

**Figure S1. Confirmation of the integrity of the captured** *spz* **BGC**, **related to Figures 1** and **2** and **Table 1. A.** Restriction digest of pSMM before and after transformation in *E. coli* using KpnI and KpnI + SpeI enzymes. KpnI digest, expected sizes (kb) = 23.9, 11.1, 8.2, 4.9, 4.1, 2.7, 1.9, 1.5, 1.1, 1.0, 0.5. KpnI + SpeI digest, expected sizes (kb) = 22.9, 8.9, 8.2, 4.9, 4.1, 2.7, 2.1, 1.9, 1.5, 1.1, 1.0, 0.5. **B.** Restriction digest of pKDB01, expected sizes (kb): 18.0, 13.7, 8.3, 4.9, 2.0, 1.6, and pKDB02, expected sizes (kb): 17.0, 13.3, 8.3, 4.9, 2.0, 1.5, with EcoRI + Stul.\* indicates digest is blocked due to overlapping *dcm* methylation. Std – sequenced plasmid digested with EcoRI + Stul, used as a control, expected sizes (kb) = 10.3, 3.2, 1.3. Plasmid backbone represented by blue rectangle.



Figure S2. Engineering the *spz* BGC, related to Figures 2 and 3. A. Agarose gels of restriction digestions and corresponding maps of regulatory gene mutant plasmids. Enzyme pair Xhol + Ndel used for digestion. pKDB01 $\triangle$ *spz*3, expected sizes (kb): 10.6, 10.5, 8.7, 8.6, 3.2, 3.1, 1.9, 1.0, 0.1. pKDB02 $\triangle$ *spz*3, expected sizes (kb): 10.6, 10.5, 8.7, 8.6, 3.2, 2.1, 1.9, 1.0, 0.1. pKDB01-*ermE\*p-spz*24, expected sizes (kb): 11.7, 10.5, 8.7, 5.2, 3.4, 3.2, 3.1, 1.9, 0.9, 0.2, 0.1. **B.** Restriction digest with Xhol + Ndel of refactored plasmids, agarose gel and corresponding plasmid map showing restriction sites: pKDB03, expected sizes (kb): 11.7, 10.5, 8.7, 7.6, 3.2, 3.1, 1.9, 1.1, 0.1; pKDB04, expected sizes (kb): 11.7, 10.5, 8.6, 7.5, 3.2, 3.1, 1.9, 1.1, 0.7, 0.3, 0.2, 0.1; pKDB05, expected sizes (kb): 10.9, 10.5, 8.7, 7.5, 3.2, 3.1, 1.9, 1.1, 0.9, 0.9 0.7, 0.3, 0.3, 0.1. Plasmid backbone represented by blue rectangle.



**Figure S3. Comparative production of streptophenazines by the refactored** *spz* **BGC, related to Figures 2,3, and 4. A.** Streptophenazine metabolite cluster of nodes from the molecular network including MS/MS data of extracts of M1146-pKDB03, - pKDB04, and -pKDB05. Nodes are labeled with the corresponding precursor ion mass. **B.** Extracted ion chromatograms (*m*/*z* 411.2, 425.2, 439.2, 510.2), corresponding to isolated compounds in refactored pathway: (i) M1146-pKDB01 (ii) M1146-pKDB03 (iii) M1146-pKDB04, and (iv) M1146-pKDB05.



**Figure S4. Molecular network showing production of streptophenazines, related to Figure 4.** LCMS/MS data of ethyl acetate extracts from CNB-091, M1146-pCAP03, M1146-pKDB01 (non-refactored *spz* BGC) and M1146-pKDB03 (refactored *spz* BGC) were used for network generation. Nodes corresponding to streptophenazines highlighted in red square.



В

| Spz7_KR  | ···-DVYWAHLPDTVTPVEEILAA <mark>LDD</mark> LVRAGKILHAGLSNFPAWRV-···   |
|----------|----------------------------------------------------------------------|
| Ery1_KR  | ···LGGIGDDVPLSAVFHAAAT <mark>LDD</mark> GT-VDTLTGERIERASRAKVL···     |
| SlnA1_KR | ···LLDRIPEAHPLTGVFHAAGV <mark>LDD</mark> GM-VGALSAERLDAVLRPKTD····   |
| RifA_KR  | ···LEAVLRAIPAEHPLTAVIHTAGV <mark>LDD</mark> GV-VTELTPDRLATVRRPKVD··· |
| AmphJ_KR | ···LLASVPAEHPLTAVVHTAGV <mark>LDD</mark> GI-FPSLTPDRLDSVMRPKVD···    |
| TlmH_KR  | ···VLAQIRSRGPIGGVVHAAGL <mark>LDD</mark> SI-LANMTPEQLHRVLRSKVD···    |

**Figure S5. Confirmation of stereochemistry at C-1' position of compound 18, related to Figure 1**. **A.** Circular dichroism (CD) spectrum of streptophenazine G (**18**). **B.** Alignment of type I PKS KR domains and Spz7. Amino acid residues (LDD motif) defining Spz7 as type B KR are highlighted. Ery1 = erythromycin, SlnA1 = salinomycin, RifA = rifamycin, AmphJ = amphotericin, TImH = thiolactomycin.

Α

## A

Sequence search results <u>Show</u> the detailed description of this results page. We found 2 Pfam-A matches to your search sequence (all significant)

Show the search options and sequence that you submitted.

Return to the search form to look for Pfam domains on a new sequence



AMP-binding

Figure S6. Bioinformatic analysis and gene deletion of *spz*15, related to Figures 5 and 6. A. Protein family (Pfam) analysis of Spz15. Identified CL00378 AMP-binding domain which is characteristic for ANL superfamily of enzymes that includes adenylation domains. B. Restriction digest of pKDB03 $\Delta$ *spz*15 with Xhol and Ndel restriction enzymes. Expected sizes (kb): 11.7, 10.5, 7.5, 5.6, 3.2, 3.1, 2.3, 1.9, 1.1, 0.1. C. LCMS chromatograms: (i) Base Peak Chromatogram (BPC) of M1146-pKDB03 $\Delta$ *spz*15 \**zoomed out 100x,* (ii) Extracted Ion Chromatogram (EIC) (*m*/*z* 510.2, corresponding to compounds 20 and 21) of M1146-pKDB03 $\Delta$ *spz*15, (iii) M1146-pKDB03 EIC (*m*/*z* 510.2), (iv) CNB-091 EIC (*m*/*z* 510.2), and (v) M1146-pCAP03 EIC (*m*/*z* 510.2).



Figure S7. antiSMASH predicted gene neighborhoods of *phz*-associated discrete adenylation proteins, related to Figure 5. Red gene = adenylation enzyme homolog found through blastp, orange genes = phenazine biosynthesis homologs. Spz15 = from *Streptomyces* sp. CNB-091, WP\_097877165.1 = from *Streptomyces* sp. ms184, WP\_086670704.1 = from *Streptomyces albovinaceus*, WP\_073774768.1 = from *Streptomyces* sp. TSRI0445, WP\_093779888.1 = from *Streptomyces* sp. yr375, WP\_078880735.1 = from *Kitasatospora purpeofusca*, WP\_063798176.1 = from *Streptomyces* sp. 150FB, WP\_030586976.1 = from *Streptomyces anulatus*, WP\_078871187.1 = from *Streptomyces caatingaensis*, WP\_075016162.1 = from *Streptomyces rubidus*, WP\_058941148.1 = from *Streptomyces kanasensis*. **Table S1, related to Figures 2, 3 and Method Details.** Promoter cassette sequences used for refactoring. Bold = restriction site, italic = added for scar, blue = FRT site, red = antibiotic resistance, green = promoter, purple = *actII-ORF4*.

| Cassette | Sequence                                                         |
|----------|------------------------------------------------------------------|
|          | CTCGAGGGTGAACCGATCTCCTCGTTAGGGTCACACCAGACTTTACAACACCGCACAGCATGT  |
|          | TGTCAAAGCAGAGACGGTTCGAATGTGAACAGCCACTATCATATG7GCAG77CGAAGTTCCTAT |
|          | TCTCTAGAAAGTATAGGAACTTCGGTTCATGTGCAGCTCCATCAGCAAAAGGGGATGATAAGTT |
|          | TATCACCACCGACTATTTGCAACAGTGCCGTTGATCGTGCTATGATCGACTGATGTCATCAGCG |
|          | GTGGAGTGCAATGTCGTGCAATACGAATGGCGAAAAGCCGAGCTCATCGGTCAGCTTCTCAAC  |
|          | CTTGGGGTTACCCCCGGCGGTGTGCTGCTGGTCCACAGCTCCTTCCGTAGCGTCCGGCCCCT   |
|          | CGAAGATGGGCCACTTGGACTGATCGAGGCCCTGCGTGCTGCGCTGGGTCCGGGAGGGA      |
|          |                                                                  |
|          |                                                                  |
| sp44–p21 |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          | CGGGATGCGAAGAATGCGATGCCGCTCGCCAGTCGATTGGCTGAGAAGTTCCTATTCTCTAGA  |
|          | AAGTATAGGAACTTCAAGCTTTGCTCGAGTGTGCGGGCTCTAACACGTCCTAGTATGGTAGGA  |
|          | TGAGCAATCTAGTCGAGCAACGGAGGTACGGACCATATG                          |
|          |                                                                  |
|          |                                                                  |
|          | TIGCAACAGTGCCGTTGATCGGCTATGATCGACTGATGGCGTGGGGGGGG               |
|          | GTGCAATACGAATGGCGAAAAGCCGAGCTCATCGGTCAGCTTCTCAACCTTGGGGTTACCCCC  |
|          | GCCGGTGTGCTGCTGGTCCACAGCTCCTTCCGTAGCGTCCGGCCCCTCGAAGATGGGCCACT   |
|          | TGGACTGATCGAGGCCCTGCGTGCTGCGCTGGGTCCGGGAGGGA                     |
|          | TGGTCAGGTCTGGACGACGAGCCGTTCGATCCTGCCACGTCGCCCGTTACACCGGACCTTGG   |
|          | AGTTGTCTCTGACACATTCTGGCGCCTGCCAAATGTAAAGCGCAGCGCCCATCCAT         |
|          | GCGGCAGCGGGGCCACAGGCAGAGCAGATCATCTCTGATCCATTGCCCCTGCCACCTCACTC   |
|          | GCCTGCAAGCCCGGTCGCCCGTGTCCATGAACTCGATGGGCAGGTACTTCTCCTCGGCGTGG   |
|          | GACACGATGCCAACACGACGCTGCATCTTGCCGAGTTGATGGCAAAGGTTCCCTATGGGGTG   |
|          | CCGAGACACTGCACCATTCTTCAGGATGGCAAGTTGGTACGCGTCGATTATCTCGAGAATGAC  |
|          | CACTGCTGTGAGCGCTTTGCCTTGGCGGACAGGTGGCTCAAGGAGAAGAGCCTTCAGAAGGA   |
|          | AGGTCCAGTCGGTCATGCCTTTGCTCGGTTGATCCGCTCCCGCGACATTGTGGCGACAGCCCT  |
|          | GGGTCAACTGGGCCGAGATCCGTTGATCTTCCTGCATCCGCCAGAGGCGGGGATGCGAAGAAT  |
|          |                                                                  |
|          |                                                                  |
| actlp    |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          |                                                                  |
|          | ACGAGCGACGACCGGGAATTGGTCCTGACCCAGCCGCCCGGCTACTTCGCCCTGATCGACGA   |
|          | GGACGAACTCGACGTCGCGGTCGCCGAGCGTCTGATCCGCACCGGCGGCCGGC            |
|          | GAGAACCGGCTCGAGGAGGCGCTCGCCTCGTTGGACGCGGGACTGGATCTCTGGCGAGGCC    |
|          | CGGCGCTGTCCACCGTACCGTGCGGCCGGGTGCTCGAAAGCAATATCGCGCACCTGGAAGAG   |
|          | CTGCGGCTTTTTGGAATGCAGCTCCGTATCGACGCGAATTGGCGGCTGGGCAGAATAGGGCC   |
|          | GATGATTCCGGAACTCCGGTCCCTGGTAATTTCGCATCCGCTGAACGAGACCCTGCACGCCAA  |
|          | ACTGATGGGCGCGCTCTGTCAGATGGGCAGGCGCGCCGAGGCGCTGGAATCGTATCGGAATC   |
|          | TCCGGCGGATACTGTCCGACGAACTGGGGGTGGATCCGACGCCGGAAATCCAGCGTATGCAC   |
|          | ATGGAAATTCTCAACGGTGAGAAGGTGCTCGTGTAGCACCGGTCCGTGAACGCGGTGGAGCC   |
|          | CTATGTCTCTTAAGTGTTCCCCTCCCTGCCTCGTGGTCCCTCACGCGCTCAGCTTTGGGCGCC  |
|          |                                                                  |
|          | GUATUGAGGGGTCCCGTATCGGCCTTCGAGCCTCCTTCGAGCCACGGGGCCGACGATGACGA   |
|          | CGACCACCGGACGAACGCATC                                            |

|                           | ATGGGGACCTCCTGGGGTGCGTTGGACCGCTGGATCCTACCAACCGGCACGATTGTGCCCAC<br>AACAGCATCGCGGTGCCACGTGTGGACCGCGTCGGTCAGATCCTCCCCGCACCTCTCGCCAG<br>CCGTCAAGATCGACCGCGTGCACCA <b>CATATG</b> TTACCAATGCTTAATCAGTGAGGCACCTATCT |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                                                                                                                              |
|                           |                                                                                                                                                                                                              |
|                           | ACTITATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTA                                                                                                                                                      |
|                           | TTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGG                                                                                                                                             |
| о <i>и</i> но <b>Г</b> *и | TATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCCATGTTGTGC                                                                                                                                            |
| erme p                    | AAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGT                                                                                                                                                             |
|                           | TCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTC                                                                                                                                            |
|                           | TGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTC                                                                                                                                              |
|                           | TTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATT                                                                                                                                             |
|                           | GGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATG                                                                                                                                              |
|                           | TAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAG                                                                                                                                             |
|                           | CAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATAC                                                                                                                                              |
|                           | TCATACTCTTCCTTTTTCAATCATGATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATA                                                                                                                                            |
|                           | CATATTTGAATG <b>CTCGAG</b>                                                                                                                                                                                   |

Table S3, related to STAR Methods section "Bioactivity testing of streptophenazines and MIC determination" Minimum Inhibitory Concentrations (MICs) ( $\mu$ g/mL) of oxo-streptophenazine A (9), streptophenazine C (13), streptophenazine A (16), and streptophenazine Q (20).

| Compo                        | ound 9 | 13  | 16  | 20  |  |
|------------------------------|--------|-----|-----|-----|--|
| Strain                       |        |     |     |     |  |
| Group A Streptococcus        | >50    | >50 | >50 | 2.5 |  |
| Acinetobacter baumannii 5075 | >50    | >50 | >50 | 40  |  |
| Klebsiella pneumoniae 1100   | >50    | >50 | >50 | >40 |  |
| MRSA TCH1516                 | >50    | >50 | >50 | 40  |  |

| Plasmids                                     | Description                                                                                                                                               | Sources                           |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| pCAP03                                       | TAR cloning and broad-host-range heterologous expression vector; CEN6-<br>ARS4, oriT, traJ, pUC ori, Kan', Apra', pADH1, URA3, TRP1                       | Tang <i>et al</i> ., 2014         |
| pSMM                                         | Derivative of pCAP03 with 48 kb captured spz cluster                                                                                                      | This work                         |
| pKDB01                                       | Derivative of pCAP03 with 37.5 kb captured spz cluster                                                                                                    | This work                         |
| pKDB02                                       | Derivative of pKDB01 without TetR regulatory gene (spz28)                                                                                                 | This work                         |
| pKDB01∆ <i>spz</i> 3                         | Derivative of pKDB01 without spz3 (LysR type regulatory gene)                                                                                             | This work                         |
| pKDB02∆ <i>spz</i> 3                         | Derivative of pKDB02 without spz3 (LysR type regulatory gene)                                                                                             | This work                         |
| pKDB01-ermE*p-spz24                          | Derivative of pKDB01 with <i>ermE</i> * promoter in front of <i>spz</i> 24 (LuxR-type regulatory gene), <i>Kan</i> <sup>r</sup> , <i>Amp</i> <sup>r</sup> | This work                         |
| pKDB03                                       | Derivative of pKDB01 with sp44-p21 cassette                                                                                                               | This work                         |
| pKDB04                                       | Derivative of pKDB03 with actlp cassette                                                                                                                  | This work                         |
| pKDB05                                       | Derivative of pKDB04 with <i>ermE*p</i> cassette                                                                                                          | This work                         |
| pKDB03⊿ <i>spz</i> 15                        | Derivative of pKDB03 with <i>spz</i> 15 (putative adenylation protein-encoding gene) deleted                                                              | This work                         |
| pCAP03-ermE*p                                | Derivative of pCAP03 containing <i>ermE</i> * <i>p</i> cassette between XhoI and NdeI, <i>Kan</i> <sup>r</sup> , <i>Amp</i> <sup>r</sup>                  | This work                         |
| pCAP03-actlp                                 | Derivative of pCAP03 containing <i>actlp</i> cassette between XhoI and NdeI. <i>Kan<sup>r</sup>, Apra<sup>r</sup></i>                                     | This work                         |
| pCAP03- <i>sp44-p21</i>                      | Derivative of pCAP03 containing <i>sp44-p21</i> cassette between Xhol, Ndel. <i>Kan<sup>r</sup>, Apra<sup>r</sup></i>                                     | This work                         |
| pIJ790                                       | λ-RED (gam, bet, exo), cat, araC, rep101 <sup>ts</sup> , oriR101, P araBAD                                                                                | Gust, 2003                        |
| pUB307                                       | 3307 Self-transmissible plasmid that mobilizes other plasmids <i>in trans</i> for DNA transfer into hosts: RP4, <i>neo</i>                                |                                   |
| Strains                                      | Description                                                                                                                                               |                                   |
| Streptomyces                                 |                                                                                                                                                           |                                   |
| Streptomyces sp. CNB-091                     | Native producer of streptophenazines                                                                                                                      | Trischman <i>et al.,</i><br>1994  |
| <i>Streptomyces coelicolor</i><br>M1146      | Host strain for heterologous expression derived from <i>S. coelicolor</i> M145: $\Delta act$ , $\Delta red$ , $\Delta cpk$ , $\Delta cda$ .               | Gomez-Escribano<br>and Bibb, 2011 |
| S. coelicolor M1146-<br>pCAP03               | Heterologous host containing empty pCAP03 as a control                                                                                                    | This work                         |
| S. coelicolor M1146-<br>pSMM                 | Heterologous host containing pSMM ( <i>spz</i> BGC captured in 48 kb DNA fragment)                                                                        | This work                         |
| S. coelicolor M1146-<br>pKDB01               | Heterologous host with integrated pKDB01 (37.5 kb captured spz cluster)                                                                                   | This work                         |
| S. coelicolor M1146-<br>pKDB02               | Heterologous host with integrated pKDB02 ( <i>△spz</i> 28)                                                                                                | This work                         |
| S. coelicolor M1146-<br>pKDB01∆ <i>spz</i> 3 | Heterologous host with integrated pKDB01 <i>△spz</i> 3                                                                                                    | This work                         |
| S. coelicolor M1146-<br>pKDB02∆ <i>spz</i> 3 | Heterologous host with integrated pKDB02 <i>△spz</i> 3                                                                                                    | This work                         |

## Table S4, related to STAR methods. Plasmids and strains used in this work

| S. coelicolor M1146-<br>pKDB01-ermE*p-spz24   | Heterologous host with integrated pKDB01-ermE*p-spz24                                                                                                                                                                                                                                                                                                                                                                | This work                           |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| S. coelicolor M1146-<br>pKDB03                | Heterologous host with integrated pKDB03                                                                                                                                                                                                                                                                                                                                                                             | This work                           |
| S. coelicolor M1146-<br>pKDB04                | Heterologous host with integrated pKDB04                                                                                                                                                                                                                                                                                                                                                                             | This work                           |
| S. coelicolor M1146-<br>pKDB05                | Heterologous host with integrated pKDB05                                                                                                                                                                                                                                                                                                                                                                             | This work                           |
| S. coelicolor M1146-<br>pKDB03∆ <i>spz</i> 15 | Heterologous host with integrated pKDB03∆ <i>spz</i> 15                                                                                                                                                                                                                                                                                                                                                              | This work                           |
| Escherichia coli                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
| DH10B                                         | F– mcrA Δ(mrr-hsdRMS-mcrBC), Φ80/acZΔM15, Δ lacX74 recA1 endA1 araD139 Δ (ara leu)7697 galU galK rpsL nupG $\lambda$ –. Storage and maintenance                                                                                                                                                                                                                                                                      |                                     |
| BW25113                                       | K-12 derivative: Δ <i>ara</i> BAD, Δ <i>rha</i> BAD,                                                                                                                                                                                                                                                                                                                                                                 | Datsenko and<br>Wanner, 2000        |
| BT340                                         | DH5α/pCP20, containing FLP recombinase                                                                                                                                                                                                                                                                                                                                                                               | Cherepanov and<br>Wackernagel, 1995 |
| ET12567                                       | F- <i>dam</i> 13::Tn9, <i>dcm</i> 6, <i>hsd</i> M, <i>hsd</i> R, <i>rec</i> F,143 <i>zjj</i> -202::Tn10, <i>gal</i> K2, <i>gal</i> T22, <i>ara</i> -14, <i>pac</i> Y1, <i>xyl</i> -5, <i>leu</i> B6, <i>thi</i> -1, <i>ton</i> A31, <i>rps</i> L136, <i>his</i> G4, <i>tsx</i> -78, <i>mtl</i> -1, <i>gln</i> V44. Donor strain for conjugation between <i>E. coli</i> and <i>Streptomyces</i> in triparental mating | MacNeil et al., 1992                |
| Other                                         |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
| Group A Streptococcus                         | Clinical isolate used for bioactivity assays                                                                                                                                                                                                                                                                                                                                                                         | Nizet lab,UCSD                      |
| Acetinobacter baumannii<br>5075               | Clinical isolate used for bioactivity assays                                                                                                                                                                                                                                                                                                                                                                         | Nizet lab,UCSD                      |
| Klebsiella pneumoniae<br>1100                 | Clinical isolate used for bioactivity assays                                                                                                                                                                                                                                                                                                                                                                         | Nizet lab,UCSD                      |
| MRSA TCH1516                                  | Clinical isolate used for bioactivity assays                                                                                                                                                                                                                                                                                                                                                                         | Nizet lab,UCSD                      |
| S. cerevisiae VL6-48N                         | MATα <i>trp</i> 1-Δ1 <i>ura</i> 3-Δ1 <i>ade</i> 2-101 <i>his</i> 3-Δ200 <i>lys</i> 2 <i>met</i> 14 cir°, TAR cloning                                                                                                                                                                                                                                                                                                 | Kouprina and<br>Larinova, 2016      |

| Primer name                | Sequence (5' to 3')                                                                                                | Purpose                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Frag1_F                    | GAGTAGCAGCACGTTCCTTATATGTAGCTTTCGACAT<br>ATGCATGAGCTGTCTCCTGGTGGTGGGCAGG                                           | TAR cloning spz BGC                                                                          |
| Frag1_R                    | CGACCTGCCCGAACTCGACGGGCTGGAACTG                                                                                    | TAR cloning spz BGC                                                                          |
| Frag2_F                    | CACGATGCCCAGCAGCAGTCCCATGTCGTGG                                                                                    | TAR cloning spz BGC                                                                          |
| Frag2_R                    | GCATCCAGTGCGAGTACAGCCTCGCCGAGCG                                                                                    | TAR cloning spz BGC                                                                          |
| Frag3_F                    | CCAGGTACTCCTCCAACTGCTCGCCGGTCCG                                                                                    | TAR cloning spz BGC                                                                          |
| Frag3_R                    | CTCATAAGGATGCCTTCTGCGGGTGTGGAGACC                                                                                  | TAR cloning spz BGC                                                                          |
| Frag4_F                    | CGATCGCCGCCTGGACCGACTGGAGCAGG                                                                                      | TAR cloning spz BGC                                                                          |
| Frag4_R                    | GCTGCCGCTGAACGCCAACGGGAAGGTGGAC                                                                                    | TAR cloning spz BGC                                                                          |
| Frag5_F                    | GAGGGCGGTCAGGGCAGGATTCACGGAATGC                                                                                    | TAR cloning spz BGC                                                                          |
| Frag5_R                    | GGAGGCAGGCGCGTACTGGACGTTCCTCATCC                                                                                   | TAR cloning spz BGC                                                                          |
| Frag6_F                    | CCATCATCTTGAGCTCTTCGTCGACGACCATG                                                                                   | TAR cloning spz BGC                                                                          |
| Frag6_R                    | GAACCAGGAGATCGCCGACCGGCTCGTCCT                                                                                     | TAR cloning spz BGC                                                                          |
| Frag7_F                    | CTCGGCCTGGAATCACTTCAGATGATGCGCCTG                                                                                  | TAR cloning spz BGC                                                                          |
| Frag7_R                    | GTTCCTGATCGCCCAGTTCCTGCAGAGCGTG                                                                                    | TAR cloning spz BGC                                                                          |
| Frag8_F                    | GTCACTCCGACGAACATCAGGATGGAGGCCG                                                                                    | TAR cloning spz BGC                                                                          |
| Frag8_R+TetR               | CTCGGTTTGACGCCTCCCATGGTATAAATAGTGGCTC<br>GAGGCACAGGACGGCATCGCCCGCAGCTGAGC                                          | TAR cloning spz BGC                                                                          |
| Frag8_R-TetR               | CTCGGTTTGACGCCTCCCATGGTATAAATAGTGGCTC<br>GAGGGTCCGTCCGGTCCCAGGAGAACCAGCTGATC<br>GGCTTGCGGAGAGACCGGCGGGGATCAGCCGAGG | TAR cloning <i>spz</i> BGC                                                                   |
| ∆spz3_r<br>∆spz3_R         | GCAT<br>GCTCGTCGCACCGTCGCCCCGCTCCTGAACCGGCC<br>GCGGGAAGGACCACGGTTCATGTGCAGCTCCATCA                                 | Delete spz3 (LysR)                                                                           |
| ∆spz3 seq F                | GTGAAGGCGACGAACAGGAAGTG                                                                                            | Confirm spz3 deletion                                                                        |
| ∆spz3 seq R                | GATCGAGCCCGCCGACGTG                                                                                                | Confirm spz3 deletion                                                                        |
| Upreg- <i>spz</i> 24_F     | GTCGGGAGCGTGCGGCACAGTGCGCACGTCGGGCA<br>GGACTGGCACGGTCATATGGGGACCTCCTGGGGTG<br>CGTTGG                               | Insert <i>ermE</i> * promoter in front of<br><i>spz</i> 24 (LuxR)                            |
| Upreg- <i>spz</i> 24_R     | CCCGATCGTGTACGTGCGCGCCGTCGCGCCCTAGG<br>CCCTCCGGGCGGACGCTCGAGCATTCAAATATGTAT<br>CCGCTCATG                           | Insert <i>ermE</i> * promoter in front of<br><i>spz</i> 24 (LuxR)                            |
| Upreg- <i>spz</i> 24_seq_F | CAGCAGGCTGCTCTTGCCGACAC                                                                                            | Sequencing to confirm insertion                                                              |
| Upreg- <i>spz</i> 24_seq_R | GATGCGCGGTATGTGGGAGCGC                                                                                             | Sequencing to confirm insertion                                                              |
| aac(3)IV +FRT_F            | ATTATACATATGTGCAGTTCGAAGTTCCTATTCTCTAG<br>AAAGTATAGGAACTTCGGTTCATGTGCAGCTCCATCA<br>GCAAAAG                         | Amplify aac(3)/V gene with FRT<br>sites for cloning between pET28a<br>Ndel and HindIII sites |
| aac(3)IV +FRT_R            | ATTATAAAGCTTGAAGTTCCTATACTTTCTAGAGAATA<br>GGAACTTCTCAGCCAATCGACTGGCGAGCGGCATCG                                     | sites for cloning between pET28a<br>Ndel and HindIII sites                                   |
| sp44_F                     | GACGCCTCCCATGGTATAAATAGTGGCTCGAGGGTG<br>AACCGATCTCCTCGTTAGGGTC                                                     | Amplify <i>sp44</i> promoter with<br>homology to pCAP03 and <i>aac(3)IV</i>                  |
| <i>sp44_</i> R             | TCTAGAGAATAGGAACTTCGAACTGCACATATGATAG<br>TGGCTGTTCACATTCGAACCGTCTCTG                                               | Amplify <i>sp44</i> promoter with homology to pCAP03 and <i>aac(3)IV</i>                     |
| <i>p21_</i> F              | CTATTCTCTAGAAAGTATAGGAACTTCAAGCTTTGCT<br>CGAGTGTGCGGGCTCTAACACGTC                                                  | Amplify $p21$ promoter with homology to pCAP03 and $aac(3)IV$                                |

 Table S5, related to STAR methods.
 Primers used in this work.

| <i>p21_</i> R                              | AGCACGTTCCTTATATGTAGCTTTCGACATATGGTCC<br>GTACCTCCGTTGCTCGACTAGAT                                          | Amplify <i>p21</i> promoter with homology to pCAP03 and <i>aac(3)IV</i>                                   |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| aac(3)/V+FRT_sp44_pCAP03_F                 | CAGAGACGGTTCGAATGTGAACAGCCACTATCATAT<br>GTGCAGTTCGAAGTTCCTATTCTCTAGA                                      | Amplify <i>aac(3)IV</i> +FRT with homology to <i>sp</i> 44 promoters                                      |
| <i>aac(3)IV</i> +FRT_ <i>p21</i> _pCAP03_R | ACGTGTTAGAGCCCGCACACTCGAGCAAAGCTTGAA<br>GTTCCTATACTTTCTAGAGAATA<br>IGGTCGCCGCCCCCGTGCTGCCGAAACTGATGCTCCGG | Amplify $aac(3)/V$ +FRT with<br>homology to p21 promoter<br>Amplify $sp44$ -p21 cassette with             |
| <i>sp44+p21_</i> cas_insert_F              | GCGACGTCGGGCATCTCGAGGGTGAACCGATCTCCT<br>CGTTAGG                                                           | homology sequences for targeted insertion into <i>spz</i> BGC                                             |
| sp44+p21cas_insert_R                       | CCGGGGACGTGGGTGCCGAGTCCGGCGAGGTAGGT<br>GTTCTCGAACTTCATCATATGGTCCGTACCTCCGTTG<br>CTCGAC                    | Amplify <i>sp44-p21</i> cassette with<br>homology sequences for targeted<br>insertion into <i>spz</i> BGC |
| <i>sp44+p21_</i> cas_insert_seq_F          | GTGAACAGGAGATGCCGGGTC                                                                                     | Confirm <i>sp44-p21</i> cassette insertion                                                                |
| <i>sp44+p21_</i> cas_insert_seq_R          | GCCTCGTACCAGCCTTCCTG                                                                                      | Confirm sp44-p21 cassette insertion                                                                       |
| act/p_F                                    | CCGGTCCGTGAACGCGGTGGAGCCCTATGTCTCTTA<br>AGTGTTCCCCTCCCTGCC                                                | Amplify <i>actl</i> promoter with homology to <i>act</i> II-ORF4 and pCAP03                               |
| act/p_R                                    | CACGTTCCTTATATGTAGCTTTCGAGATGCGTTCGTC<br>CGGTGGTCGTCGTCA                                                  | Amplify act/ promoter with homology<br>to actII-ORF4 and pCAP03                                           |
| actll-ORF4_F                               | CCGCTCGCCAGTCGATTGGCTGACATATGCCACTGC<br>CTCTCGGTAAAATCC                                                   | arms for assembly with <i>aac(3)/V</i> and <i>act1p</i>                                                   |
| actll-ORF4_R                               | GGCAGGGAGGGGAACACTTAAGAGACATAGGGCTC<br>CACCGCGTTCACGGACCGG                                                | Amplify actII-ORF4 with homology<br>arms for assembly with aac(3)IV and<br>act1p                          |
| aac(3)IV +actlp_F                          | GACGCCTCCCATGGTATAAATAGTGGCTCGAGGGTT<br>CATGTGCAGCTCCATCAGCAAAAG                                          | Amplify <i>aac(3)IV</i> with homology to <i>act</i> II-ORF4 and pCAP03                                    |
| aac(3)IV +actlp_R                          | TCGACTGGCGAGCGG<br>GGGTCCGCGTCGTACGGAAGGTCAAGAATCTTCGGG                                                   | actII-ORF4 and pCAP03<br>Amplify act/p cassette with                                                      |
| <i>actlp_</i> cas_insert_F                 | TCGGCGGAAGCCACGATGCGTTCGTCCGGTGGTCG<br>TCGTC                                                              | homology sequences for targeted insertion into <i>spz</i> BGC                                             |
| actlp _cas_insert_R                        | GTGCTCGAATGTCCCATACACCCAAGACGTAGAAGT<br>TCTCTGGAGGAACGACTCGAGGGTTCATGTGCAGCT<br>CCATCAG                   | Amplify of <i>act/p</i> cassette with<br>homology sequences for targeted<br>insertion into <i>spz</i> BGC |
| <i>actlp_</i> cas_insert_seq_F             | CTCGAGCCAGTAGCGGGATC                                                                                      | within spz BGC                                                                                            |
| <i>actlp_</i> cas_insert_seq_R             | CATTGTGCACGGTCCACCG                                                                                       | within spz BGC                                                                                            |
| ermE*p_F                                   | GTGCCTCACTGATTAAGCATTGGTAACATATGTGGTG<br>CACGCGGTCGATCTTGACGGCTG                                          | homology arms for assembly with<br>bla and pCAP03                                                         |
| ermE*p_R                                   | CAGCACGTTCCTTATATGTAGCTTTCGAATGGGGACC<br>TCCTGGGGTGCGTTGGACC                                              | homology arms for assembly with<br>bla and pCAP03                                                         |
| bla+ermE*p_F                               | TGACGCCTCCCATGGTATAAATAGTGGCTCGAGCATT<br>CAAATATGTATCCGCTCATGAGA                                          | Amplify <i>bla</i> with homology to <i>ermE*p</i> and pCAP03 for assembly                                 |
| bla+ermE*p_R                               |                                                                                                           | and pCAP03 for assembly<br>Amplify ermE*p cassette with                                                   |
| <i>ermE*p_</i> cas _insert_F               | GGTCGACGACGTCCACATGGGGACCTCCTGGGGTG<br>CGTTGG                                                             | homology sequences for targeted insertion into <i>spz</i> BGC                                             |
| <i>ermE*p_</i> cas_insert_R                | CTTCCACAGCCACGCCCGCGCCCTCCTCGGCTGATC<br>CCCGCCCGGTCTCTCCGAGCATTCAAATATGTATCC<br>GCTCATG                   | Amplify <i>ermE*p</i> cassette with<br>homology sequences for targeted<br>insertion into <i>spz</i> BGC   |
| <i>ermE*p_</i> cas_insert_seq_F            | GTGAGGTCGCTCGTGCGCAG                                                                                      | within spz BGC                                                                                            |
| <i>ermE*p_</i> cas_insert_seq_R            | GTCCTGCCCGAGCAGTATGTCC                                                                                    | within <i>spz</i> BGC                                                                                     |
| ∆spz15_F                                   | ACGGGTTCCAGGCGGCCGGAGACGACGTCCTCGCG<br>CAGCGCCCCCCGGTCTCAGCCAATCGACTGGCGAG<br>CGGCAT                      | Delete <i>spz</i> 15 (adenylation protein)                                                                |
| ∆ <i>spz</i> 15_R                          | GGUGGGTUGTUUGGUTUUGGUTUUAGUUUTGAGUUUGGGTUUGTUU                                                            | Delete <i>spz</i> 15 (adenylation protein)                                                                |
| <i>∆spz</i> 15_seq_F                       | GTCAGGGCAGGATTCACGGAATG                                                                                   | Confirmation of <i>spz</i> 15 deletion                                                                    |
| <i>∆spz</i> 15_seq_R                       | GTACGAACTCCGTTTCGACAGGGTG                                                                                 | Confirmation of spz15 deletion                                                                            |

| Primer name | Sequence (5' to 3')       | Primer name | Sequence (5' to 3')         |
|-------------|---------------------------|-------------|-----------------------------|
| hrdB_F      | CCTCCGCCTGGTGGTCTCG       | hrdB_R      | AACTTGTAGCCCTTGGTGTAGTCGAAC |
| spz1_F      | CGTCACCGAGAGCAGCCACAGCG   | spz1_R      | GTTGCTCCAAGCACTGCGACTGCC    |
| spz2_F      | CGATCAGGGAGAAGTTCACGACG   | spz2_R      | CTGCACTTCCTGTTCGTCGCCTT     |
| spz3_F      | GGACATACTGCTCGGGCAGGAC    | spz3_R      | CAGTTGGAGTACTTCCTCGCGG      |
| spz4_F      | GCCTGATCAGCACCACGTCGG     | spz4_R      | GAACTTCGCGTACGACCTGTGCG     |
| spz5_F      | CGATCTGCTCGAAGTCGAACAGCC  | spz5_R      | GACACCATGTACGCGTCACTCATCC   |
| spz6_F      | GTGCAGAGTCTCCAGAACGTCGTGG | spz6_R      | CACACCGCAGGTCGTGTTCACCTTC   |
| spz7_F      | GCGAGGCTGTACTCGCACTGGATG  | spz7_R      | GTCTCCGAATACGCGCTGGGCAC     |
| spz8_F      | GAACGTGGTCACCGGAATGTCCAG  | spz8_R      | GACCGAGCTCGACCTGTACTGCTTC   |
| spz9_F      | CTCGAAGAAGCTCTCGTCCGGTTCG | spz9_R      | CTTGAGGACTGGAAGCCGTACGGG    |
| spz10_F     | GTGGTCGAACAGGTCGATCAGCTC  | spz10_R     | GAGAAGGATTCCCTGACCCTCGTCG   |
| spz11_F     | GTCTTGCTCCGCATCAGGAATTCC  | spz11_R     | GATCACCTCGACATGATCGTCGAC    |
| spz12_F     | CTCACGTGGTGCATGACCACCTGG  | spz12_R     | GACATCGTCGGCGTCTTCGAGAG     |
| spz13_F     | CGATGATCGCCTGGTGGGATCTC   | spz13_R     | GTGGTGGCGACGACGTCGAAC       |
| spz14_F     | CGAGATGACGTACGTCCACCACGC  | spz14_R     | GCTTCCAGACGGCCTACCGGCATC    |
| spz15_F     | CACGTCCGCCAGGTGGTAGGTGAG  | spz15_R     | GAGGTGACGGTGTGGTTCTCGGTG    |
| spz16_F     | CTCCACCCTGTCGAAACGGAGTTC  | spz16_R     | GACCGCCGATATCACCGTCCCGTTTC  |
| spz17_F     | GCGAGAACATCCTGCTGCGCCAC   | spz17_R     | CTCCTATGTGGTCGTCGACGCCTTC   |
| spz18_F     | CGGTTGATCTCGACGACACCGAGC  | spz18_R     | CTGGACTCCGCGATCCTCATCCGC    |
| spz19_F     | CACCAGGAAGGTGCGGATGTCGTG  | spz19_R     | CTGGAATTCCCCGCATCCACCCG     |
| spz20_F     | CAGGTACTTGTCTCCGACGCCCGAC | spz20_R     | CTCGACTACGAGCTGCCGATGCTG    |
| spz21_F     | CTGGTCGAACGGGTTCATGAACTCG | spz21_R     | GCTGACCCGGCATCTCCTGTTCAC    |
| spz122_F    | CTGGTCACCACGGAGAAGGCCGTC  | spz22_R     | GATTCCAGATCGAAGCCGATCGGATC  |
| spz23_F     | CTAGTCGCCGGAGAGGAGCTGCGC  | spz23_R     | GTATCGCGCTCCTGCTCCTTCAGC    |
| spz24_F     | CAACTCCTCGTAGGCGTGCGACAC  | spz24_R     | CTACCGTCTCTCCCTGCGGCTGGATC  |
| spz25_F     | GGTGGTGTAGGTGAAGTCCACCCAC | spz25_R     | GAAGTCGTACGACCAGAGCGGTGTG   |
| spz26_F     | CGAACATCAGGATGGAGGCCGTCAG | spz26_R     | GCTGGAGTACTTCTGGTGGGGCTCG   |
| spz27_F     | CGTCGAGCCGGAGGTCGAAGAAG   | spz27_R     | CAAGGACATCTGGCCGCAGTGGCTG   |
| spz28_F     | CGATCAGCTGGTTCTCCTGGGACCG | spz28_R     | GACTAGGGCCCAGGCCAAGGAGCG    |

| Table S6. related to STAR methods. | Primers used | I for RT-PCR |
|------------------------------------|--------------|--------------|
|------------------------------------|--------------|--------------|