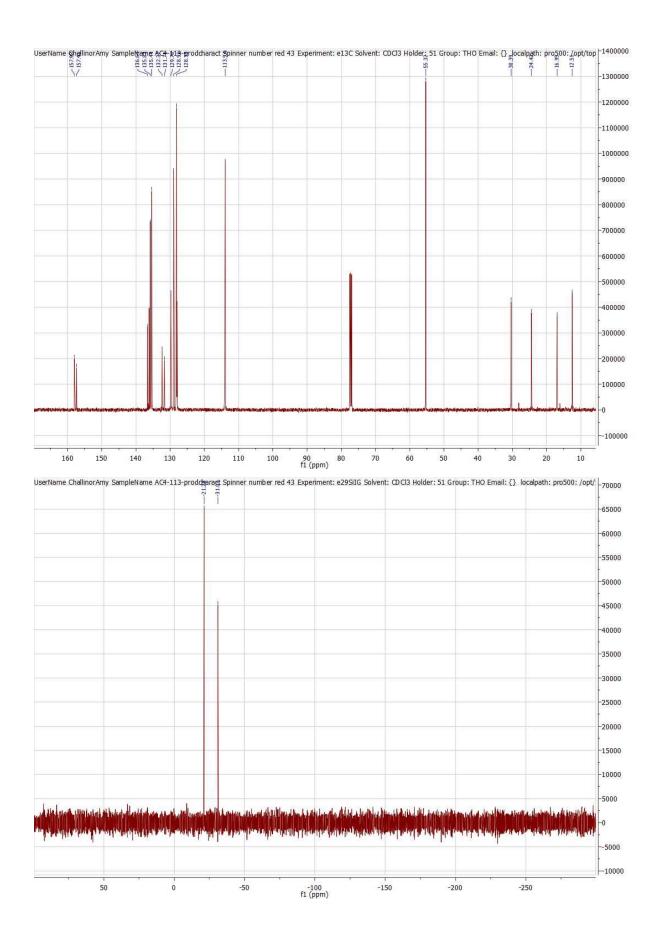




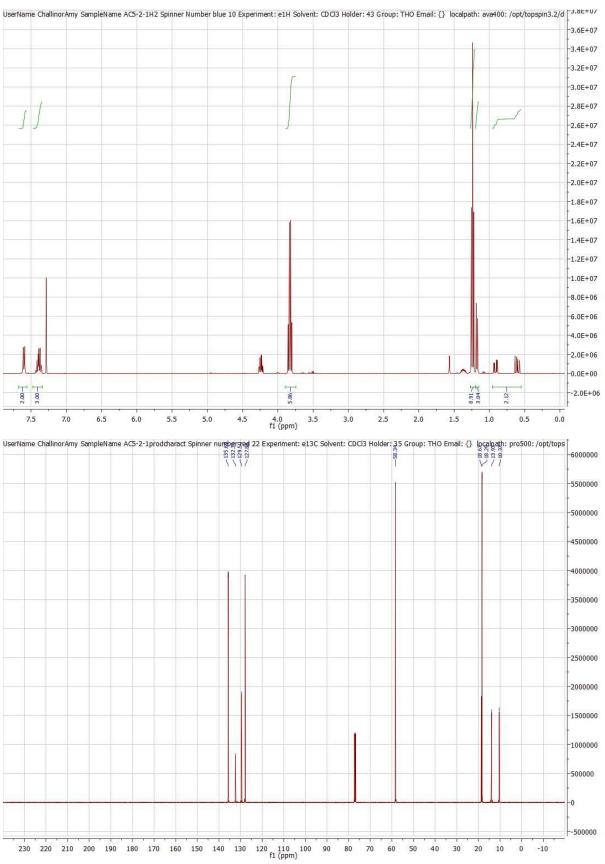
1-(4-*tert*butylphenyl)-1-(phenylsilyl)ethane (3f)



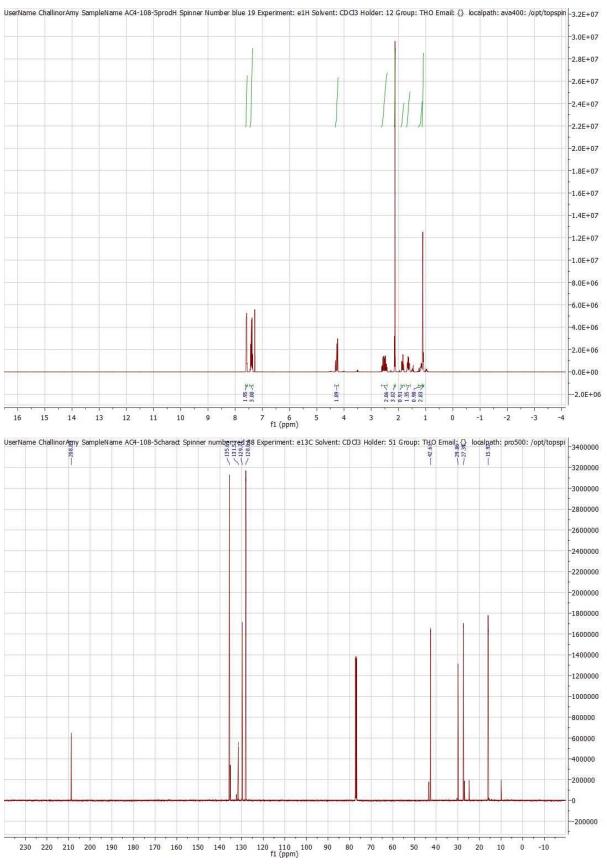


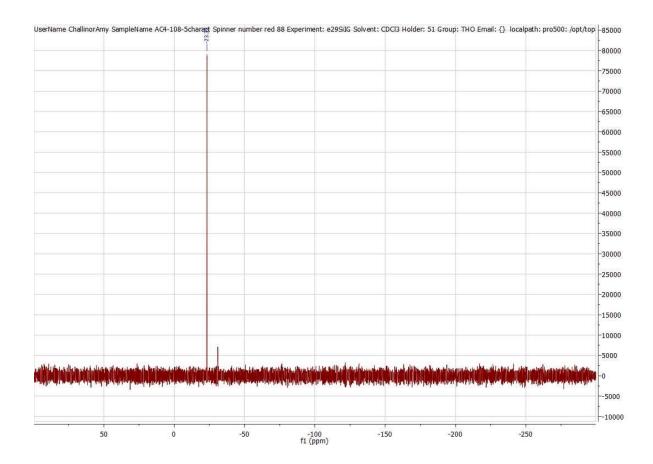


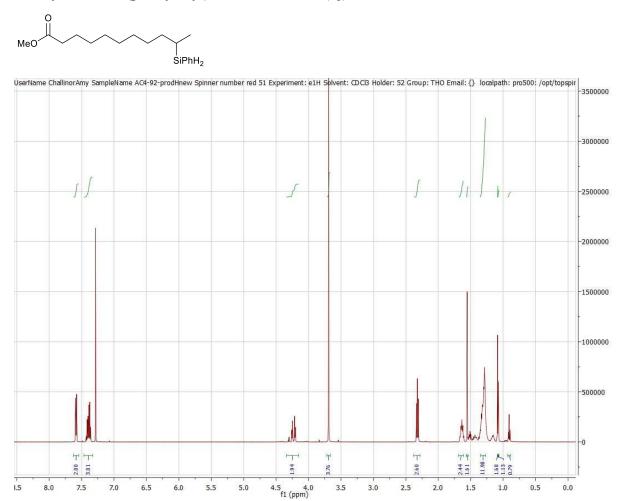
1-Methoxy-4-[1-(phenylsilyl)ethyl]-benzene (3g)

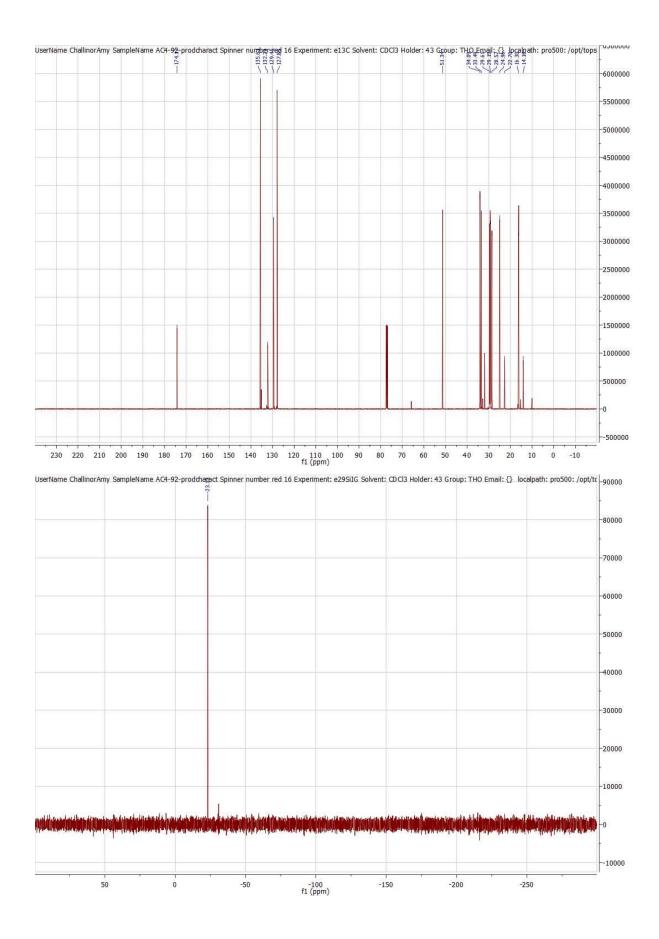


(3-Triethoxysilyl-2-benzylsilyl)propane (3h)

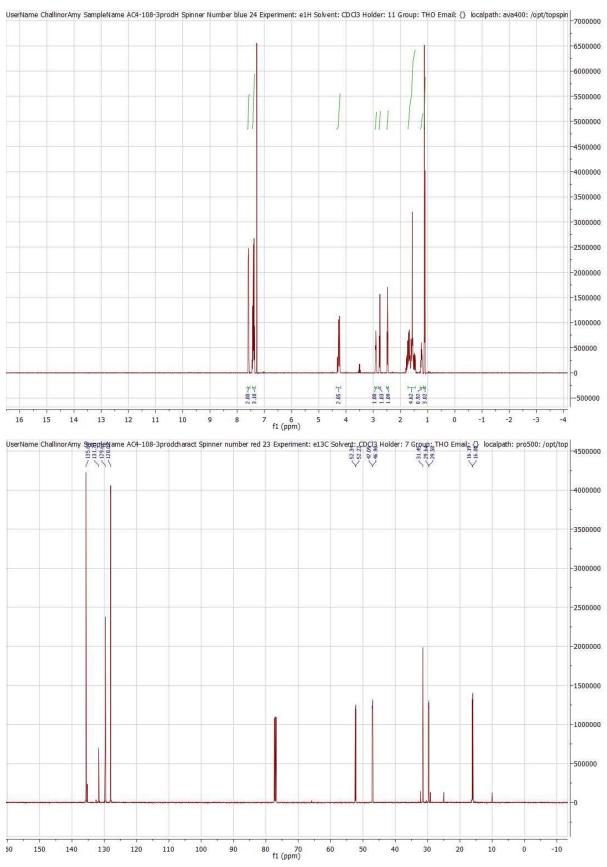



rName ChallinorAmy Sar		6	46						200
		1	1						-19
									-180
									+
									-170
									-16
		_							-150
			-						-14
			_						-13
									-12
									-11
									+
									-10
									-90
					_				-80
		-			_				-70
		_			_				-60
									-50
									40
									-30
									-
									-20
			C. L.C.						-10
and de Dei Heilijferen er finde				Nivelan Indexe				i na katala da katala kata	-0
	~~								1
									21
50	, ,	19	-50	-10 f1 (pj	 -150	-200	(C)	-250	

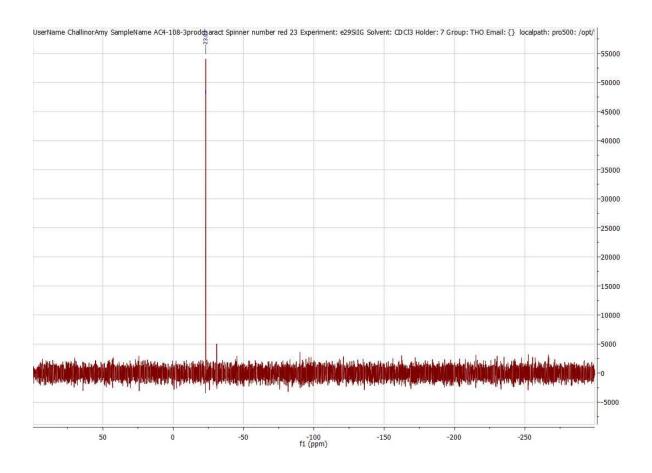

5-(Phenylsilyl)-2-hexanone (3i)



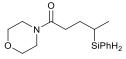
S132

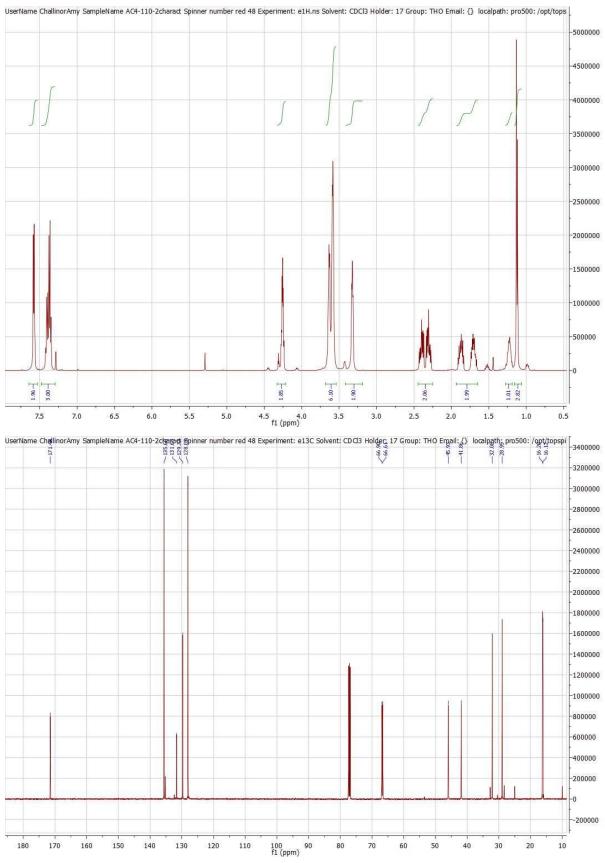


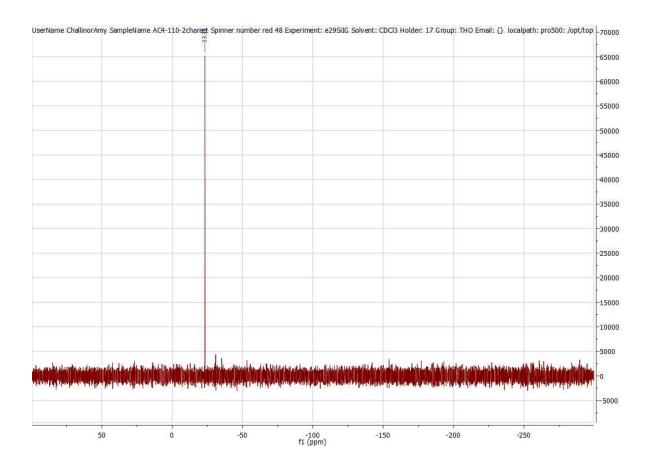
Methyl ester 10-(phenylsilyl)undecanoic acid (3j)



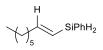
1,2-Epoxy-(5-phenylsilyl)hexane (3k)

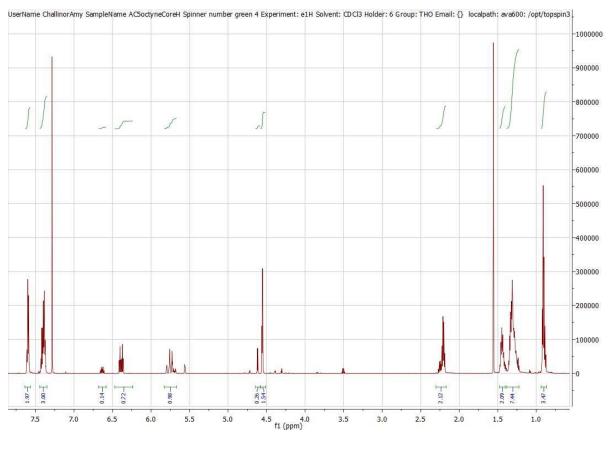






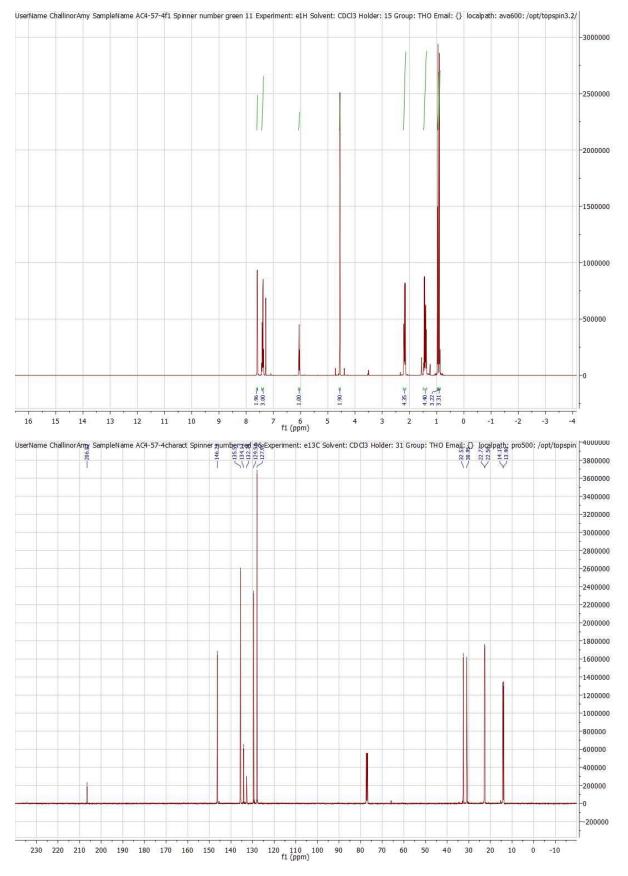
1-(4-Morpholinyl)-4-(phenylsilyl)pentan-1-one (3l)

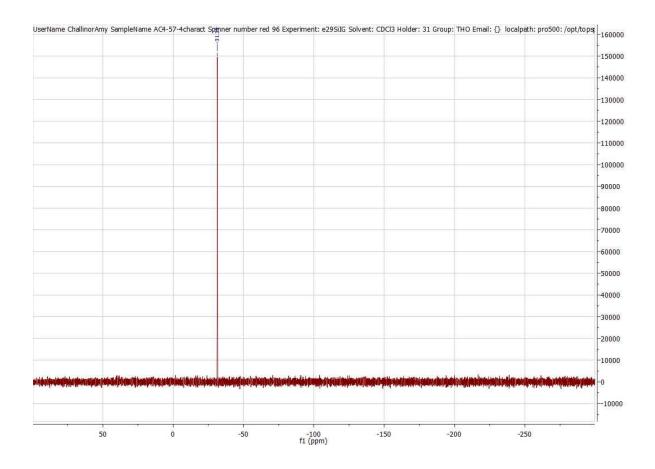




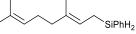


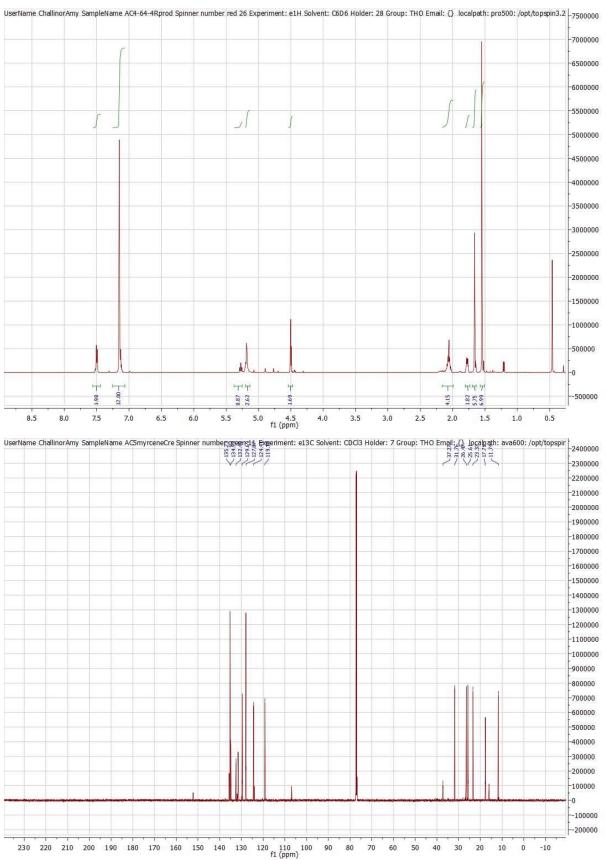
trans-1-Octen-1-ylsilylbenzene (3m)

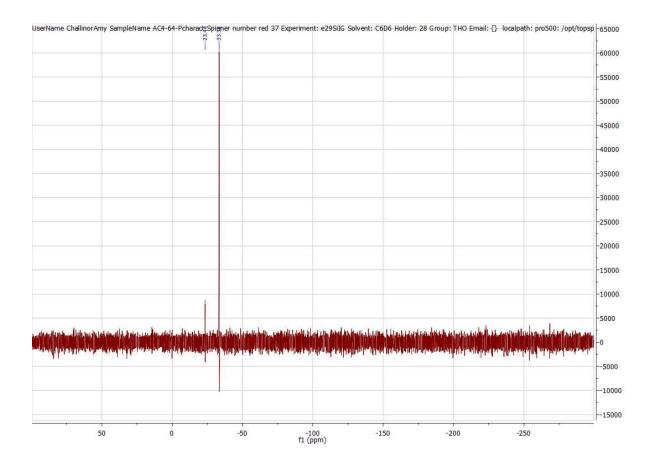


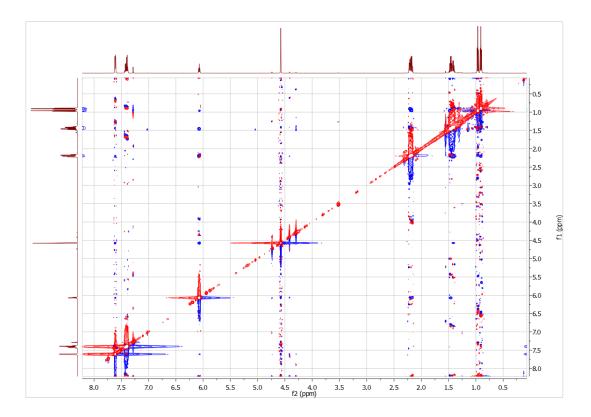

-90000 -80000 -70000 -60000 -50000 -40000 -30000 -20000 -10000 white has been a in the -0 -10000 50 0 -50 -100 f1 (ppm) -150 -200 -250

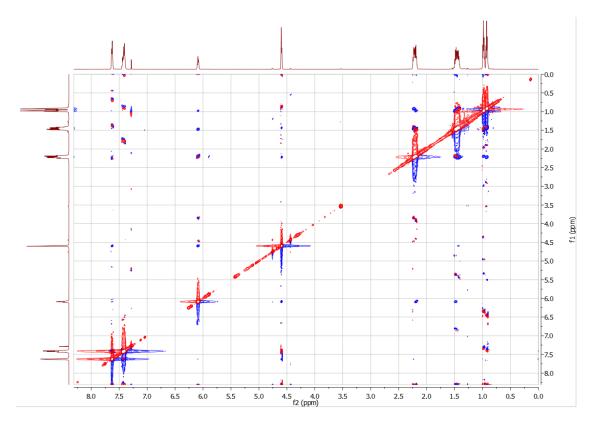
Phenyl[(*E*)-1-propyl-1-pentenyl]silane (3n)


 $\overset{\mathsf{H}}{\underset{\mathsf{C_3H_7}}{\overset{\mathsf{SiPhH_2}}{\longrightarrow}}} \overset{\mathsf{SiPhH_2}}{\underset{\mathsf{C_3H_7}}{\overset{\mathsf{N}}}}$

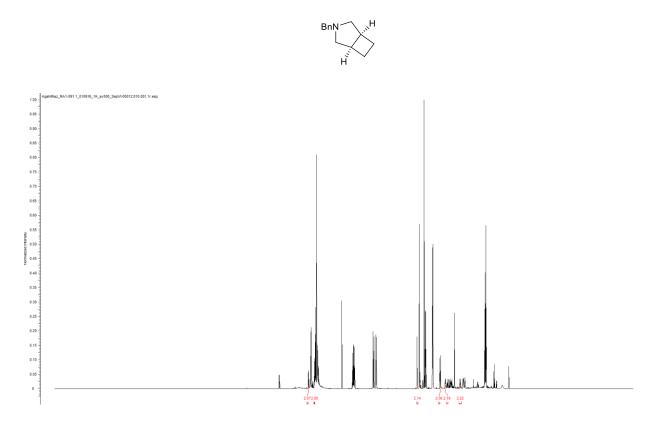



S142

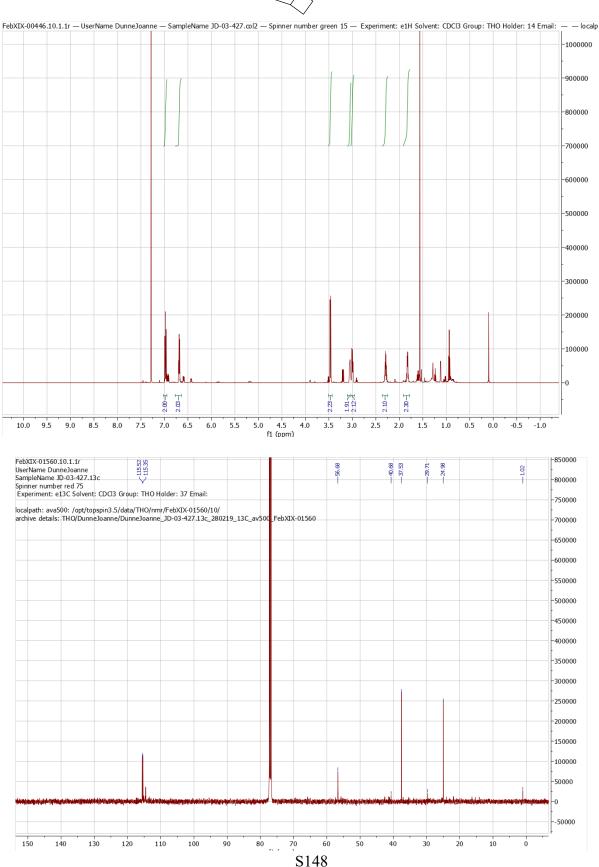

3,7-(Dimethyl)-1-[phenylsilane]octa-2,6-diene (30)

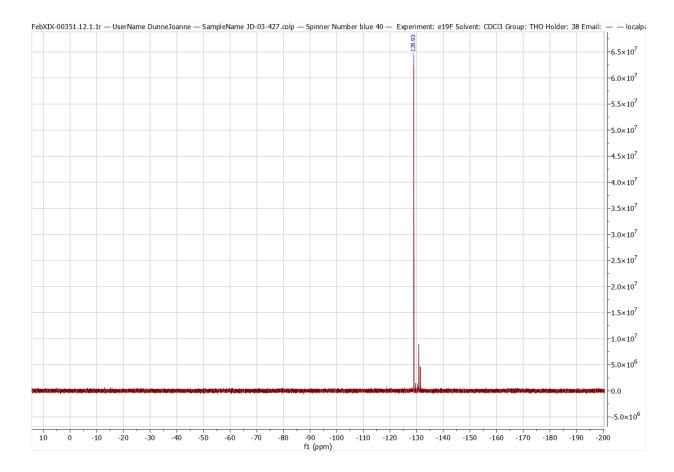


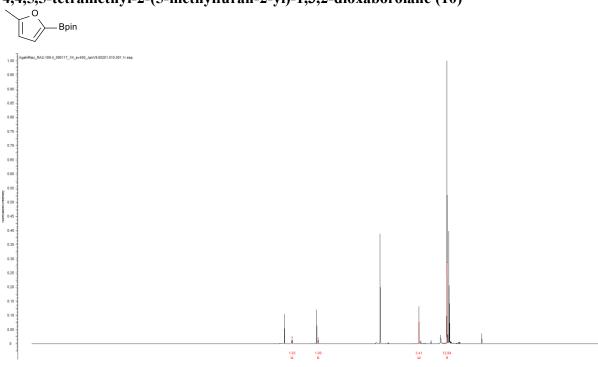
NMR Spectra for all novel synthesised compounds are below



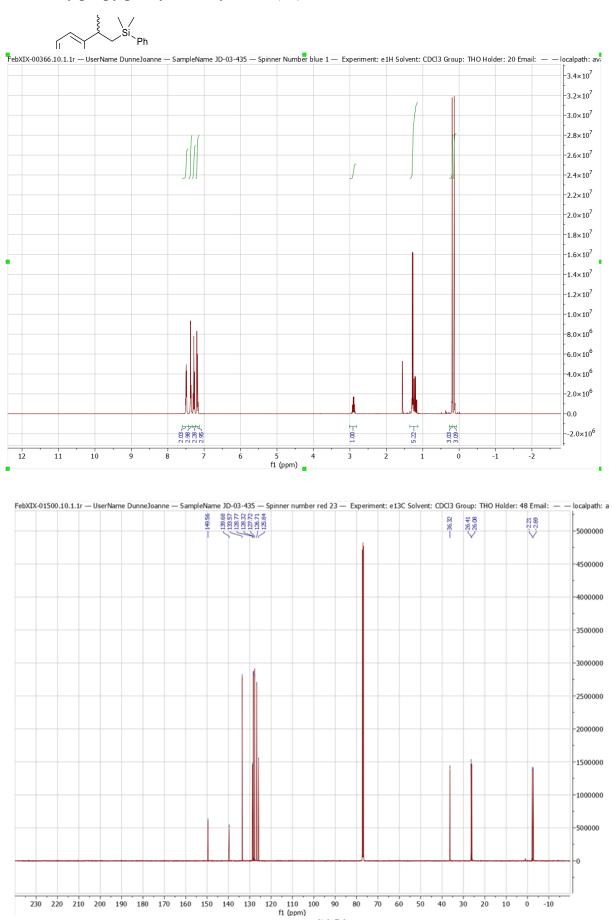
NOESY for 4-octyne product. With Fe

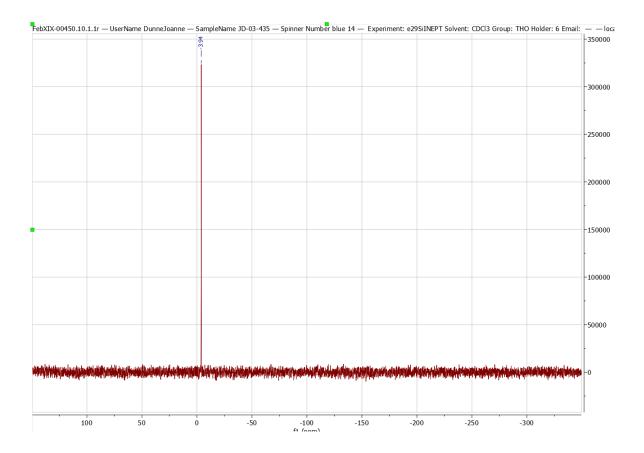

NOSEY for 4-octyne with Co


N-Benzyl-3-azabicyclo[0.2.3]heptane (8a)

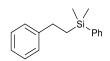


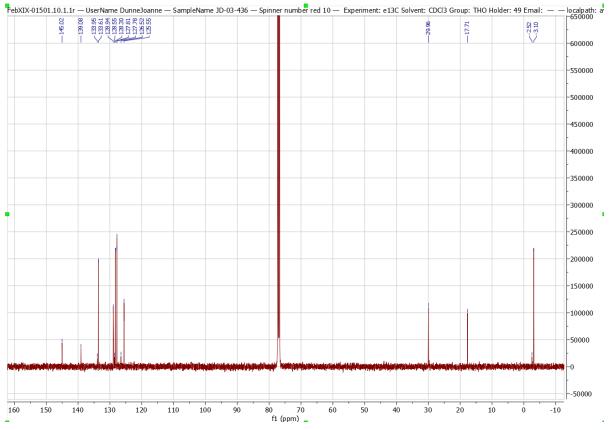
N-4-fluorophenyl-3-azabicyclo[0.2.3]heptane (8b)

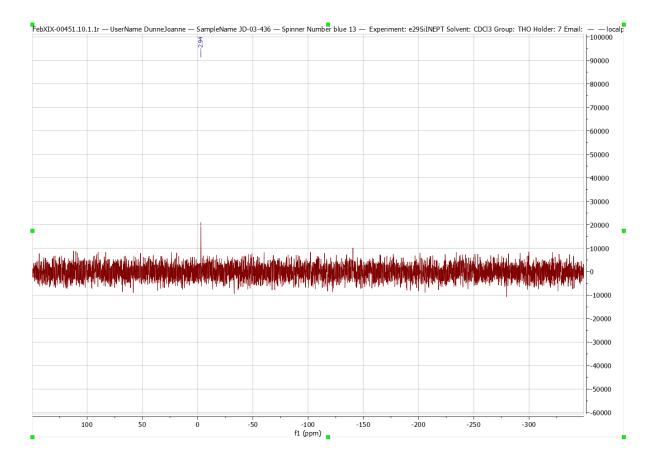


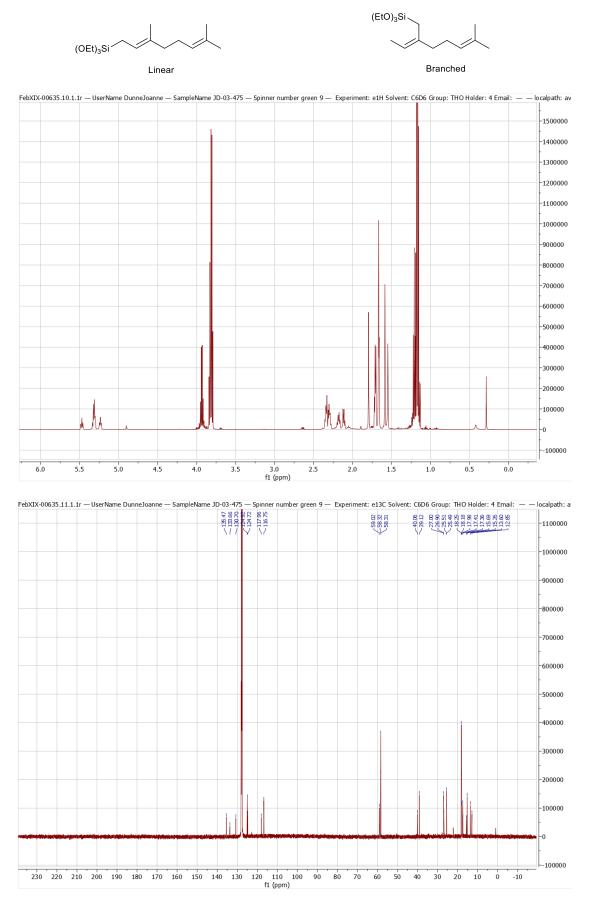


4,4,5,5-tetramethyl-2-(5-methylfuran-2-yl)-1,3,2-dioxaborolane (10)


2-Phenylpropylphenyldimethylsilane (2u)


S151


Dimethylphenyl(2-phenylethyl)silane (2v)


FebXIX-00367.10.1.1r — UserName DunneJoanne — SampleName JD-03-436 — Spinner Number blue 5 — Experiment: e1H Solvent: CDCl3 Group: THO Holder: 21 Email: — — localpath: av. -10000000 9000000 -8000000 7000000 6000000 5000000 4000000 3000000 -2000000 -1000000 0 8888 8874 2.00 2.37 I 5.92-1 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 fl (ppm) 0.5 0.0 -0.5 -1.0

(E)-(3,7-dimethylocta-2,6-dien-1-yl)triethoxysilane and (E)-(2-ethylidene-6-methylhept-5enyl)triethoxysilane (2w)

