ISCI, Volume 15

Supplemental Information

Non-transition Metal-Mediated Diverse

Aryl–Heteroatom Bond Formation

of Arylammonium Salts

Dong-Yu Wang, Xin Wen, Chao-Dong Xiong, Jian-Nan Zhao, Chun-Yong Ding, Qian Meng, Hu Zhou, Chao Wang, Masanobu Uchiyama, Xiao-Jie Lu, and Ao Zhang

Supplementary Information

Table of Contents

1.	General Methods for Experiments
2.	Optimization for Reaction Conditions
3.	Transparent Methods
3.1	General Procedure for Preparations of Aryltrimethylammonium Salts
3.2	General Procedure for the Reactions of Aryltrimethylammonium Salts with Thiols
3.3	General Procedure for the C-Si/Sn/Ge Bond-forming Reaction of Arylammonium Salts
3.4	General Procedure for the Selenation Reaction of Arylammonium Salts
3.5	General Procedure for the Amination Reaction of Arylammonium Salts
3.6	Procedure for the Late-stage Diversification of Pharmaceutical Ammonium Derivative
3.7	Procedure for Click Reaction of NBD-ammonium Salt and Biological Thiols
3.8	Procedure for on-DNA Reactions
4.	Copies of NMR Spectrums for All Compounds
5.	Copies of MS Spectrums for Compounds in Fig 5 and Fig 6
6.	Reference

1. General Methods for Experiments

All solvents and chemical reagents were obtained from commercial sources such as *Strem Chemicals, Adamas-beta, Sigma-Aldrich, J&K, Accela* and *TCI,* which were used without further purification. ¹H and ¹³C NMR spectra were recorded with tetramethylsilane as an internal reference. Low and high-resolution mass spectra were recorded on EI-TOF (electrospray ionization-time of flight) or ESI-TOF. Normal-phase column chromatography was performed with silica gel 60 (230–400 mesh) from Merck and thin-layer chromatography was carried out on 0.25 mm Merck silica gel plates (60F-254). DNA headpiece HP-NH2 (5'-/5phos/GAGTCA/iSp9/iUniAmM/iSp9/TGACTCCC-3') was obtained from Biosearch Technologies, Novato, CA.

2. Optimization for Reaction Conditions

	N -	Me ₃ • + ^{HS} Me	Base (n eq)	- S	₩ ^{Me}
	NC 1.0 eq	n eq	solvent, r.t ., 3 h	NC NMR y	ield
Entry	х	Base	n	solvent	NMR Yield
1	OTf	NaO ^t Bu	2.0	DMF	46%
2	OTf	KO ^t Bu	2.0	DMF	90%
3	OTf	KHMDS	2.0	DMF+THF	87%
4	OTf	K ₂ CO ₃	2.0	DMF	98%
5	I	K ₂ CO ₃	2.0	DMF	90%
6	BF ₄	K ₂ CO ₃	2.0	DMF	85%
7	OTf	Li ₂ CO ₃	2.0	DMF	trace
8	OTf	Na ₂ CO ₃	2.0	DMF	35%
9	OTf	Cs ₂ CO ₃	2.0	DMF	93%
10	OTf	K ₃ PO ₄	2.0	DMF	82%
11	OTf	K ₂ CO ₃	2.0	THF	88%
12	OTf	K ₂ CO ₃	2.0	DMSO	45%
13	OTf	K ₂ CO ₃	2.0	DMA	78%
14	OTf	K ₂ CO ₃	2.0	NMP	53%
15	OTf	K ₂ CO ₃	2.0	DCM	38%
16	OTf	K ₂ CO ₃	1.5	DMF	96%
17	OTf	K ₂ CO ₃	1.1	DMF	80%
18	OTf	KO ^t Bu (with 2.0eq. TEMP	O) 1.5	DMF	92%

Table S1. Screening of Thioetherification Conditions, related to Scheme 2a.

EtOOC 1	* • • • • • • • • • • • • •	Base ((n eq)	SiMe ₃ NMR yield
Entry	Base	n	solvent	NMR
1	KO'Bu KE	2.0 2.0	NMP NMP	0% 25%
3	KOAc	2.0	NMP	0%
4	NaOEt	2.0	NMP	0%
5	TBAF	2.0	NMP	32%
6	CsF	2.0	DMF	65%
7	CsF	2.0	DMSO	42%
8	CsF	2.0	CH₃CN	trace
9	CsF	2.0	DCM	trace
10	CsF	1.5	NMP	88%
11	CsF	1.1	NMP	55%
12	CsF (with 2.0eq. TEMPO)	1.5	NMP	72%

Table S2. Screening of Silylation Conditions, related to Scheme 2b.

Table S3. Screening of Stannylation Conditions, related to Scheme 2c.

EtOOC	NMe ₃ OTf + Bu ₃ Sn–SiMe ₃ 1.0 eq n eq	Base solvent,	(n eq) r.t ., 3 h EtOO	NMR yield
Entry	Base	n	solvent	NMR Yield
1	KF	2.0	DMF	83%
2	CsF	2.0	DMF	92%
3	NaOMe	2.0	DMF	76%
4	TBAF	2.0	DMF	80%
5	CsF	2.0	THF	75%
6	CsF	2.0	DMSO	47%
7	CsF	2.0	CH₃CN	62%
8	CsF	2.0	NMP	83%
9	CsF	1.5	DMF	90%
10	CsF	1.1	DMF	77%
11	CsF (with 2.0eq. TEMPO)	1.5	DMF	85%

0	NMe ₃ OTf	+ PhSeSePh	B sol	ase (m eq)	SePh
-	1.0 eq	neq		NMR	yield
Entry	Base	n	m	solvent	NMR Yield
1	KO ^t Bu	1.5	1.5	DMF	0%
2	NaH	1.5	1.5	DMF	trace
3	КН	1.5	1.5	DMF	65%
4	KHMDS	1.5	1.5	DMF+THF	trace
5	NaBH ₄	1.5	3.0	THF+H ₂ O+DMF	80%
6	KBH ₄	1.5	3.0	THF+H ₂ O+DMF	98%
7	KBH ₄	1.0	2.0	THF+H ₂ O+DMF	95%
8	KBH_4	0.6	1.2	THF+H ₂ O+DMF	55%

Table S4. Screening of Selenation Conditions, related to Scheme 2e.

Table S5. Screening of Amination Conditions, related to Scheme 2f.

0 ₂ N	NMe ₃ OTf	+ H ₂ N n eq	Ba	ent, r.t., 3 h O_2 N	
	Entry	Base	n	solvent	NMR Yield
-	1	KO ^t Bu	2.0	DMF	15%
	2	K ₂ CO ₃	2.0	DMF	0%
	3	Cs_2CO_3	2.0	DMF	0%
	4	КН	2.0	DMF	35%
	5	КОН	2.0	DMF	40%
	6	KHMDS	2.0	DMF	83%
	7	KHMDS	2.0	DMSO	42%
	8	KHMDS	1.5	DMF	80%
_	9	KHMDS	1.1	DMF	56%

3. Transparent Methods

3.1 General Procedure for Preparations of Aryltrimethylammonium Salts.

3.1.1 Preparations of ArNMe₃**OTf**: To a stirred solution of *N*,*N*–dimethylaniline (10 mmol) in CH₂Cl₂ (10 mL) was added dropwise methyl trifluoromethanesulfonate (1.24 mL, 11.0 mmol, 1.1 equiv.) at 25°C. The resulting solution was stirred for 4 h or 12 h at room temperature (r.t.). For some anilines bearing strong electron-withdrawing groups, the reactions may need heating up to 70 °C in MeCN in stead of CH₂Cl₂. Solvent was then removed in

vacuum and the residue was washed with Et₂O, dried under vacuum to give a white solid. (Wang et al., 2016)

3.1.2 Preparations of ArNMe₃CI: To a stirred solution of aryl chloride (10 mmol) in CH_2CI_2 (10 mL) was added dropwise NMe₃ (2M in THF, 6 mL, 12.0 mmol, 1.2 equiv.; For **1s**, 0.7 equiv.) at 25°C. The resulting solution was stirred for 2 h at room temperature (r.t.). Solvent was then removed in vacuum and the residue was washed with Et₂O, dried under vacuum to give a white solid.

3.2 General Procedure for the Reactions of Aryltrimethylammonium Salts with Thiols (Fig. S1)

A flask was charged with aryltrimethylammonium triflates (0.2 mmol), thiols (0.3 mmol), K₂CO₃ (0.3 or 0.6 mmol) and DMF (3 mL). The reaction mixture was stirred at r.t. for 3 h to give a colorless or (pale) yellow suspended solution. Then water (30 mL) was added to remove DMF. The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified on column chromatography or preparative TLC (silica gel) or preparative HPLC (for **3ir**) to give the product and NMR yields with mesitylene as an internal standard.

Fig.S1, related to Scheme 2a.

3aa: White solid, isolated yield 71%; ¹H NMR (300 MHz, CDCl₃) δ 8.15 (d, *J* = 8.9 Hz, 2H), 7.42 (d, *J* = 8.9 Hz, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.77 (s, 2H), 1.28 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.60, 145.73, 145.46, 126.89, 124.07, 62.14, 34.67, 14.10.; All spectral data match those previously reported. (Nagao et al., 2006)

3ab: Yellow solid, isolated yield 78%; ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 2H), 7.37 (d, *J* = 8.9 Hz, 2H), 3.14 (t, *J* = 6.0 Hz, 2H), 3.04 (t, *J* = 5.9 Hz, 2H), 1.52 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.94, 145.24, 126.63, 124.02, 40.68, 36.12. HRMS (EI) *m/z*: calcd for C₈H₁₀N₂O₂S [M⁺] 198.0458, found 198.0462.

Ar S OH

3ac: Yellow solid, isolated yield 90%; ¹H NMR (300 MHz, CDCl₃) δ 8.13 (d, *J* = 9.0 Hz, 2H), 7.40 (d, *J* = 9.0 Hz, 2H), 3.89 (t, *J* = 6.1 Hz, 2H), 3.25 (t, *J* = 6.1 Hz, 2H), 2.04 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.30, 145.41, 126.88, 124.04, 60.54, 35.12.; All spectral data match those previously reported. (Irie et al., 1980)

Ar Si(OMe)₃

3ad: Colorless oil, isolated yield 80%; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, J = 9.0 Hz, 2H), 7.32 (d, J = 9.0 Hz,

2H), 3.57 (s, 9H), 3.07 – 3.01 (m, 2H), 1.83 (dt, J = 15.2, 7.7 Hz, 2H), 0.85 – 0.77 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.85, 144.92, 126.12, 123.94, 50.61, 34.47, 22.28, 8.69. HRMS (EI) *m/z*: calcd for C₁₂H₁₉NO₅SSi [M⁺] 317.0748, found 317.0760.

Ar S

3ae: Yellow solid, isolated yield 75%; ¹H NMR (300 MHz, CDCl₃) δ 8.11 (d, *J* = 9.1 Hz, 2H), 7.34 (d, *J* = 9.1 Hz, 2H), 5.89 (ddt, *J* = 16.7, 10.1, 6.5 Hz, 1H), 5.26 (ddd, *J* = 13.5, 11.2, 1.1 Hz, 2H), 3.68 (d, *J* = 6.5 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.83, 145.23, 131.96, 126.81, 123.86, 119.04, 35.21.; All spectral data match those previously reported. (Pace et al., 2012)

3af: Colorless oil, isolated yield 90%; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 9.0 Hz, 2H), 7.39 (d, *J* = 9.1 Hz, 2H), 7.36 (dd, *J* = 1.9, 0.8 Hz, 1H), 6.31 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.24 (dd, *J* = 3.2, 0.8 Hz, 1H), 4.24 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 149.04, 145.79, 145.11, 142.23, 126.83, 123.52, 110.29, 108.11, 29.18.

3ag: White solid, isolated yield 83%; ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 9.0 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 9.0 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 146.86, 145.07, 135.43, 132.69, 129.31, 126.52, 123.63.; All spectral data match those previously reported. (Taniguchi et al., 2017)

3ah: White solid, isolated yield 80%; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, *J* = 9.1 Hz, 2H), 7.45 (q, *J* = 8.6 Hz, 4H), 7.21 – 7.15 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.59, 145.66, 136.08, 135.84, 130.29, 129.20, 127.00, 124.17.; All spectral data match those previously reported. (Taniguchi et al., 2017)

3ai: White solid, isolated yield 90%; ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, *J* = 9.0 Hz, 2H), 7.44 (d, *J* = 8.7 Hz, 2H), 7.10 (d, *J* = 9.0 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 5.53 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.37, 150.07, 144.96, 137.38, 125.57, 123.96, 120.29, 117.19.; All spectral data match those previously reported. (Tian et al., 2014)

3aj: Yellow solid, isolated yield 88%; ¹H NMR (300 MHz, DMSO) δ 8.19 (d, J = 9.0 Hz, 2H), 8.00 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.3 Hz, 2H), 7.47 (d, J = 9.0 Hz, 2H). ¹³C NMR (126 MHz, DMSO) δ 166.58, 145.85, 144.77, 136.88, 132.45, 131.03, 130.71, 129.09, 124.48. HRMS (ESI) *m/z*: calcd for C₁₃H₈NO₄S [M-H] ⁻ 274.0180, found

274.0182.

3ak: White solid, isolated yield 88%; ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 5.34 (d, *J* = 6.7 Hz, 1H), 4.65 (dd, *J* = 11.7, 4.9 Hz, 1H), 3.70 (s, 3H), 3.57 (dd, *J* = 14.0, 4.8 Hz, 1H), 3.44 (dd, *J* = 14.0, 4.8 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 170.52, 154.88, 145.61, 127.60, 123.97, 80.52, 53.16, 52.79, 35.01, 28.21. HRMS (EI) *m/z*: calcd for C₁₅H₂₀N₂O₆S [M⁺] 356.1037, found 356.1043.

3al: White solid, isolated yield 83%; ¹H NMR (300 MHz, DMSO) δ 12.61 (s, 1H), 8.61 (t, *J* = 5.8 Hz, 1H), 8.13 (d, *J* = 9.1 Hz, 2H), 7.55 (d, *J* = 9.1 Hz, 2H), 4.29 (q, *J* = 7.0 Hz, 1H), 3.79 (dd, *J* = 5.9, 2.2 Hz, 2H), 1.46 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, DMSO) δ 171.44, 171.39, 146.23, 145.43, 128.20, 124.35, 44.28, 41.39, 18.53. HRMS (ESI) *m/z*: calcd for C₁₁H₁₃N₂O₅S [M+H]⁺⁻ 285.0540, found 285.0544.

3am: White solid, isolated yield 80%; ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, *J* = 8.9 Hz, 2H), 7.65 (d, *J* = 8.9 Hz, 2H), 2.66 (d, *J* = 13.2 Hz, 1H), 2.40 – 2.26 (m, 2H), 1.97 (d, *J* = 11.7 Hz, 3H), 1.64 (dd, *J* = 13.1, 3.1 Hz, 2H), 1.43 (d, *J* = 11.1 Hz, 6H), 1.02 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 209.98, 148.02, 141.38, 137.50, 123.39, 57.98, 52.93, 52.26, 36.75, 34.54, 29.78, 28.20, 24.67, 22.19. HRMS (EI) *m/z*: calcd for C₁₆H₂₁NO₃S [M⁺] 307.1237, found 307.1236.

3an: Colorless oil, isolated yield 75%; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.6 Hz, 2H), 4.56 (d, *J* = 5.5 Hz, 1H), 3.59 – 3.51 (m, 1H), 3.42 (dd, *J* = 12.6, 8.9 Hz, 2H), 3.10 (dd, *J* = 13.0, 5.3 Hz, 1H), 2.92 (dd, *J* = 14.5, 6.0 Hz, 1H), 2.01 (s, 2H), 1.33 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.45, 172.92, 146.58, 145.38, 126.55, 124.10, 59.72, 47.66, 38.11, 35.16, 27.72, 24.80, 17.53. HRMS (ESI) *m/z*: calcd for C₁₅H₁₉N₂O₅S [M+H]⁺ 339.1009, found 339.1007.

3ao: Colorless oil, isolated yield 85%; ¹H NMR (500 MHz, DMSO) δ 12.99 (s, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 8.14 (d, *J* = 9.1 Hz, 2H), 7.54 (d, *J* = 9.1 Hz, 2H), 4.47 (td, *J* = 8.4, 4.9 Hz, 1H), 3.54 (dd, *J* = 13.6, 5.0 Hz, 1H), 3.33 (d, *J* = 5.1 Hz, 1H), 1.83 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 171.55, 169.52, 146.60, 144.68, 126.62, 123.95,

51.15, 32.73, 22.29. HRMS (ESI) *m/z*: calcd for C₁₁H₁₁N₂O₅S [M-H]⁻ 283.0394, found 283.0393.

3ap: White solid, isolated yield 91%; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 9.0 Hz, 2H), 7.30 (d, *J* = 9.0 Hz, 2H), 3.04 – 2.96 (m, 2H), 1.76 – 1.65 (m, 2H), 1.50 – 1.40 (m, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.16, 144.72, 125.86, 123.84, 31.85, 29.57, 29.50, 29.41, 29.29, 29.06, 28.82, 28.41, 22.64, 14.07.; All spectral data match those previously reported. (Kondoh et al., 2006)

3bp: White solid, isolated yield 71%; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.7 Hz, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 3.02 – 2.94 (m, 2H), 2.57 (s, 3H), 1.74 – 1.65 (m, 2H), 1.44 (s, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 197.15, 145.03, 133.75, 128.74, 126.28, 32.01, 31.92, 29.63, 29.63, 29.57, 29.48, 29.34, 29.15, 28.90, 28.76, 26.41, 22.69, 14.11.; All spectral data match those previously reported. (Xu et al., 2013)

3cp: Colorless oil, isolated yield 92%; ¹H NMR (300 MHz, CDCl₃) δ 9.91 (s, 1H), 7.75 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.3 Hz, 2H), 3.03 – 2.96 (m, 2H), 1.70 (dd, *J* = 15.0, 7.6 Hz, 2H), 1.52 – 1.41 (m, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.18, 147.17, 133.13, 130.00, 126.31, 31.92, 31.84, 29.63, 29.63, 29.56, 29.48, 29.34, 29.14, 28.91, 28.66, 22.69, 14.12.; All spectral data match those previously reported. (Kondoh et al., 2006)

3dp: White solid, isolated yield 77%; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, *J* = 8.7 Hz, 2H), 7.36 (d, *J* = 8.7 Hz, 2H), 3.03 (s, 3H), 2.99 (t, *J* = 7.4 Hz, 2H), 1.75 – 1.65 (m, 2H), 1.45 (s, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.43, 136.45, 127.67, 126.66, 44.67, 31.96, 31.91, 29.62, 29.56, 29.47, 29.34, 29.13, 28.88, 28.58, 22.69, 14.11. HRMS (EI) *m/z*: calcd for C₁₉H₂₃O₂S₂ [M⁺] 356.1838, found 356.1834.

3ep: Colorless oil, isolated yield 61%; ¹H NMR (300 MHz, CDCl₃) δ 8.42 (ddd, *J* = 5.0, 1.8, 0.9 Hz, 1H), 7.46 (ddd, *J* = 8.1, 7.4, 1.9 Hz, 1H), 7.16 (dt, *J* = 8.1, 1.0 Hz, 1H), 6.95 (ddd, *J* = 7.3, 4.9, 1.1 Hz, 1H), 3.21 – 3.09 (m, 2H), 1.69 (dd, *J* = 15.1, 7.5 Hz, 2H), 1.48 – 1.40 (m, 2H), 1.25 (s, 16H), 0.88 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.65, 149.42, 135.75, 122.11, 119.12, 31.91, 30.14, 29.65, 29.62, 29.59, 29.51, 29.33, 29.31, 29.20,

28.96, 22.68, 14.11.; All spectral data match those previously reported. (Kanemura et al., 2008)

3fp: Colorless oil, isolated yield 88%; ¹H NMR (300 MHz, CDCl₃) δ 7.60 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 9.3 Hz, 1H), 3.00 (t, J = 7.4 Hz, 2H), 1.74 – 1.59 (m, 2H), 1.44 (s, 2H), 1.25 (s, 16H), 0.87 (t, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.31, 133.65, 132.73, 128.66, 125.69, 117.19, 113.38, 33.56, 31.92, 29.63, 29.62, 29.56, 29.46, 29.34, 29.12, 28.82, 28.77, 22.69, 14.12. HRMS (EI) *m/z*: calcd for C₁₉H₂₉NS [M⁺] 303.2015, found 303.2022.

3gp: White solid, isolated yield 90%; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 8.7 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 3.01 – 2.92 (m, 2H), 1.75 – 1.62 (m, 2H), 1.49 – 1.37 (m, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.35, 132.19, 126.68, 118.97, 107.91, 31.92, 29.62, 29.55, 29.46, 29.34, 29.12, 28.87, 28.57, 22.69, 14.11.; All spectral data match those previously reported. (Kondoh et al., 2006)

3hp: Colorless oil, isolated yield 46%; ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 2.1 Hz, 1H), 7.33 (dd, *J* = 8.5, 2.1 Hz, 1H), 7.10 (d, *J* = 8.5 Hz, 1H), 2.92 – 2.88 (m, 2H), 1.67 (dt, *J* = 15.0, 7.4 Hz, 2H), 1.48 – 1.41 (m, 2H), 1.26 (s, 16H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 136.02, 133.94, 132.12, 130.14, 128.89, 118.54, 32.55, 31.92, 29.63, 29.56, 29.46, 29.34, 29.15, 28.91, 28.50, 22.69, 14.12.

3ir: Yellow solid, isolated yield 70%; ¹H NMR (500 MHz, D₂O) δ 7.88 – 7.78 (m, 2H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 4.74 – 4.69 (m, 1H), 3.83 – 3.74 (m, 3H), 3.71 – 3.64 (m, 2H), 3.59 (d, *J* = 9.5 Hz, 1H), 3.35 (s, 1H), 2.54 – 2.43 (m, 2H), 2.10 – 2.01 (m, 2H), 1.57 (s, 2H), 1.43 (dd, *J* = 13.8, 6.7 Hz, 2H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, D₂O) δ 176.01, 175.56, 174.92, 170.97, 164.30, 164.17, 143.71, 131.29, 130.27, 129.95, 127.83, 126.50, 125.99, 123.38, 120.52, 117.24, 54.42, 52.36, 43.41, 40.44, 33.28, 31.63, 30.10, 29.47, 27.12, 19.91, 13.17. HRMS (ESI) *m/z*: calcd for C₂₆H₃₁N₄O₈S [M+H]⁺ 559.1857, found 559.1848.

3jq: White solid, isolated yield 45%; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.7 Hz, 4H), 7.30 (d, *J* = 8.7 Hz, 4H), 2.99 (q, *J* = 7.4 Hz, 4H), 1.35 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 145.33, 137.81, 127.84, 126.72, 26.05, 13.79. HRMS (EI) *m/z*: calcd for C₁₆H₁₈O₂S₃ [M⁺] 338.0463, found 338.0458.

3kp: White solid, isolated yield 66%; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 4.33 (t, *J* = 6.7 Hz, 2H), 3.01 – 2.92 (m, 2H), 1.79 (dt, *J* = 13.3, 6.7 Hz, 1H), 1.71 – 1.59 (m, 4H), 1.44 (s, 2H), 1.25 (s, 16H), 0.97 (d, *J* = 6.5 Hz, 6H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.40, 144.29, 129.83, 126.90, 126.30, 63.52, 37.42, 32.10, 31.89, 29.61, 29.61, 29.55, 29.46, 29.32, 29.13, 28.88, 28.76, 25.21, 22.67, 22.51, 14.10. HRMS (EI) *m/z*: calcd for C₂₄H₄₀O₂S [M⁺] 392.2744, found 392.2748.

3lp: Yellow solid, isolated yield 85%; ¹H NMR (300 MHz, CDCl₃) δ 7.94 – 7.81 (m, 4H), 7.56 – 7.44 (m, 3H), 7.39 (d, *J* = 8.6 Hz, 2H), 3.01 (t, *J* = 7.4 Hz, 2H), 1.70 (dd, *J* = 14.8, 7.5 Hz, 2H), 1.45 (d, *J* = 5.6 Hz, 2H), 1.27 (s, 16H), 0.89 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.69, 150.18, 141.86, 130.76, 129.05, 127.56, 123.33, 122.73, 32.67, 31.90, 29.63, 29.62, 29.56, 29.48, 29.33, 29.15, 28.89, 22.68, 14.11. HRMS (EI) *m/z*: calcd for C₂₄H₃₄N₂S [M⁺] 382.2437, found 382.2435.

3.3 General Procedure for the C-Si/Sn/Ge Bond-forming Reaction of Arylammonium Salts (Fig. S2, S3, S4)

A Schlenk tube was charged with aryltrimethylammonium triflate (0.2 mmol), Si/Sn/Ge reagents (0.3 mmol), CsF (0.28 mmol), and DMF (3 mL) under a argon atmosphere. The reaction mixture was stirred at r.t. or 50°C for 8 hours to give a colorless or (pale) yellow transparent solution (slightly suspended for some cases). Then water (30 mL) was added to remove DMF. The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified on column chromatography or preparative TLC (silica gel) to give the product and NMR yields with mesitylene as an internal standard.

5a: Colorless oil, isolated yield 84%; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, *J* = 8.1 Hz, 2H), 7.60 (d, *J* = 8.1 Hz, 2H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H), 0.29 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 166.82, 146.70, 133.27, 130.67, 128.49, 60.91, 14.37, -1.29.; All spectral data match those previously reported. (Tobisu et al.,

2008)

5b: Colorless oil, isolated yield 88%; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (d, *J* = 8.2 Hz, 2H), 7.59 (d, *J* = 8.2 Hz, 2H), 4.36 (t, *J* = 6.7 Hz, 2H), 1.81 (dt, *J* = 13.6, 6.5 Hz, 1H), 1.66 (q, *J* = 6.7 Hz, 2H), 0.97 (d, *J* = 6.5 Hz, 6H), 0.29 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 166.87, 146.71, 133.27, 130.67, 128.47, 63.59, 37.44, 25.25, 22.54, -1.31.

5c: Colorless oil, isolated yield 71%; ¹H NMR (500 MHz, CDCl₃) δ 7.61 (s, 4H), 7.50 (dd, J = 7.7, 1.7 Hz, 2H), 7.43 – 7.35 (m, 3H), 0.58 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 145.41, 136.48, 134.62, 134.11, 131.04, 129.65, 128.09, 118.97, 112.71, -2.74. All spectral data match those previously reported. (Guo et al., 2015)

5d: Colorless oil, isolated yield 52%; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (dd, J = 7.6, 1.8 Hz, 2H), 7.47 (d, J = 1.5 Hz, 4H), 7.39 – 7.34 (m, 3H), 3.09 (s, 1H), 0.55 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 139.55, 137.60, 134.12, 134.01, 131.25, 129.26, 127.88, 122.68, 83.70, 77.66, -2.56. HRMS (EI) *m/z*: calcd for C₁₆H₁₆Si [M⁺] 236.1016, found 236.1009.

Eto

5e: Colorless oil, isolated yield 80%; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 7.9 Hz, 2H), 7.60 (d, J = 7.9 Hz, 2H), 7.55 – 7.47 (m, 2H), 7.37 (d, J = 5.9 Hz, 3H), 4.38 (d, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H), 0.58 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.76, 144.51, 137.40, 134.15, 134.14, 130.96, 129.36, 128.53, 127.94, 60.95, 14.35, -2.55.; All spectral data match those previously reported. (Hamze et al., 2006)

5f: Colorless oil, isolated yield 60%; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 8.3, 1.3 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 0.32 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 196.88, 146.29, 137.69, 137.63, 133.16, 132.38, 130.07, 129.00, 128.24, -1.30. All spectral data match those previously reported. (McNeill et al., 2007)

5g: Colorless oil, isolated yield 75%; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 8.0 Hz, 1H), 7.90 (dd, *J* = 7.8, 5.9 Hz, 2H), 7.75 (d, *J* = 6.8 Hz, 1H), 7.52 (ddd, *J* = 21.9, 15.0, 6.7 Hz, 3H), 0.53 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 138.12, 136.89, 133.41, 133.15, 129.71, 129.11, 128.12, 125.56, 125.26, 125.08, 0.24.; All spectral data match those previously reported. (Tobisu et al., 2008)

5h: Colorless oil, isolated yield 62%; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, *J* = 4.5 Hz, 1H), 7.58 (td, *J* = 7.6, 1.7 Hz, 1H), 7.50 (d, *J* = 7.5 Hz, 1H), 7.19 (ddd, *J* = 7.5, 4.9, 1.4 Hz, 1H), 0.32 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.89, 149.60, 133.63, 128.31, 122.28, -2.25. All spectral data match those previously reported. (Chau et al., 2008)

5i: Colorless oil, isolated yield 60%; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.3 Hz, 4H), 7.62 (d, *J* = 8.3 Hz, 4H), 7.48 (dd, *J* = 7.8, 1.6 Hz, 4H), 7.41 – 7.33 (m, 6H), 0.55 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 145.70, 141.92, 136.51, 134.86, 134.06, 129.57, 128.02, 126.54, -2.73. HRMS (EI) *m/z*: calcd for C₂₈H₃₀O₂Si₂S [M⁺] 486.1500, found 486.1503.

SnⁿBu₃

7a: Colorless oil, isolated yield 82%; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 2H), 2.59 (s, 3H), 1.59 – 1.48 (m, 6H), 1.33 (dd, *J* = 14.6, 7.3 Hz, 6H), 1.20 – 0.98 (m, 6H), 0.88 (t, *J* = 7.2 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 198.66, 150.30, 136.64, 136.59, 127.10, 29.04, 27.33, 26.55, 13.66, 9.68.; All spectral data match those previously reported. (Komeyama et al., 2015)

7b: Colorless oil, isolated yield 85%; ¹H NMR (300 MHz, CDCl₃) δ 7.66 – 7.50 (m, 4H), 0.33 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 150.28, 136.31, 130.87, 119.13, 111.85, -9.49.; All spectral data match those previously

reported. (Chen et al., 2016)

7c: Colorless oil, isolated yield 60%;¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, *J* = 7.7 Hz, 1H), 7.57 – 7.43 (m, 2H), 7.36 (td, *J* = 7.5, 1.5 Hz, 1H), 1.63 – 1.48 (m, 6H), 1.41 – 1.26 (m, 6H), 1.26 – 1.17 (m, 6H), 0.89 (t, *J* = 7.3 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 148.37, 136.96, 132.89, 131.37, 128.27, 120.60, 120.28, 28.98, 27.23, 13.63, 10.05.; All spectral data match those previously reported. (Shirakawa et al., 2003)

SnMe₃

7d: Colorless oil, isolated yield 76%; ¹H NMR (300 MHz, CDCl₃) δ 7.66 (ddd, *J* = 7.6, 1.3, 0.7 Hz, 1H), 7.60 – 7.47 (m, 2H), 7.39 (td, *J* = 7.5, 1.6 Hz, 1H), 0.44 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 148.03, 136.40, 132.79, 131.51, 128.59, 120.31, 120.03, -9.02.; All spectral data match those previously reported. (Chen et al., 2016)

7e: Colorless oil, isolated yield 60%; ¹H NMR (300 MHz, CDCl₃) δ 7.56 (s, 4H), 1.51 (d, *J* = 7.7 Hz, 6H), 1.32 (d, *J* = 7.2 Hz, 6H), 1.19 – 0.99 (m, 6H), 0.88 (t, *J* = 7.2 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 150.37, 136.89, 130.73, 119.26, 111.57, 28.98, 27.30, 13.64, 9.75.; All spectral data match those previously reported. (Komeyama et al., 2015)

7f: Colorless oil, isolated yield 82%; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 8.0 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.63 – 1.47 (m, 6H), 1.35 (dd, J = 16.0, 7.3 Hz, 10H), 1.14 – 1.01 (m, 5H), 0.88 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.10, 149.49, 136.39, 129.93, 128.35, 60.83, 29.04, 27.33, 14.36, 13.66, 9.66.; All spectral data match those previously reported. (Reed et al., 2012)

7g: Colorless oil, isolated yield 61%; ¹H NMR (300 MHz, CDCl₃) δ 7.98 (d, *J* = 8.1 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H), 0.32 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 166.94, 149.44, 135.72, 130.16, 128.47, 60.85, 14.33, -9.55.; All spectral data match those previously reported. (Chen et al., 2016)

7h: Colorless oil, isolated yield 60%; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.1 Hz, 2H), 7.67 (d, *J* = 8.1 Hz, 2H), 3.05 (s, 3H), 1.59 – 1.46 (m, 6H), 1.33 (dq, *J* = 14.2, 7.1 Hz, 6H), 1.15 – 1.04 (m, 6H), 0.89 (t, *J* = 7.3 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 151.36, 140.01, 137.16, 125.88, 44.50, 28.98, 27.30, 13.63, 9.79. All spectral data match those previously reported. (Tang et al., 2010)

7i: Colorless oil, isolated yield 83%; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 3.04 (s, 3H), 0.35 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 151.29, 140.30, 136.60, 126.06, 44.53, -9.45. HRMS (EI) *m/z*: calcd for C₁₀H₁₆O₂SSn [M⁺] 319.9888, found 319.9896.

7j: Colorless oil, isolated yield 52%; ¹H NMR (600 MHz, CDCl₃) δ 8.73 (ddd, *J* = 4.9, 1.6, 1.0 Hz, 1H), 7.49 (td, *J* = 7.5, 1.8 Hz, 1H), 7.40 (d, *J* = 7.4 Hz, 1H), 7.11 (ddd, *J* = 7.6, 4.9, 1.4 Hz, 1H), 1.59 – 1.52 (m, 6H), 1.33 (dq, *J* = 14.6, 7.3 Hz, 6H), 1.14 – 1.10 (m, 6H), 0.88 (t, *J* = 7.3 Hz, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 174.09, 150.51, 133.24, 132.36, 121.97, 29.06, 27.33, 13.66, 9.76. All spectral data match those previously reported. (Fargeas et al., 2003)

7k: Colorless oil, isolated yield 70%; ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.1 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 4.34 (t, *J* = 6.7 Hz, 2H), 1.85 – 1.75 (m, 1H), 1.66 (q, *J* = 6.8 Hz, 2H), 1.52 (dd, *J* = 15.7, 8.1 Hz, 5H), 1.37 – 1.28 (m, 7H), 1.14 – 1.02 (m, 6H), 0.97 (d, *J* = 6.6 Hz, 6H), 0.88 (t, *J* = 7.3 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.12, 149.47, 136.38, 129.93, 128.33, 63.49, 37.45, 29.04, 27.33, 25.22, 22.53, 13.66, 9.66. HRMS (EI) *m/z*: calcd for C₂₄H₄₂O₂Sn [M⁺] 482.2201, found 482.2197.

7I: Colorless oil, isolated yield 76%; ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 4.35 (t, *J* = 6.7 Hz, 2H), 1.79 (tt, *J* = 12.9, 6.4 Hz, 1H), 1.66 (q, *J* = 6.7 Hz, 2H), 0.97 (d, *J* = 6.5 Hz, 6H), 0.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.01, 149.46, 135.76, 130.22, 128.50, 63.57, 37.45, 25.26, 22.53, -9.55. HRMS (EI) *m/z*: calcd for C₁₅H₂₄O₂Sn [M⁺] 356.0793, found 356.0793.

7m: Colorless oil, isolated yield 77%; ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 4H), 7.62 (d, *J* = 8.2 Hz, 4H), 0.30 (s, 18H). ¹³C NMR (151 MHz, CDCl₃) δ 150.43, 141.45, 136.46, 126.33, -9.52. All spectral data match those previously reported. (Jeon et al., 2014)

Fig.S4, related to Scheme 2d.

Procedure for the Preparation of Me₃GeSiPhMe₂:

To a solution of naphthalene (0.4 mmol) in THF (16 mL), were added lithium clippings (24 mmol). The resulting mixture started turning dark green and was stirred at room temperature for 1 h under an argon atmosphere. Then chlorodimethylphenylsilane (4 mmol) was added dropwise and the mixture was stirred at room temperature for 3 h. The resulting solution was added into a stirred a solution of Me₃GeCl (4 mmol) in THF at 0°C. The reaction was stirred at room temperature for 8 h followed by extraction with hexane and H₂O. The organic phase was washed with brine and dried over Na₂SO₄. The residue was purified on column chromatography to give the product **8** as colorless oil: isolated yield 78%; ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.39 – 7.29 (m, 3H), 0.39 (s, 6H), 0.15 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 139.25, 133.64, 128.53, 127.78, -3.09, -3.39.

9a: Colorless oil, isolated yield 60%; ¹H NMR (300 MHz, CDCl₃) δ 8.47 (d, *J* = 4.8 Hz, 2H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 6.88 (t, *J* = 4.8 Hz, 1H), 3.68 (s, 3H), 0.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.78, 157.46, 149.73, 140.12, 132.97, 127.28, 115.38, 34.23, -1.91. HRMS (EI) *m/z*: calcd for C₁₄H₁₉N₃O₂GeS [M⁺] 367.0404, found 367.0404.

9b: Colorless oil, isolated yield 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 6.51 (s, 1H), 3.26 (s, 3H), 2.38 (s, 3H), 0.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 170.33, 160.86, 150.80, 136.55, 133.79, 126.05, 97.58, 35.12, 12.67, -1.96. HRMS (EI) *m/z*: calcd for C₁₃H₁₇O₃N₂GeS [M-CH₃]⁺ 355.0166, found 355.0136.

9c: Colorless oil, isolated yield 55%; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 6.57 (s, 1H), 3.66 (s, 3H), 2.31 (s, 6H), 0.39 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 167.24, 158.20, 149.33, 140.59, 132.59, 127.74, 114.45, 33.85, 23.62, -1.89. HRMS (ESI) *m/z*: calcd for C₁₆H₂₄N₃O₂SGe [M+H]⁺ 396.0801, found 396.0811.

9d: Colorless oil, isolated yield 70%; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 4H), 7.59 (d, *J* = 8.2 Hz, 4H), 0.38 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 150.14, 141.47, 133.76, 126.58, -1.95. HRMS (EI) *m/z*: calcd for C₁₇H₂₁O₂Ge₂S [M-CH₃]⁺ 436.9680, found 436.9686.

9e: Colorless oil, isolated yield 50%; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H), 0.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 166.89, 149.20, 132.91, 130.25, 128.60, 60.87, 14.34, -1.90. All spectral data match those previously reported. (Komami et al., 2018)

3.4 General Procedure for the Selenation Reaction of Arylammonium Salts (Fig. S5)

A flask was charged with RSeSeR (0.2 mmol) and 1mL THF, KBH₄ (0.4 mmol) in 1mL H₂O was added. The reaction mixture was stirred at r.t. for 10 minutes and then aryltrimethylammonium triflates (0.2 mmol) in 1mL DMF was added. After 3 h, the water (30 mL) was added to remove DMF. The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified on column chromatography or preparative TLC (silica gel) to give the product and NMR yields with mesitylene as an internal standard.

11a: Yellow oil, isolated yield 90%; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 9.0 Hz, 2H), 7.64 (dd, *J* = 8.1, 1.4 Hz, 2H), 7.42 (dt, *J* = 14.2, 7.0 Hz, 3H), 7.36 (d, *J* = 9.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.22, 143.94, 135.89, 130.06, 129.74, 129.39, 127.24, 123.98.; All spectral data match those previously reported. (Maity et al., 2017)

11b: Colorless oil, isolated yield 56%; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.7 Hz, 2H), 7.72 (d, *J* = 7.3 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.52 (dd, *J* = 15.6, 7.7 Hz, 4H), 3.06 (q, *J* = 7.1 Hz, 2H), 1.53 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 196.08, 138.04, 137.64, 135.15, 132.32, 130.57, 130.16, 129.89, 128.28, 20.58, 15.19. HRMS (EI) *m/z*: calcd for C₁₅H₁₄OSe [M⁺] 290.0204, found 290.0196.

11c: Colorless oil, isolated yield 81%; ¹H NMR (500 MHz, CDCl₃) δ 9.93 (s, 1H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 191.45, 142.40, 133.95, 129.95, 128.85, 6.43.; All spectral data match those previously reported. (Sugiura et al., 1990)

11d: Colorless oil, isolated yield 85%; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 4.8 Hz, 2H), 7.45 (d, *J* = 7.5 Hz, 2H), 7.31 (dd, *J* = 12.6, 5.7 Hz, 2H), 7.27 – 7.21 (m, 1H), 7.03 (t, *J* = 4.2 Hz, 1H), 4.49 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.72, 157.24, 138.58, 129.06, 128.48, 126.93, 117.27, 30.32.; All spectral data match those previously reported. (Ma et al., 2017)

11f: Colorless oil, isolated yield 65%; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 6.48 (s, 1H), 3.25 (s, 3H), 2.38 (d, J = 2.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 170.39, 160.79, 141.28, 133.69, 129.11, 127.39, 97.60, 35.15, 12.68, 6.54. HRMS (ESI) m/z: calcd for C₁₅H₁₉N₂O₅S [M+H]⁺ 339.1009, found 339.1007. HRMS (ESI) m/z: calcd for C₁₂H₁₅N₂O₃SSe [M+H]⁺ 346.9969, found 346.9973.

11g: Colorless oil, isolated yield 41%; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.28, 132.17, 129.19, 118.90, 108.98, 6.58. All spectral data match those previously reported. (Lewis et al., 1987)

11h: Yellow solid, isolated yield 45%; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.2 Hz, 2H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.56 – 7.45 (m, 5H), 2.43 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.23, 150.35, 136.38, 130.44, 129.29, 128.65, 122.92, 122.34, 6.46. HRMS (ESI) *m*/*z*: calcd for C₁₃H₁₃N₂Se [M+H]⁺ 277.0244, found 277.0249.

11i: White solid, isolated yield 80%; ¹H NMR (400 MHz, DMSO) δ 13.75 (s, 1H), 8.52 (s, 1H), 2.55 (s, 3H). ¹³C NMR (126 MHz, DMSO) δ 174.33, 152.18, 144.70, 129.62, 123.99. HRMS (ESI) *m/z*: calcd for C₁₅H₁₉N₂O₅S [M+H]⁺ 339.1009, found 339.1007. HRMS (ESI) *m/z*: calcd for C₆H₆ClN₄Se [M+H]⁺ 248.9446, found 248.9451.

11j: Colorless oil, isolated yield 84%; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 5.3 Hz, 1H), 6.97 (d, *J* = 5.3 Hz, 1H), 2.45 (d, *J* = 1.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 169.84, 168.20, 154.00, 117.84, 6.79, 5.27. All spectral data match those previously reported. (Dhau et al., 2014)

11k: Yellow oil, isolated yield 92%; ¹H NMR (500 MHz, CDCl₃) δ 8.03 – 7.94 (m, 2H), 7.35 (d, *J* = 8.6 Hz, 1H), 2.93 – 2.87 (m, 2H), 2.62 – 2.57 (m, 2H), 2.41 (s, 3H), 2.32 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 145.83, 143.75, 140.41, 127.48, 123.43, 121.60, 58.82, 45.37, 33.25, 6.74. HRMS (ESI) *m/z*: calcd for C₁₁H₁₇N₂O₂Se [M+H]⁺ 289.0455, found 289.0448.

3.5 General Procedure for the Amination Reaction of Arylammonium Salts (Fig. S6)

A Schlenk tube was charged with ArNH₂ (0.3 mmol), KHMDS (0.28 mL, 1M in THF) and DMF (3mL). The reaction mixture was stirred at r.t. for 5 minutes and then aryltrimethylammonium triflates (0.2 mmol) was added. After 3 h, the water (30 mL) was added to remove DMF. The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified on column chromatography or preparative TLC (silica gel) to give the product and NMR yields with mesitylene as an internal standard.

Fig.S6, related to Scheme 2f.

13a: Yellow oil, isolated yield 75%; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, J = 9.2 Hz, 2H), 7.39 (dd, J = 8.4, 7.5 Hz, 2H), 7.23 – 7.19 (m, 2H), 7.17 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 9.2 Hz, 2H), 6.31 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.16, 139.77, 139.48, 129.72, 126.22, 124.65, 121.91, 113.67.; All spectral data match those previously reported. (Ding et al., 2017)

13b: Yellow oil, isolated yield 78%; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 9.1 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 7.09 (d, *J* = 9.2 Hz, 2H), 6.47 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 148.29, 143.18, 141.02, 127.01 (q, ³*J* _{C-F} = 3.7 Hz), 126.13, 125.40 (q, ²*J* _{C-F} = 33.0 Hz), 124.05 (q, ¹*J* _{C-F} = 271.4 Hz), 119.59, 115.31. HRMS (EI) *m*/*z*: calcd for C₁₃H₉N₂O₂F₃ [M⁺] 282.0611, found 282.0606.

13c: White solid, isolated yield 40%; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 9.1 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 8.3 Hz, 2H), 6.86 (d, *J* = 9.2 Hz, 2H), 6.22 (s, 1H), 2.36 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 150.83, 139.48, 136.73, 134.86, 130.31, 126.28, 122.71, 113.22, 20.93.; All spectral data match those previously reported. (Fors et al., 2009)

13d: Colorless oil, isolated yield 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.05 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.07 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.42, 139.25, 133.85, 132.66, 122.56, 119.65, 116.29, 115.28, 102.28. All spectral data match those previously reported. (Miti et al., 2011)

13e: Colorless oil, isolated yield 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.7 Hz, 2H), 7.03 (d, *J* = 8.7 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.49 (d, *J* = 0.7 Hz, 1H), 6.11 (s, 1H), 3.24 (s, 3H), 2.37 (d, *J* = 0.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 170.21, 161.05, 148.39, 139.14, 132.65, 129.33, 126.67, 122.81, 116.47, 114.78, 97.69, 35.02, 12.67. HRMS (ESI) m/z: calcd for C₁₇H₁₇N₃O₃SBr [M+H]+ 422.0169, found 422.0177.

13f: Colorless oil, isolated yield 55%; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.9 Hz, 2H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.04 – 6.99 (m, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 6.57 (s, 1H), 6.07 (s, 1H), 3.64 (s, 3H), 2.32 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 167.17, 158.31, 147.32, 139.71, 132.55, 131.06, 130.92, 122.10, 115.71, 114.26, 114.10, 33.82, 23.69. HRMS (ESI) *m/z*: calcd for C₁₉H₂₀N₄O₂BrS [M+H]⁺ 447.0485, found 447.0482.

13g: Yellow oil, isolated yield 45%; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 9.2 Hz, 2H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 9.2 Hz, 2H), 6.27 (s, 1H), 1.34 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 150.63, 148.00, 139.45, 136.67, 126.56, 126.24, 122.03, 113.30, 34.48, 31.34. All spectral data match those previously reported. (Kayama et al., 2016)

13h: Yellow solid, isolated yield 62%; ¹H NMR (400 MHz, DMSO) δ 9.02 (s, 1H), 8.02 (d, *J* = 9.2 Hz, 2H), 7.08 (d, *J* = 8.6 Hz, 2H), 6.79 (dd, *J* = 15.7, 7.7 Hz, 4H), 2.89 (s, 6H). ¹³C NMR (126 MHz, DMSO) δ 152.74, 147.92, 136.62, 128.58, 126.35, 124.22, 113.30, 111.94, 40.41. All spectral data match those previously reported. (Novak et al., 1989)

13i: Yellow solid, isolated yield 55%; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 9.2 Hz, 2H), 7.16 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 6.76 (d, *J* = 9.2 Hz, 2H), 6.18 (s, 1H), 3.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.43, 151.69, 139.09, 131.97, 126.30, 125.49, 114.95, 112.60, 55.53. All spectral data match those previously reported. (McNulty et al., 2007)

3.6 Procedure for the Late-stage Diversification of Pharmaceutical Ammonium Derivative (Fig. 4)

Various aryl-heteroatom bonds formation products **3mp**, **5j**, **7o**, **9a**, **11h**, **13h** were prepared following a similar procedure above. **14b**, **14c**, **14d** were prepared with previously reported methods. (Lang et al., 2009)

Procedure for the Preparation of 14a: A flask was charged with aryltrimethylammonium triflates (0.2 mmol), 2-mercaptoethanol (0.3 mmol), KHMDS (0.6 mmol, 2M in THF) and DMF (3 mL). The reaction mixture was stirred at r.t. for 3 h to give a yellow suspended solution. Then 1M HCI (30 mL) was added and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified on column chromatography to give the product and NMR yields with mesitylene as an internal standard.

3mp: Colorless oil, isolated yield 73%; ¹H NMR (300 MHz, CDCl₃) δ 8.46 (d, *J* = 4.8 Hz, 2H), 7.94 (d, *J* = 8.5 Hz, 2H), 7.28 (d, *J* = 8.8 Hz, 2H), 6.88 (t, *J* = 4.8 Hz, 1H), 3.67 (s, 3H), 2.96 (t, *J* = 7.4 Hz, 2H), 1.68 (dt, *J* = 14.8, 7.2 Hz, 2H), 1.48 – 1.36 (m, 2H), 1.25 (s, 16H), 0.87 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.71, 157.44, 145.16, 136.23, 128.77, 125.87, 115.37, 34.15, 32.01, 31.91, 29.62, 29.56, 29.47, 29.33, 29.13, 28.89, 28.63, 22.69, 14.11. HRMS (EI) *m/z*: calcd for C₂₃H₃₆N₃O₂S₂ [M⁺] 450.2243, found 450.2268.

14a: Colorless oil, isolated yield 78%; ¹H NMR (300 MHz, CDCl₃) δ 8.45 (d, J = 4.8 Hz, 2H), 7.97 – 7.90 (m, 2H), 6.90 – 6.83 (m, 3H), 3.65 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.23, 158.69, 157.48, 131.33, 130.86, 115.39, 115.25, 34.20. HRMS (ESI) *m/z*: calcd for C₁₁H₁₂N₃O₃S [M+H]⁺ 266.0594, found 266.0594.

5j: Colorless oil, isolated yield 75%; ¹H NMR (300 MHz, CDCl₃) δ 8.46 (d, *J* = 4.8 Hz, 2H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.44 (m, 2H), 7.40 – 7.32 (m, 3H), 6.88 (t, *J* = 4.8 Hz, 1H), 3.68 (s, 3H), 0.57 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 158.76, 157.47, 145.15, 140.86, 136.78, 134.14, 129.53, 128.01, 127.19, 115.44, 34.25, -2.63. HRMS (EI) *m/z*: calcd for C₁₉H₂₂N₃O₂SSi [M⁺] 384.1197, found 384.1195.

7o: Colorless oil, isolated yield 43%; ¹H NMR (300 MHz, CDCl₃) δ 8.46 (d, *J* = 4.8 Hz, 2H), 7.99 (d, *J* = 7.4 Hz, 2H), 7.60 (d, *J* = 7.4 Hz, 2H), 6.87 (t, *J* = 4.8 Hz, 1H), 3.68 (s, 3H), 0.31 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.77, 157.46, 150.06, 140.10, 135.72, 127.10, 115.39, 34.23, -9.46. HRMS (EI) *m/z*: calcd for C₁₄H₂₀O₂N₃SnS [M⁺] 414.0293, found 414.0300.

GeMe₂

9a: Colorless oil, isolated yield 60%; ¹H NMR (300 MHz, CDCl₃) δ 8.47 (d, *J* = 4.8 Hz, 2H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.58 (d, *J* = 8.3 Hz, 2H), 6.88 (t, *J* = 4.8 Hz, 1H), 3.68 (s, 3H), 0.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.78, 157.46, 149.73, 140.12, 132.97, 127.28, 115.38, 34.23, -1.91. HRMS (EI) *m/z*: calcd for C₁₄H₁₉N₃O₂GeS [M⁺] 367.0404, found 367.0404.

11h: Colorless oil, isolated yield 43%; ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 4.8 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 6.88 (t, *J* = 4.8 Hz, 1H), 3.67 (s, 3H), 2.38 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.67, 157.46, 140.03, 137.37, 128.73, 128.39, 115.43, 34.16, 6.54. HRMS (ESI) *m/z*: calcd for C₁₂H₁₄N₃O₂SSe [M+H]⁺ 343.9972, found 343.9994.

13h: Colorless oil, isolated yield 63%; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.8 Hz, 2H), 7.92 (d, *J* = 8.9 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.03 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 6.87 (t, *J* = 4.8 Hz, 1H), 3.65 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.85, 157.42, 147.64, 139.53, 132.57, 130.66, 130.33, 122.34, 115.95, 115.19, 114.27, 34.16. HRMS (ESI) m/z: calcd for C₁₇H₁₆N₄O₂SBr [M+H]+ 419.0172, found 419.0169.

14b: Colorless oil, isolated yield 84%; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.8 Hz, 2H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.79 (d, *J* = 8.8 Hz, 2H), 6.90 (s, 1H), 3.67 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.51, 157.48, 140.12, 137.68, 129.81, 115.62, 100.38, 34.15. HRMS (ESI) *m*/*z*: calcd for C₁₁H₁₁N₃O₂SI [M+H]⁺ 375.9611, found 375.9618.

14c: Colorless oil, isolated yield 80%; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 4.8 Hz, 2H), 7.94 (d, J = 8.7 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 6.90 (t, J = 4.8 Hz, 1H), 3.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 158.50, 157.53, 139.38, 131.74, 130.01, 127.94, 115.69, 34.20. HRMS (ESI) *m/z*: calcd for C₁₁H₁₁N₃O₂SBr [M+H]⁺ 327.9750, found 327.9751.

14d: Colorless oil, isolated yield 87%; ¹H NMR (500 MHz, CDCl₃) δ 8.45 (d, *J* = 4.8 Hz, 2H), 8.07 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 6.87 (t, *J* = 4.8 Hz, 1H), 3.69 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.71, 157.45, 140.43, 128.45, 128.34, 128.32, 115.44, 34.19. HRMS (ESI) *m/z*: calcd for C₁₁H₁₁N₃O₂SD [M+H]⁺ 251.0708, found 251.0712.

3.7 Procedure for Click Reaction of NBD-ammonium Salt and Biological Thiols (Fig. 5)

3.7.1 An open-air vial was charged with NBD-ammonium salt **1r** (0.01 mmol; for **15d**: 0.005mmol), biological thiols (0.01 mmol; for **15d**: 0.005mmol) and H₂O (1 mL). The reaction mixture was stirred at r.t. for 20 minutes and then determined by LCMS.

3.7.2 An open-air vial was charged with NBD-ammonium salt **1r** (0.05 mmol), biological thiols (**2r, 2v, 2w**) (0.05 mmol) and D_2O (0.5 mL). The reaction mixture was stirred at r.t. for 20 minutes and then was analyzed by ¹H-NMR in DMSO-d₆– D_2O (4:1, v/v). When Cys or Hcy was the reactant, the H^a and H^b protons of the product NBD moiety showed upfield shifts, especially for H^a, which were different from NBD-SR (GSH as reactant) was being formed. (Chen et al., 2016) (**Fig. S8**)

Fig.S8, related to Scheme 4a.

3.7.3 For the procedure of fluorescence measurement: stock solutions of probe (**1r**) and biological thiols were freshly prepared in H₂O prior to each experiment. 5eq. biological thiols (250μ M) were added to separate portions of the probe (50μ M) solution and mixed thoroughly. The reaction mixture was shaken uniformly before absorption and fluorescence spectra were measured.

3.8 Procedure for on-DNA Reactions

3.8.1 Headpiece Structure (Fig. S9)

DNA headpiece HP-NH₂ (5'-/5phos/GAGTCA/iSp9/iUniAmM/iSp9/TGACTCCC-3', Figure 1) was obtained from Biosearch Technologies, Novato, CA.

Fig.S9, related to Scheme 5.

3.8.2 Preparation of HP-Ar-N⁺Me₃Cl⁻

Materials

Headpiece: 2 mM in water B: 200 mM in water

K₂CO₃: 200 mM in water

Procedure

1) To the headpiece in H₂O (100 nmol, 50 μ L), was added 100 eq. of K₂CO₃ (in 50 μ L H₂O) and 60 eq. of ammonium salt **1s** (in 30 μ L H₂O). The mixture was vortexed.

2) React at room temperature for 10 h.

3) Add 5 M NaCl solution (10 % by volume) and cold ethanol (2.5 times by volume, ethanol stored at -20°C). The mixture was stored at a -80°C freezer for more than 30 minutes.

4) Centrifuge the sample for around 30 minutes at 4°C in a microcentrifuge at 10000 rpm. The above supernatant was removed and the pellet (precipitate) was cooled in liquid nitrogen and then placed on a lyophilizer. After lyophilization, the dry pellet was recovered.

5) To gain a higher yield, the dry pellet was solute in water (50 μ L), then repeat step1-4.

Molecular Weight: 5151.65

68% conversion determined by LCMS.

Fig.S10, related to Scheme 5.

3.8.3 C–O bond formations of arylammonium salts on DNA

Materials

16a: 1 mM in water ROH: 200 mM in DMA K₂CO₃ (or KOH): 1M in water

Procedure

1) To 16a solution (5 nmol, 5 μ L), was added 35 μ L H₂O, 1000 eq. of ROH (25 μ L) and 1000 eq. of K₂CO₃ (for

16c-f, 16i-k) or KOH (for 16b, 16g-h) (5 µL). The mixture was vortexed.

2) React at room temperature (or 60°C for **16h-k**) for 10 h.

3) Add 5 M NaCl solution (10 % by volume) and cold ethanol (2.5 times by volume, ethanol stored at -20°C). The mixture was stored at a -80°C freezer for more than 30 minutes.

4) Centrifuge the sample for around 30 minutes at 4 °C in a microcentrifuge at 10000 rpm. The abovesupernatant was removed and the pellet (precipitate) was cooled in liquid nitrogen and then placedon a lyophilizer. After lyophilization, the dry pellet was recovered.

Conversion determined by LCMS.

3.8.4 C-S bond formations of arylammonium salts on DNA

Materials

16a: 1 mM in water

RSH: 200 mM in DMA

K₂CO₃: 200 mM in water

Procedure

1) To **16a** solution (5 nmol, 5 μ L), was added 35 μ L H₂O, 1000 eq. of RSH (25 μ L) and 200 eq. of K₂CO₃ (5 μ L). The mixture was vortexed.

2) React at room temperature (or 80°C for 16s, 16t) for 10 h.

3) Add 5 M NaCl solution (10 % by volume) and cold ethanol (2.5 times by volume, ethanol stored at -20°C). The mixture was stored at a -80°C freezer for more than 30 minutes.

4) Centrifuge the sample for around 30 minutes at 4 °C in a microcentrifuge at 10000 rpm. The abovesupernatant was removed and the pellet (precipitate) was cooled in liquid nitrogen and then placedon a lyophilizer. After lyophilization, the dry pellet was recovered.

Conversion determined by LCMS.

4. Copies of NMR Spectrums for All Compounds

Compound 3aa

Compound 3ab

Compound 3ac

Compound 3ad

Compound 3ae

Compound 3af

Compound 3ag

Compound 3ah

Compound 3ai

Compound 3aj

Compound 3ak

Compound 3al

Compound 3am

Compound 3an

Compound 3ao

Compound 3ap

Compound 3bp

Compound 3cp

Compound 3dp

Compound 3ep

Compound 3fp

Compound 3gp

Compound 3hp

Compound 3ir

Compound 3jq

Compound 3Ip

Compound 5a

Compound 5b

Compound 5h

Compound 5g

Compound 5f

Compound 5c

Compound 5d

Compound 5e

Compound 5i

Compound 7a

Compound 7f

Compound 7e

Compound 7h

Compound 7j

Compound 7k

Compound 7m

Compound 7b

Compound 7d

Compound 7g

Compound 7I

Compound 7i

Compound 8

Compound 9a

Compound 9c

Compound 9b

Compound 9e

Compound 9d

Compound 11a

Compound 11d

Compound 11b

Compound 11c

Compound 11e

Compound 11f

Compound 11g

Compound 11h

Compound 11i

Compound 11j

Compound 11k

Compound 13a

Compound 13b

Compound 13c

Compound 13e

Compound 13f

Compound 13d

Compound 13g

Compound 13h

Compound 13i

Compound 3mp

Compound 13h

Compound 14a

Compound 11h

Compound 5j

Compound 70

Compound 14b

Compound 14c

Compound 14d

5. Copies of MS Spectrums for Compounds in Fig 5 and Fig 6.

Compound 15a

Compound 15c

Compound 15f

Compound 15e

Compound 15d

Compound 16a

Compound 16d

Compound 16g

Compound 16j

Compound 16m

Compound 16p

Compound 16s

5. Reference

Wang, D.-Y., Kawahata, M., Yang, Z.-K., Miyamoto, K., Komagawa, S., Yamaguchi, K., Wang, C., and Uchiyama, M. (2016). Stille coupling via C–N bond cleavage. Nature Communications *7*, 12937.

Nagao, Y., Miyamoto, S., Miyamoto, M., Takeshige, H., Hayashi, K., Sano, S., Shiro, M., Yamaguchi, K., and Sei, Y. (2006). Highly stereoselective asymmetric pummerer reactions that incorporate intermolecular and intramolecular nonbonded S–O interactions. J. Am. Chem. Soc. *128*, 9722–9729.

Irie, T., and Tanida, H. (1980). Neighboring-group participation by hydroxyl oxygen in nucleophilic aromatic substitutions. Smiles rearrangements of (.omega.-hydroxyalkyl)methyl(p-nitrophenyl)sulfonium perchlorates in aqueous alkali. J. Org. Chem. *45*, 4961–4965.

Pace, V., Castoldi, L., and Holzer, W. (2012). Highly chemoselective synthesis of aryl allylic sulfoxides through calcium hypobromite oxidation of aryl allylic sulfides. Tetrahedron Lett. 53, 967–972.

Taniguchi, T., Naka, T., Imoto, M., Takeda, M., Nakai, T., Mihara, M., Mizuno, T., Nomoto, A., and Ogawa, A. (2017) Transition-metal-free and oxidant-free cross-coupling of arylhydrazines with disulfides: base-promoted synthesis of unsymmetrical aryl sulfides. J. Org. Chem. *82*, 6647–6655.

Tian, H., Zhu, C., Yang, H., and Fu, H. (2014) Iron or boron-catalyzed C–H arylthiation of substituted phenols at room temperature. Chem. Commun. *50*, 8875–8877.

Kondoh, A., Yorimitsu, H., and Oshima, K. (2006). Nucleophilic aromatic substitution reaction of nitroarenes with alkyl- or arylthio groups in dimethyl sulfoxide by means of cesium carbonate. Tetrahedron *62*, 2357–2360.

Xu, X.-B., Liu, J., Zhang, J.-J., Wang, Y.-W., and Peng, Y. (2013). Nickel-mediated inter- and intramolecular C–S coupling of thiols and thioacetates with aryl iodides at room temperature. Org. Lett. *15*, 550–553.

Kanemura, S., Kondoh, A., Yorimitsu, H., and Oshima, K. (2008). Nickel-catalyzed cross-coupling reactions of alkyl aryl sulfides and alkenyl alkyl sulfides with alkyl Grignard reagents using (Z)-3,3-Dimethyl-1,2-bis(diphenylphosphino)but-1-ene as ligand. Synthesis *16*, 2659–2664.

Tobisu, M., Kita, Y., Ano, Y., and Chatani, N. (2008). Rhodium-catalyzed silylation and intramolecular arylation of nitriles via the silicon-assisted cleavage of carbon-cyano bonds. J. Am. Chem. Soc. *130*, 15982–15989.

Guo, H., Chen, X., Zhao, C., and He, W. (2015). Suzuki-type cross coupling between aryl halides and silylboranes for the syntheses of aryl silanes. Chem. Commun. *51*, 17410–17412.

Hamze, A., Provot, O., Alami, M., and Brion, J. (2006). Platinum oxide catalyzed silylation of aryl halides with triethylsilane: an efficient synthetic route to functionalized aryltriethylsilanes. Org. Lett. *8*, 931–934.

McNeill, E., Barder, T. E., and Buchwald, S. L. (2007). Palladium-catalyzed silylation of aryl chlorides with hexamethyldisilane. Org. Lett. *9*, 3785–3788.

Chau, N. T. T., Meyer, M., Komagawa, S., Chevallier, F., Fort, Y., Uchiyama, M., Mongin, F., Groos, P. C. (2010). Homoleptic zincate-promoted room-temperature halogen–metal exchange of bromopyridines. Chem. Eur. J. *16*, 12425–12433.

Komeyama, K., Asakura, R., and Takaki, K. (2015). A Sn atom-economical approach toward arylstannanes: Ni-catalysed stannylation of aryl halides using Bu₃SnOMe. Org. Biomol. Chem. *13*, 8713–8716.

Chen, K., He, P., Zhang, S., and Li, P. (2016). Synthesis of aryl trimethylstannanes from aryl halides: an efficient photochemical method. Chem. Commun. *52*, 9125–9128.

Shirakawa, E., Nakao, Y., Murota, Y., and Hiyama, T. (2003). Palladium–iminophosphine-catalyzed homocoupling of alkynylstannanes and other organostannanes using allyl acetate or air as an oxidant. J. Organomet. Chem. 670, 132–136.

Reed, C. D., Launay, G. G., and Carroll, M. A. (2012). Evaluation of tetraethylammonium bicarbonate as a phase-transfer agent in the formation of [18F]fluoroarenes. J. Fluorine Chem. *143*, 231–237.

Tang, P., Furuya, T., and Ritter, T. (2010). Silver-catalyzed late-stage fluorination. J. Am. Chem. Soc. 132, 12150–12154.

Fargeas, V. et al. (2003). Nitration of heteroaryltrimethyltins by tetranitromethane and dinitrogen tetroxide: mechanistic aspects, scope and limitations. Eur. J. Org. Chem. 1711–1721.

Jeon, S., Earmme, T., and Jenekhe, S. A. (2014). New sulfone-based electron-transport materials with high triplet energy for highly efficient blue phosphorescent organic light-emitting diodes. J. Mater. Chem. C, 2, 10129–10137.

Komami, N., Matsuoka, K., Yoshino, T., and Matsunaga, S. (2018). Palladium-catalyzed germylation of aryl bromides and aryl triflates using hexamethyldigermane. Synthesis *50*, 2067–2075.

Maity, P., Ahammed, S., Manna, R. N., and Ranu, B. C. (2017). Calcium mediated C–F bond substitution in fluoroarenes towards C–chalcogen bond formation. Org. Chem. Front. *4*, 69–76.

Sugiura, K., Ushiroda, K., Tanaka, T., Sawada, M., and Sakata, Y. (1990). Porphyrin architectures constructed by CH- π interactions: synthesis and cystal structures of 5,10,15,20-Tetrakis (4-methylchalcogenophenyl) -21H,23H-porphyrins. Chem. Lett. *19*, 2085–2088.

Ma, X., Yu, L., Su, C., Yang, Y., Li, H., and Xu, Q. (2017). Efficient generation of C–S bonds via a by-product-promoted selective coupling of alcohols, organic halides, and thiourea. Org. Chem. Front. *4*, 69–76.

Lewis, E. S., Yousaf, T. I., and Douglas, T. A. (1987). Methyl transfers. 13. Transfers between aryl selenide anions. An unusual transition-state charge distribution. J. Am. Chem. Soc. *109*, 2152–2156.

Dhau, J. S., Singh, A., Singh, A. Dhir. R., Brandao, P., and Felix, V. (2014). Synthesis and characterization of pyrimidyl- and pyrazinylselenium compounds: X-ray structure of 2,5-bis(methylselenenyl)pyrazine. Inorg. Chim. Acta. *421*, 359–363.

Ding, X., Huang, M., Yi, Z., Du, D., Zhu, X., and Wan, Y. (2017). Room-temperature Cul-catalyzed amination of aryl iodides and aryl bromides. J. Org. Chem. *82*, 5416–5423.

Fors, B. P., Davis, N. R., and Buchwald, S. L. (2009). An efficient process for Pd-catalyzed C-N cross-coupling reactions of aryl iodides: insight Into controlling factors. J. Am. Chem. Soc. *131*, 5766–5768.

Maiti, D., Fors, B. P., Henderson, J. L., Nakamura, Y., and Buchwald, S. L. (2011). Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chem. Sci. *2*, 57–68.

Kayama, S., Tani, N., Tabata, H., Oshitari, T., Natsugari, H., and Takahashi, H. (2016). Electronic effects on the amide E-/Z-preference of N-benzoyl-carbazole derivatives. Tetrahedron Lett. *57*, 2395–2398.

Novak, M., Martin, K. A., and Heinrich, J. L. (1989). S_N2 reactions of a carbon nucleophile with N-Aryl-Opivaloylhydroxylamines: a model for in vivo reactions of carcinogenic metabolites of aromatic amines. J. Org. Chem. *54*, 5430–5431.

McNulty, J. et al. (2007). A pronounced anionic effect in the Pd-catalyzed Buchwald–Hartwig amination reaction revealed in phosphonium salt Ionic liquids. Eur. J. Org. Chem. 1423–1428.

Lang, L. et al. (2009). [⁷⁶Br] BMK-I-152, a non-peptide analogue for PET imaging of corticotropin-releasing hormone type 1 receptor (CRHR1). J. Label Compd. Radiopharm *52*, 394–400.

Chen, W., Luo, H., Liu, X., Foley, J., and Song, X. (2016). Broadly applicable strategy for the fluorescence based detection and differentiation of glutathione and cysteine/homocysteine: demonstration in vitro and in vivo. Anal. Chem. *88*, 3638–3646.