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Supplementary Methods

Assumptions and Notation: We assume an inventory, test, or questionnaire with Q

questions. The response to each question q (gq=1,...,Q) is an ordinal response ranging from 0
to F, where F is the maximum score possible. We assume a population-based sample of N
subjects have responded to the questionnaire and possess common-variant data in a target
gene or region. For subjectj (j=1,...,N), we define Pj = (P;s, P;2, ..., Pjo ) as subjectj’s

responses to the Q questions. We then define a matrix of questionnaire responses for the
T
entire sample P = (PIT,PZT,...,P: ) , which is of dimension NxQ. Finally, for subject j, we

define the traditional cumulative score typically used for genetic analysis of BDI or PSS as
—y
Sj - Z‘Fle,q )
Similarly, we define Gj = (G; 1, Gj2, ..., Gjv ) to be the genotypes of subject j at IV SNPs,

where Gjy is coded as the number of copies of the minor allele that the subject possesses at

SNP v. The SNPs included in Gj will be referred to as the “SNP set.” We then construct the

T
matrix of genotypes for the sample as G = (GIT,GZT,...,G;) , which is of dimension N x V.

Several approaches to constructing a SNP set have previously been described!2. For
demonstration purposes in this manuscript, we will define a SNP set as common variants
(minor-allele frequency [MAF] > 5%) that fall within 2kb of a gene of interest.

GAMuT uses a KDC framework to perform a SNP-set test to test for independence
between P (NxQ matrix of multivariate responses to a questionnaire) and & (NxV matrix of
multivariate genotypes). After standardizing P and G, we develop an NxN questionnaire-
similarity matrix ¥ (based on P) and a NxN genotypic-similarity matrix X (based on G). The

choice of how to model pairwise similarity or dissimilarity for a set of multivariate



outcomes is quite flexible. For example, for P, we can model the matrix ¥ using a projection
matrix, as suggested by Zapala and Schork3, such that Y = P(P”P ) P”. We can also
construct the model Y using user-selected kernel functions4-¢ such as the linear kernel,
y(P ,P].)=ZIL=1P“P].’1 or a quadratic kernel, y(P,P)=(1+ 2‘,,21131.‘113].‘1)2 .

For genotypes G, we model its corresponding matrix X using kernel functions x(G;
G;) that can take the same form (e.g., linear, quadratic, Gaussian, Euclidean distance) used
to construct y(P, P;), although additional kernels based on identity-by-state sharing are
also possible. We may wish to further augment x(G; G;) to preferentially upweight the
contributions of particular SNPs in G over others in the gene. For simulations reported
here, we implement a weighting scheme based on the minor-allele frequency (MAF) of each
assayed SNP that weights rarer variants over more common ones as described in Kwee et
al*. Another possible SNP weight could be a measure of the strength of association between
the SNP and some related mental-health phenotype (e.g. major depressive disorder,
schizophrenia) that is available from an independent public dataset like those provided by
the Psychiatric Genomics Consortium?’-°. Using such independent external weights likely
has value since it could be argued that a variant associated with a psychiatric phenotype
(e.g. MDD) in one dataset is more likely to be associated with a correlated psychiatric
phenotype measured by PSS or BDI in an independent dataset given existing knowledge
about the shared genetic overlap among such traits'%11. We can construct such a SNP
weight as a function of the log odds ratio of the SNP in the independent dataset. Once we
determine the weight function, we then create a diagonal weight matrix W= diag(ws, wy, ...,

wy ), where w,, reflects the relative (normalized) weight for the vt" variant in the gene.



Using W, we can then create a weighted linear kernel function as X=GWGT. Derivation of
other weighted kernel functions is straightforward.
Once we construct the similarity matrices ¥ and X, we derive our GAMuT approach

as a test of independence between the elements of these two matrices. Briefly, we center
each matrix as Yc=HYH and X.=HXH. Here, H = (I - 1N1; / N) is a centering matrix with

property HH=H, I is an identity matrix of dimension N, and 1y is an Nx1 vector with each
element equal to 1. Using Y. and X, we construct our test of independence of the two

matrices as

GAMUT

1
=—t Y X 1
Y race(Y X_) (1)

Under the null hypothesis of independence of the two matrices, Teamur follows the same

asymptotic distribution as

1
Ez'{\;’lelx,ilv,izz” (2)

U]

where 4, . isthe i ordered eigenvalue of Xc, 4, s the jt" ordered eigenvalue of Y, and

zl.zj are independent and identically-distributed ;(12 variables!?. We derive P-values for our

GAMuT test analytically using Davies’ exact method!3, which is a computationally efficient
method to provide accurate P-values in the extreme tails of tests that follow mixtures of
chi-square variables®. An implementation of Davies’ method is available in the R library
CompQuadForm.

Adjusting for Covariates: Genetic association tests must adjust for important

covariates, such as principal components of ancestry, to avoid potential confounding of

results. We can control for confounders before applying GAMuT by regressing each



symptom scale separately on covariates of interest and then using the residuals to form the
phenotypic similarity matrix Y. Although residualizing categorical phenotypes is not
standard, studies have suggested that this procedure does not affect the validity of genetic
association tests in case-control studies!#15, As we describe in the Results section, such
residualization provides an effective correction for confounders within our simulated
ordinal datasets.

Simulations: We conducted simulations to verify that GAMuT properly preserves
type-I error (i.e., empirical size) and to assess power of GAMuT relative to standard
association tests that treat questionnaire responses as a univariate outcome variable
resulting from summing the responses into a continuous score. We perform simulations
based on SNPs and LD patterns located within 2 kb up- and down-stream from two genes:
signal transducer and activator of transcription 3 (STAT3), a gene on chromosome 17q21.31,
and leucine rich repeat and fibronectin type Ill domain containing 5 (LRFN5), a gene on
chromosome 14q21.1. We show the MAF and pairwise LD structure of SNPs in STAT3 and
LRFNS5 in Supplementary Figs. S1 and S2, respectively. To incorporate observed LD patterns
from HapMap samples, we used the HAPGEN packagel® to generate simulated SNP data.
HAPGEN generates simulated genotype information for all SNPs identified in HapMap
within each gene; however, to better replicate real GWAS conditions, we applied the testing
approaches only to those SNPs that would be typed on standard genotyping arrays.
Although 27 common SNPs fall within the STAT3 gene, only 14 of the 27 are genotyped on
the [llumina HumanOmnil-Quad genotyping platform. Thus, the 14 typed SNPs form the
SNP set for the kernel approach, and only the 14 typed SNPs are tested for association.

Similarly, LRFN5 contains 127 common SNPs, only 50 of which are typed on the [llumina



HumanOmnil-Quad array, resulting in a set of 50 SNPs tested for association in the LRFN5
analyses. Under simulations where the causal SNP is not genotyped, power to detect an
association relies on LD between the causal SNP and typed SNPs.

We simulate multivariate questionnaire data to mimic the BDI questionnaire results
obtained from GTP participants. The BDI consists of 21 groups of statements that reflect
various symptoms and attitudes associated with depression. Each group includes 4
statements, which correspond to a scale of 0 to 3 in terms of intensity. The 21 groups are
sadness, pessimism, past failure, loss of pleasure, guilty feelings, punishment feelings, self-
dislike, self-criticalness, suicidal thoughts or wishes, crying, agitation, loss of interest,
indecisiveness, worthlessness, loss of energy, changes in sleep patterns, irritability,
changes in appetite, concentration difficulty, fatigue, and loss of libido. The BDI is generally
self-administered or self-reported, and is scored by summing the ratings given to each of
the 21 items. Summing the responses yields a score ranging from 0-63, with scores higher
than 28 being indicative of moderate to severe depression.

To simulate BDI data, we first generated 21 outcomes for each subject using a
multivariate normal distribution with mean vector 0 and QxQ correlation matrix X. We
calculated X based on observed Spearman rank correlation calculations from the GTP BDI
questionnaire responses shown in Supplementary Fig. S3. The observed correlations
between questions ranged from 0.22 to 0.57. Next, we generated ordinal responses from
the normally distributed variables to match the ordinal responses observed in GTP data.
Frequency of scores by each of the 21 BDI questions is shown in Supplementary Fig. S4. We
found the percent of GTP participants who answered 0, 1, 2, and 3 for each question. We

then matched the percentages of each BDI question for each of the 21 normally distributed



variables. For example, in BDI Question 1 (“Sadness”), 56% of participants answered 0 (“I
do not feel sad”), 34% answered 1 (“I feel sad much of the time”), 6% answered 2 (“I feel
sad all of the time”), and 4% answered 3 (“I am so sad or unhappy that I can’t stand it.”). To
simulate ordinal responses to Question 1, the lowest 56% of the continuous outcomes were
assigned a score of 0, values falling in the 57-90 percentile were assigned a score of 1, 91-
96 percentiles were assigned a score of 2, and values in the 97t percentile and above were
assigned a score of 3. We set sample size N of either 1,000 or 2,500 subjects. We applied
GAMuT to 10,000 null simulated datasets to estimate empirical size.

To investigate the performance of GAMuT under confounding and to assess whether
the approach can successfully adjust for relevant covariates in this setting, we also
simulated questions under a confounding model where question responses were
independent of genotype, but both questions and genotype are associated with a
continuous covariate Z. We simulated questions correlated with the covariate Z under the
model P~ MVN(0.2Z,%), where Z denotes the N x 1 sample vector of covariates. We
arbitrarily selected SNP 9 (rs9909659) in the STAT3 gene as causally associated with the
confounder. We simulated correlation between SNP 9 and the covariate by generating the
effect size of confounder on SNP as 7=0.2. Testing empirical size under this model allows
us to verify that our approach to control for confounders is valid.

For power models, we simulated data sets in which each of the SNPs within STAT3
and LRFN5 were modeled as being causal (i.e., each of the 27 SNPs within STAT3 was

modeled as causal, and each of the 127 SNPs within LRFN5 was set as causal). We model

effect size of the causal SNP on each question, 3, as ,[)’q =N(0.1,0.03). This formulation sets

mean effect sizes with modest effect on the overall cumulative score; for a causal SNP with



MAF=0.3, this formulation corresponds to an R?=0.009 when the SNP is associated with all
questions in the questionnaire. Allowing 3, to vary around a normal distribution allows the
variant to have a slightly different effect size for each question. We also vary the number of
questions that are associated with the causal SNP, such that not all of the questions will be
dependent on the gene of interest. We consider situations where 18/21,12/21, and 6/21
questions are actually associated with the causal SNP. We control residual correlation
among questions through consideration of trait-specific heritability (i.e., the relative

variance of Pq explained by the causal SNP). We define trait-specific heritability for

question g as h_ = B , F2MAF (1-MA

SNP SNP

F ), where MAFsyp is the MAF of the causal SNP.

The correlation between questions q and q’is defined as Eq’q, =, ll—hq \ /1—hq, * Zq,q, where X

is the LxL residual correlation matrix shown in Supplementary Fig. S3. This allows the
residual correlation structure among phenotypes to stay at the defined values.

Using the simulated data, we evaluated GAMuT using either projection matrices or
linear kernels to model phenotypic similarity and using weighted linear kernels to model
genotypic similarity (with weights based on sample MAF). We compare GAMuT to two
standard approaches that use the univariate cumulative questionnaire score for inference.
First, we consider a standard linear regression model that follows the form

§=7Zy+p,,G +e (3)

SNP
where S is the Nx1 vector of cumulative scores, Z is an N x ¢ vector of ¢ covariates

(including an intercept) with regression parameter vector y, Gm denotes an Nx1 vector of

SNP genotypes at SNP m with regression parameter ﬁSNP , and the residual error e follows a



MVN distribution, e ~ MVN(0,6°I), where I denotes the NxN identity matrix. We then

implement a likelihood ratio test to assess the null hypothesis of H  : ﬂSNP = 0 for each SNP

m. To adjust for multiple testing of M correlated SNPs, we apply Pacr!” to the smallest
observed P-value.

As power differences between GAMuT and the linear regression approach
mentioned in the previous paragraph could be due either to joint modeling of multivariate
questionnaire data over cumulative score or joint modeling of multiple genetic variants
over a single variant, we further teased these factors apart by considering an additional
gene-based test of the cumulative sum § using a kernel-machine regression (KMR#) test
(which is analogous to the popular SKAT® test but for common variants). KMR, like GAMuT,
models genotypic similarity using a weighted linear kernel with weights based on sample
MAF. Since GAMuT and univariate KMR both consider analyses on the gene-based level,
comparison of the two approaches should help highlight the benefit of considering a
multivariate questionnaire phenotype over a traditional cumulative-based score for

analysis.
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Supplementary Figure S1: Pairwise LD (R?) heatmap and MAF for all SNPs reported in
HapMap +2kb of the STAT3 gene. MAF is plotted below, with genotyped SNPs denoted by
the X’ on the bottom of the MAF plot.
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Supplementary Figure S3: Correlation among the 21 BDI question responses in the GTP
dataset, after adjusting for covariates. Dark green indicates correlation of 0.6 while white
indicates correlation of 0.2. Correlation among all questions was positive. All correlations
are significant (Pearson’s product-moment correlation P-value < 1x10-13).
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Supplementary Figure S4: Frequency of scores for each of the 21 BDI questions in the
GTP dataset. The answers to each question are scored from 0 (no symptoms) to 3 (severe

symptoms).
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Supplementary Figure S5: The QQ plots of 10,000 simulated null datasets assuming a
sample size of 1,000 with a confounding variable. Questionnaire responses are
independent of genotypes (for SNPs in STAT3), but both responses and genotypes are
associated with a continuous covariate. Left shows QQ plots without adjustment for
confounding, while right shows QQ plots after adjustment for confounding by
residualization.
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Supplementary Figures S6a-S6c: Application of GAMuT, univariate KMR, and
standard linear regression to BDI (21 items). Supplementary Figure S6a includes
plots for the GAMuT analyses (which used a linear kernel for modeling phenotypic
similarity), showing the results for each genotype weighting method. In the
Manhattan plots, the red line represents the study-wise significance threshold
(based on a Bonferroni correction for the number of genes tested), and the blue line
represents the suggestive significance threshold. Supplementary Figures S6b and
S6c show results from the corresponding univariate KMR (gene-level testing) and
linear regression (SNP-level testing) analyses.
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Supplementary Figure S6b: BDI (cumulative score), univariate KMR
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