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Supplementary	Methods	
	

Assumptions	and	Notation:	We	assume	an	inventory,	test,	or	questionnaire	with	Q	

questions.	The	response	to	each	question	q	(q=1,…,Q)	is	an	ordinal	response	ranging	from	0	

to	F,	where	F	is	the	maximum	score	possible.	We	assume	a	population-based	sample	of	N	

subjects	have	responded	to	the	questionnaire	and	possess	common-variant	data	in	a	target	

gene	or	region.	For	subject	j	(j=1,…,N),	we	define	Pj		=		(Pj,1,	Pj,2,	…,	Pj,Q	)	as	subject	j’s	

responses	to	the	Q	questions.	We	then	define	a	matrix	of	questionnaire	responses	for	the	

entire	sample	 ,	which	is	of	dimension	NxQ.	Finally,	for	subject	j,	we	

define	the	traditional	cumulative	score	typically	used	for	genetic	analysis	of	BDI	or	PSS	as	

S j = Pj ,qq=1
Q∑ .			

Similarly,	we	define	Gj	=	(Gj,1,	Gj,2,	…,	Gj,V	)	to	be	the	genotypes	of	subject	j	at	V	SNPs,	

where	Gj,v	is	coded	as	the	number	of	copies	of	the	minor	allele	that	the	subject	possesses	at	

SNP	v.	The	SNPs	included	in	Gj	will	be	referred	to	as	the	“SNP	set.”	We	then	construct	the	

matrix	of	genotypes	for	the	sample	as	 ,	which	is	of	dimension	N	x	V.	

Several	approaches	to	constructing	a	SNP	set	have	previously	been	described1,2.	For	

demonstration	purposes	in	this	manuscript,	we	will	define	a	SNP	set	as	common	variants	

(minor-allele	frequency	[MAF]	>	5%)	that	fall	within	2kb	of	a	gene	of	interest.	

	 GAMuT	uses	a	KDC	framework	to	perform	a	SNP-set	test	to	test	for	independence	

between	P	(NxQ	matrix	of	multivariate	responses	to	a	questionnaire)	and	G	(NxV	matrix	of	

multivariate	genotypes).	After	standardizing	P	and	G,	we	develop	an	NxN	questionnaire-

similarity	matrix	Y	(based	on	P)	and	a	NxN	genotypic-similarity	matrix	X	(based	on	G).	The	

choice	of	how	to	model	pairwise	similarity	or	dissimilarity	for	a	set	of	multivariate	

!
P = P1

T ,P2
T ,… ,PN

T( )T

!
G = G1

T ,G2
T ,… ,GN

T( )T
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outcomes	is	quite	flexible.	For	example,	for	P,	we	can	model	the	matrix	Y	using	a	projection	

matrix,	as	suggested	by	Zapala	and	Schork3,	such	that	 .	We	can	also	

construct	the	model	Y	using	user-selected	kernel	functions1,4-6	such	as	the	linear	kernel,	

y(Pi ,Pj )= Pi,lPj,ll=1
L∑ 	or	a	quadratic	kernel,	 y(Pi ,Pj )= (1+ Pi ,ll=1

L∑ Pj ,l )2 .		

For	genotypes	G,	we	model	its	corresponding	matrix	X	using	kernel	functions	x(Gi,	

Gj)	that	can	take	the	same	form	(e.g.,	linear,	quadratic,	Gaussian,	Euclidean	distance)	used	

to	construct	y(Pi,	Pj),	although	additional	kernels	based	on	identity-by-state	sharing	are	

also	possible.	We	may	wish	to	further	augment	x(Gi,	Gj)	to	preferentially	upweight	the	

contributions	of	particular	SNPs	in	G	over	others	in	the	gene.	For	simulations	reported	

here,	we	implement	a	weighting	scheme	based	on	the	minor-allele	frequency	(MAF)	of	each	

assayed	SNP	that	weights	rarer	variants	over	more	common	ones	as	described	in	Kwee	et	

al4.	Another	possible	SNP	weight	could	be	a	measure	of	the	strength	of	association	between	

the	SNP	and	some	related	mental-health	phenotype	(e.g.	major	depressive	disorder,	

schizophrenia)	that	is	available	from	an	independent	public	dataset	like	those	provided	by	

the	Psychiatric	Genomics	Consortium7-9.	Using	such	independent	external	weights	likely	

has	value	since	it	could	be	argued	that	a	variant	associated	with	a	psychiatric	phenotype	

(e.g.	MDD)	in	one	dataset	is	more	likely	to	be	associated	with	a	correlated	psychiatric	

phenotype	measured	by	PSS	or	BDI	in	an	independent	dataset	given	existing	knowledge	

about	the	shared	genetic	overlap	among	such	traits10,11.	We	can	construct	such	a	SNP	

weight	as	a	function	of	the	log	odds	ratio	of	the	SNP	in	the	independent	dataset.	Once	we	

determine	the	weight	function,	we	then	create	a	diagonal	weight	matrix	W=	diag(w1,	w2,	…,	

wV	),	where	wv,	reflects	the	relative	(normalized)	weight	for	the	vth	variant	in	the	gene.	

Y = P(PT P )−1PT
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Using	W,	we	can	then	create	a	weighted	linear	kernel	function	as	X=GWGT.	Derivation	of	

other	weighted	kernel	functions	is	straightforward.		

	 Once	we	construct	the	similarity	matrices	Y	and	X,	we	derive	our	GAMuT	approach	

as	a	test	of	independence	between	the	elements	of	these	two	matrices.	Briefly,	we	center	

each	matrix	as	Yc=HYH	and	Xc=HXH.	Here,	 	is	a	centering	matrix	with	

property	HH=H,	I	is	an	identity	matrix	of	dimension	N,	and	1N	is	an	Nx1	vector	with	each	

element	equal	to	1.	Using	Yc	and	Xc	,	we	construct	our	test	of	independence	of	the	two	

matrices	as		

	
		
TGAMuT=

1
N
trace(YcXc ) 	 (1)	

Under	the	null	hypothesis	of	independence	of	the	two	matrices,	TGAMuT	follows	the	same	

asymptotic	distribution	as	

	
		

1
N2

λX ,ii , j=1
N∑ λY ,iz

2
ij 	 (2)	

where	λX ,i 	is	the	ith		ordered	eigenvalue	of	Xc	,	λY , j 	is	the	jth		ordered	eigenvalue	of	Yc	,	and	

!!
z2ij 	are	independent	and	identically-distributed	 χ1

2 	variables12.	We	derive	P-values	for	our	

GAMuT	test	analytically	using	Davies’	exact	method13,	which	is	a	computationally	efficient	

method	to	provide	accurate	P-values	in	the	extreme	tails	of	tests	that	follow	mixtures	of	

chi-square	variables6.	An	implementation	of	Davies’	method	is	available	in	the	R	library	

CompQuadForm.		

		Adjusting	for	Covariates:	Genetic	association	tests	must	adjust	for	important	

covariates,	such	as	principal	components	of	ancestry,	to	avoid	potential	confounding	of	

results.	We	can	control	for	confounders	before	applying	GAMuT	by	regressing	each	

H = ( I # 1
N
1T
N
/ N)
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symptom	scale	separately	on	covariates	of	interest	and	then	using	the	residuals	to	form	the	

phenotypic	similarity	matrix	Y.	Although	residualizing	categorical	phenotypes	is	not	

standard,	studies	have	suggested	that	this	procedure	does	not	affect	the	validity	of	genetic	

association	tests	in	case-control	studies14,15.	As	we	describe	in	the	Results	section,	such	

residualization	provides	an	effective	correction	for	confounders	within	our	simulated	

ordinal	datasets.		

Simulations:	We	conducted	simulations	to	verify	that	GAMuT	properly	preserves	

type-I	error	(i.e.,	empirical	size)	and	to	assess	power	of	GAMuT	relative	to	standard	

association	tests	that	treat	questionnaire	responses	as	a	univariate	outcome	variable	

resulting	from	summing	the	responses	into	a	continuous	score.	We	perform	simulations	

based	on	SNPs	and	LD	patterns	located	within	2	kb	up-	and	down-stream	from	two	genes:	

signal	transducer	and	activator	of	transcription	3	(STAT3),	a	gene	on	chromosome	17q21.31,	

and	leucine	rich	repeat	and	fibronectin	type	III	domain	containing	5	(LRFN5),	a	gene	on	

chromosome	14q21.1.	We	show	the	MAF	and	pairwise	LD	structure	of	SNPs	in	STAT3	and	

LRFN5	in	Supplementary	Figs.	S1	and	S2,	respectively.	To	incorporate	observed	LD	patterns	

from	HapMap	samples,	we	used	the	HAPGEN	package16	to	generate	simulated	SNP	data.	

HAPGEN	generates	simulated	genotype	information	for	all	SNPs	identified	in	HapMap	

within	each	gene;	however,	to	better	replicate	real	GWAS	conditions,	we	applied	the	testing	

approaches	only	to	those	SNPs	that	would	be	typed	on	standard	genotyping	arrays.	

Although	27	common	SNPs	fall	within	the	STAT3	gene,	only	14	of	the	27	are	genotyped	on	

the	Illumina	HumanOmni1-Quad	genotyping	platform.	Thus,	the	14	typed	SNPs	form	the	

SNP	set	for	the	kernel	approach,	and	only	the	14	typed	SNPs	are	tested	for	association.	

Similarly,	LRFN5	contains	127	common	SNPs,	only	50	of	which	are	typed	on	the	Illumina	
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HumanOmni1-Quad	array,	resulting	in	a	set	of	50	SNPs	tested	for	association	in	the	LRFN5	

analyses.	Under	simulations	where	the	causal	SNP	is	not	genotyped,	power	to	detect	an	

association	relies	on	LD	between	the	causal	SNP	and	typed	SNPs.			

We	simulate	multivariate	questionnaire	data	to	mimic	the	BDI	questionnaire	results	

obtained	from	GTP	participants.	The	BDI	consists	of	21	groups	of	statements	that	reflect	

various	symptoms	and	attitudes	associated	with	depression.	Each	group	includes	4	

statements,	which	correspond	to	a	scale	of	0	to	3	in	terms	of	intensity.	The	21	groups	are	

sadness,	pessimism,	past	failure,	loss	of	pleasure,	guilty	feelings,	punishment	feelings,	self-

dislike,	self-criticalness,	suicidal	thoughts	or	wishes,	crying,	agitation,	loss	of	interest,	

indecisiveness,	worthlessness,	loss	of	energy,	changes	in	sleep	patterns,	irritability,	

changes	in	appetite,	concentration	difficulty,	fatigue,	and	loss	of	libido.	The	BDI	is	generally	

self-administered	or	self-reported,	and	is	scored	by	summing	the	ratings	given	to	each	of	

the	21	items.	Summing	the	responses	yields	a	score	ranging	from	0-63,	with	scores	higher	

than	28	being	indicative	of	moderate	to	severe	depression.			

To	simulate	BDI	data,	we	first	generated	21	outcomes	for	each	subject	using	a	

multivariate	normal	distribution	with	mean	vector	0	and	QxQ	correlation	matrix	Σ.	We	

calculated	Σ	based	on	observed	Spearman	rank	correlation	calculations	from	the	GTP	BDI	

questionnaire	responses	shown	in	Supplementary	Fig.	S3.	The	observed	correlations	

between	questions	ranged	from	0.22	to	0.57.	Next,	we	generated	ordinal	responses	from	

the	normally	distributed	variables	to	match	the	ordinal	responses	observed	in	GTP	data.	

Frequency	of	scores	by	each	of	the	21	BDI	questions	is	shown	in	Supplementary	Fig.	S4.	We	

found	the	percent	of	GTP	participants	who	answered	0,	1,	2,	and	3	for	each	question.		We	

then	matched	the	percentages	of	each	BDI	question	for	each	of	the	21	normally	distributed	
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variables.	For	example,	in	BDI	Question	1	(“Sadness”),	56%	of	participants	answered	0	(“I	

do	not	feel	sad”),	34%	answered	1	(“I	feel	sad	much	of	the	time”),	6%	answered	2	(“I	feel	

sad	all	of	the	time”),	and	4%	answered	3	(“I	am	so	sad	or	unhappy	that	I	can’t	stand	it.”).	To	

simulate	ordinal	responses	to	Question	1,	the	lowest	56%	of	the	continuous	outcomes	were	

assigned	a	score	of	0,	values	falling	in	the	57-90	percentile	were	assigned	a	score	of	1,	91-

96	percentiles	were	assigned	a	score	of	2,	and	values	in	the	97th	percentile	and	above	were	

assigned	a	score	of	3.	We	set	sample	size	N	of	either	1,000	or	2,500	subjects.	We	applied	

GAMuT	to	10,000	null	simulated	datasets	to	estimate	empirical	size.	

To	investigate	the	performance	of	GAMuT	under	confounding	and	to	assess	whether	

the	approach	can	successfully	adjust	for	relevant	covariates	in	this	setting,	we	also	

simulated	questions	under	a	confounding	model	where	question	responses	were	

independent	of	genotype,	but	both	questions	and	genotype	are	associated	with	a	

continuous	covariate	Z.	We	simulated	questions	correlated	with	the	covariate	Z	under	the	

model	 ,	where	Z	denotes	the	N	x	1	sample	vector	of	covariates.	We	

arbitrarily	selected	SNP	9	(rs9909659)	in	the	STAT3	gene	as	causally	associated	with	the	

confounder.	We	simulated	correlation	between	SNP	9	and	the	covariate	by	generating	the	

effect	size	of	confounder	on	SNP	as	βZ=0.2.	Testing	empirical	size	under	this	model	allows	

us	to	verify	that	our	approach	to	control	for	confounders	is	valid.	

	 For	power	models,	we	simulated	data	sets	in	which	each	of	the	SNPs	within	STAT3	

and	LRFN5	were	modeled	as	being	causal	(i.e.,	each	of	the	27	SNPs	within	STAT3	was	

modeled	as	causal,	and	each	of	the	127	SNPs	within	LRFN5	was	set	as	causal).	We	model	

effect	size	of	the	causal	SNP	on	each	question,	βq,	as	!!βq =N(0.1,0.03) .	This	formulation	sets	

mean	effect	sizes	with	modest	effect	on	the	overall	cumulative	score;	for	a	causal	SNP	with	

P ~MVN(0.2Z,Σ)
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MAF=0.3,	this	formulation	corresponds	to	an	R2=0.009	when	the	SNP	is	associated	with	all	

questions	in	the	questionnaire.	Allowing	βq	to	vary	around	a	normal	distribution	allows	the	

variant	to	have	a	slightly	different	effect	size	for	each	question.	We	also	vary	the	number	of	

questions	that	are	associated	with	the	causal	SNP,	such	that	not	all	of	the	questions	will	be	

dependent	on	the	gene	of	interest.	We	consider	situations	where	18/21,	12/21,	and	6/21	

questions	are	actually	associated	with	the	causal	SNP.	We	control	residual	correlation	

among	questions	through	consideration	of	trait-specific	heritability	(i.e.,	the	relative	

variance	of	Pq	explained	by	the	causal	SNP).	We	define	trait-specific	heritability	for	

question	q	as	!!hq = β
2
SNP ,q *2MAFSNP(1+MAFSNP ) ,	where	MAFSNP	is	the	MAF	of	the	causal	SNP.	

The	correlation	between	questions	q	and	q’	is	defined	as	!!Eq ,q' = 1−hq 1−hq' *Σq ,q' 	where	Σ	

is	the	LxL	residual	correlation	matrix	shown	in	Supplementary	Fig.	S3.	This	allows	the	

residual	correlation	structure	among	phenotypes	to	stay	at	the	defined	values.		

	 Using	the	simulated	data,	we	evaluated	GAMuT	using	either	projection	matrices	or	

linear	kernels	to	model	phenotypic	similarity	and	using	weighted	linear	kernels	to	model	

genotypic	similarity	(with	weights	based	on	sample	MAF).	We	compare	GAMuT	to	two	

standard	approaches	that	use	the	univariate	cumulative	questionnaire	score	for	inference.	

First,	we	consider	a	standard	linear	regression	model	that	follows	the	form	

	 !!!S = Zγ +βSNPGm +e 	 (3)	

where	S	is	the	Nx1	vector	of	cumulative	scores,	Z	is	an	N	x	c	vector	of	c	covariates	

(including	an	intercept)	with	regression	parameter	vector	γ,	Gm	denotes	an	Nx1	vector	of	

SNP	genotypes	at	SNP	m	with	regression	parameter	 βSNP ,	and	the	residual	error	e	follows	a	
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MVN	distribution,	 e ~ MVN(0, σ 2I ) ,	where	I	denotes	the	NxN	identity	matrix.	We	then	

implement	a	likelihood	ratio	test	to	assess	the	null	hypothesis	of	H
0
: β

SNP
= 0 	for	each	SNP	

m.	To	adjust	for	multiple	testing	of	M	correlated	SNPs,	we	apply	PACT17	to	the	smallest	

observed	P-value.			

As	power	differences	between	GAMuT	and	the	linear	regression	approach	

mentioned	in	the	previous	paragraph	could	be	due	either	to	joint	modeling	of	multivariate	

questionnaire	data	over	cumulative	score	or	joint	modeling	of	multiple	genetic	variants	

over	a	single	variant,	we	further	teased	these	factors	apart	by	considering	an	additional	

gene-based	test	of	the	cumulative	sum	S	using	a	kernel-machine	regression	(KMR4)	test	

(which	is	analogous	to	the	popular	SKAT6	test	but	for	common	variants).	KMR,	like	GAMuT,	

models	genotypic	similarity	using	a	weighted	linear	kernel	with	weights	based	on	sample	

MAF.	Since	GAMuT	and	univariate	KMR	both	consider	analyses	on	the	gene-based	level,	

comparison	of	the	two	approaches	should	help	highlight	the	benefit	of	considering	a	

multivariate	questionnaire	phenotype	over	a	traditional	cumulative-based	score	for	

analysis.		
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Supplementary	Figure	S1:	Pairwise	LD	(R2)	heatmap	and	MAF	for	all	SNPs	reported	in	
HapMap	±2kb	of	the	STAT3	gene.	MAF	is	plotted	below,	with	genotyped	SNPs	denoted	by	
the	‘x’	on	the	bottom	of	the	MAF	plot.	
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Supplementary	Figure	S2:	Pairwise	LD	(R2)	heatmap	and	MAF	for	all	SNPs	reported	in	
HapMap	±2kb	of	the	LRFN5	gene.	MAF	is	plotted	below,	with	genotyped	SNPs	denoted	by	
the	‘x’	on	the	bottom	of	the	MAF	plot.	
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Supplementary	Figure	S3:	Correlation	among	the	21	BDI	question	responses	in	the	GTP	
dataset,	after	adjusting	for	covariates.	Dark	green	indicates	correlation	of	0.6	while	white	
indicates	correlation	of	0.2.	Correlation	among	all	questions	was	positive.	All	correlations	
are	significant	(Pearson’s	product-moment	correlation	P-value	<	1x10-15).	
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Supplementary	Figure	S4:	Frequency	of	scores	for	each	of	the	21	BDI	questions	in	the	
GTP	dataset.	The	answers	to	each	question	are	scored	from	0	(no	symptoms)	to	3	(severe	
symptoms).	
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Supplementary	Figure	S5:		The	QQ	plots	of	10,000	simulated	null	datasets	assuming	a	
sample	size	of	1,000	with	a	confounding	variable.	Questionnaire	responses	are	
independent	of	genotypes	(for	SNPs	in	STAT3),	but	both	responses	and	genotypes	are	
associated	with	a	continuous	covariate.	Left	shows	QQ	plots	without	adjustment	for	
confounding,	while	right	shows	QQ	plots	after	adjustment	for	confounding	by	
residualization.	
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Supplementary	Figures	S6a-S6c:	Application	of	GAMuT,	univariate	KMR,	and	
standard	linear	regression	to	BDI	(21	items).	Supplementary	Figure	S6a	includes	
plots	for	the	GAMuT	analyses	(which	used	a	linear	kernel	for	modeling	phenotypic	
similarity),	showing	the	results	for	each	genotype	weighting	method.	In	the	
Manhattan	plots,	the	red	line	represents	the	study-wise	significance	threshold	
(based	on	a	Bonferroni	correction	for	the	number	of	genes	tested),	and	the	blue	line	
represents	the	suggestive	significance	threshold.	Supplementary	Figures	S6b	and	
S6c	show	results	from	the	corresponding	univariate	KMR	(gene-level	testing)	and	
linear	regression	(SNP-level	testing)	analyses.	
	
	
Supplementary	Figure	S6a:	BDI	(21	items),	GAMuT		
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Supplementary	Figure	S6b:	BDI	(cumulative	score),	univariate	KMR	
	

	
	
	
Supplementary	Figure	S6c:	BDI	(cumulative	score),	standard	linear	regression	
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