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Raw data 
 
Sequencing read count tally files and other relevant analysis files used in this study can be found here:  
 
https://data.broadinstitute.org/fitness/  
 
 

Analysis pipeline 
 
The pipeline to generate tally files from raw sequence data is UNIX-based; the FiTnEss analysis 
software is R-based. These analysis pipelines can be found here: 
 
https://github.com/broadinstitute/FiTnEss 
  

www.pnas.org/cgi/doi/10.1073/pnas.1900570116



Poulsen B.E.	et al.	

Additional Methods and Results 
 
Plasmid construction. pC9 was derived from pSAM-DGm (1) by digesting with ApaLI + AccI to 
remove the transposon, and pMAR was derived from pMAR2xT7 (2) by digesting with ApaLI + StuI to 
remove the transposase. Linearized vectors were each blunted, phosphorylated, ligated, and transformed 
into E. coli SM10 donor cells and selected on 100ug/ml carbenicillin (pC9) or 15ug/ml gentamicin 
(pMAR). Cloning reagents were obtained from New England Biolabs. 
 
Transposon library construction and sequencing. Overnight cultures of E. coli SM10(pC9) and E. 
coli SM10(pMAR) donor cells were grown in LB medium with their respective antibiotics, sub-cultured 
1:100, and grown at 37°C while shaking at 250 RPM for 3.5 hours until OD600nm reached ~0.5. 
Overnight cultures of recipient P. aeruginosa strains were grown in LB medium, sub-cultured 1:5, and 
grown at 42°C while shaking at 250 RPM for 3.5 hours. Cells were collected by centrifugation at 5000g 
for 10 minutes, washed once, and re-suspended in LB. A total of 3 x 1011 CFU were mixed in a 2:2:1 
ratio of pC9:pMAR:recipient and collected by centrifugation. The cell mating mixture was re-suspended 
to an approximate concentration of 1011 CFU/ml and 30 µl spots were dispensed to a dry LB agar plate. 
Mating plates were incubated at 37°C for 1.5 hours before cells were scraped, resuspended in phosphate 
buffered saline (ThermoFisher), mixed with glycerol to a final concentration of 40%, aliquoted, and 
flash frozen in a dry ice/ethanol bath before storage at -80°C. A small aliquot of each mixture was 
thawed, diluted and plated to 5 µg/ml irgasan + 30 µg/ml gentamicin for CFU quantification of 
successful integrants. Matings were performed at least twice for each recipient strain. 250 mL of each 
medium containing 1.5% agar, 5 µg/ml irgasan, and 30 µg/ml gentamicin was prepared in a Biodish XL 
(Nunc). LB agar (US Biologicals), M9 minimal agar, synthetic cystic fibrosis medium (SCFM) (3) were 
prepared as previously described. Pooled, filter-sterilized urine, and fetal bovine serum (FBS) 
(ThermoFisher) were warmed to 55°C and mixed with a 5% agar solution (Teknova) to achieve a 1.5% 
final agar concentration. 500,000 CFU of each transposon-integrated strain were plated to each medium 
in duplicate and grown at 37°C for 24 hours (LB, FBS, SCFM) or 48 hours (urine, M9) before scraping 
and re-suspending cells in PBS. Genomic DNA was isolated using the DNeasy kit (Qiagen), and 5 µg 
from each sample was sheared to 1.5 kb fragments by sonication (Covaris). End repair, dA-tailing, P5 
adapter ligation, and PCR of the transposon-gDNA junction was performed using NEBNext enzymes 
(NEB) and custom primers from IDT (Fig. S1 and Dataset S7). Size selection was performed using 
Agencourt Ampure XP beads (Beckman Coulter) and ~500 bp libraries were quantified using D5000 
ScreenTape System (Agilent). Sequencing was performed with an Illumina Nextseq platform to obtain 
50 bp genomic DNA reads. 
 
Removal of confounding transposon insertion sites from analysis. At these TA sites, the presence or 
absence of mapped insertions can be influenced by methodological artifacts unrelated to the essentiality 
of gene in which the TA is located. To avoid these confounding factors, we removed three classes of TA 
sites from analysis because of their potential to mislead:  
 
(1) Non-permissive insertion sites – The sequence (GC)GNTANC(GC) was reported to be intolerant to 
Himar1 transposon insertions in Mycobacterium tuberculosis (4), which has a similar GC content to P. 
aeruginosa. This sequence occurs 6367 times in P. aeruginosa strain PA14 across 3389 genes. Indeed, 
we found that insertions mapped to these sites at a significantly reduced frequency compared to a 
random subsample of TA sites (p < 0.0001, Fig. S2) and thus excluded them from all subsequent 
analysis.  
 
(2) Non-disruptive terminal insertions – Transposon insertions close to 5’ and 3’ gene termini can 
nevertheless result in the expression of a functional, albeit truncated version of the corresponding gene 



Poulsen B.E.	et al.	

product (5). Rather than selecting an arbitrary distance from the termini in which to exclude such 
potentially confounding TA sites, we empirically determined an optimal distance. Using the consensus 
109 essential genes from previous transposon studies of strains PA14 and PAO1 as the truth set for 
essential genes (1, 2, 6-8), we found that 42 of these genes in our PA14-LB dataset contained >10 
sequencing reads, all of which corresponded to TA site insertions located within 50 bp from the gene 
termini, regardless of gene size (Fig. S2). We thus eliminated from analysis all TA sites that fell within 
50 nucleotides of either the 5’ or 3’ ends of each gene. Removal of these confounding TA sites resulted 
in the exclusion of 9829 TA sites.  
 
(3) Homologous insertion sequences – Because insertions are assigned to a specific TA site in a specific 
gene based on the mapping of the genomic sequences flanking the ends of a transposon onto the entire 
genome, we removed from consideration TA sites whose flanking regions are not unique because of the 
possibility of mis-mapping reads.  
 
FiTnEss: a statistical model to identify essential genes.  
 
Motivation behind the model. After removal of confounding TA sites, we used an exemplary dataset – 
PA14 LB – to first calculate the average number of reads per TA site in each gene, 𝒏𝒈/𝑵𝑻𝑨, where 𝑛( is 
the total number of reads in the gene and 𝑁*+ is the number of TA sites. The distribution of 𝑛(/𝑁*+ 
across all genes in this dataset appears bimodal, with essential genes presumably on the far left and the 
bulk of the distribution (on the right) representing non-essential genes (Fig. S3A). However, when we 
separated this combined distribution based on gene-size (i.e. 𝑁*+ = 1, 𝑁*+ = 2, 𝑁*+ = 3, etc.), we 
observed that the distribution varies with 𝑁*+: it is only bimodal in larger genes (𝑁*+ ≥ 5, Fig. S3B), 
and the non-essential peak becomes more narrow as 𝑁*+ further increases. Thus, selecting a single 
𝑛(/𝑁*+ cutoff value for the whole distribution to define essential versus non-essential genes is not 
appropriate. Clearly, a given gene must be compared to the distribution calculated from genes of the 
same size. It turns out, as explained below, that a simple model with two parameters is sufficient for 
describing the behavior of all non-essential genes and can be used to derive thresholds for all 𝑁*+ 
values. Below, we describe in detail these observations about the data and the construction of the model 
that forms the basis for FiTnEss. 
 
Additional observations that support the model. As noted above, calculating the average number of 
reads per TA site in a gene (𝑛(/𝑁*+) of a given dataset results in a specific value that falls in a 
distribution. There is, however, variation between the numbers of reads at each TA site within that gene 
(e.g. a gene with 100 reads and 10 TA sites does not typically have 10 reads at each TA site). We refer 
to this as the “gene-specific distribution of reads”, whose mean is approximated by the average 𝑛(/𝑁*+. 
As described above, Fig S3B demonstrated that the distribution of  𝑛(/𝑁*+ depends on 𝑁*+. The 
simplest explanation for this dependence is that, like any average of independent variables, the variation 
of the average number of reads/TA at any gene is inversely proportional to the number of observations 
being averaged, namely 𝑁*+. We demonstrate the 𝑁*+-independence of the underlying gene-specific 
distributions by sampling once from each of them (instead of looking at the averages) (Fig. S3C,D). 
Indeed, the distributions for different 𝑁*+ categories look similar, which is also supported by the 
constant variance (compare Fig. S3E and S3F).  

Given the bimodal distributions observed in the data (Fig. S3B), we based FiTnEss on modelling 
the collective behavior of gene-specific distributions for non-essential genes, and fitting the model 
parameters from the data, as explained in the next sections. In the final step, the data from each gene can 
be converted to the likelihood of that gene being non-essential by calculating p-values from the 
distributions. 
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A model for non-essential genes. We posited that the distribution of the number of reads at any TA site 
in a gene (the gene-specific distribution) is geometric with probability 𝑝(, and that the expected number 
of reads (1/𝑝() is only a function of the fitness of the bacteria when the gene function is lost. Assuming 
a lognormal distribution of 1/𝑝(, the model only requires two parameters, the mean and variance of this 
distribution, to be determined from the data. Since the model describes non-essential genes, it was 
important to avoid data from essential genes when fitting the model parameters. Thus, we used only 
genes with which we had high confidence in their non-essentiality (𝑁*+= 10; top 75% of the 
distribution). Given the fitted parameters of the model, a specific dependence of the distribution of 𝑛( 
(and 𝑛(/𝑁*+) on the number of TA sites was predicted, which agrees well with the actual data (red 
curves in Fig. S3B).  
We assume that each non-essential gene g is characterized by a parameter, 𝑝(, the inverse of which 
comes from a log-normal distribution 
  

𝑝(-. ∼ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 𝜇, 𝜎 , (1) 

with parameters 𝜇, 𝜎. We further assume that for any non-essential gene g with certain number of TA 
sites (𝑁*+), the read counts at any of its TA sites, 𝑥(,;, are iid (independent and identically distributed 
random variables), and are distributed according to   

For a specific gene g: 𝑥(,; ∼ 𝐺𝑒𝑜(𝑝(),  

𝑓𝑜𝑟	𝑖 = 1, . . . , 𝑁*+. 
(2) 

A possible interpretation of this model is that there is a distribution among non-essential genes of the 
small fitness costs of disabling them. Genes that are slightly more important would have a higher 
knockout cost 𝑝(-., or a lower 𝑝(, and thus a lower number of reads per TA site on average. 

It follows that the distribution of 𝑛(, the total number of reads in a given gene, follows a negative 
binomial distribution: 

For a specific gene g:  

𝑛( ≡ 𝑥(,;
GHI
. ∼ 𝑁𝐵(𝑁*+, 𝑝(). 

(3) 

(It should be notes that for the purpose of fitting the model and subsequent scoring of the essentiality of 
genes, using the distributions of  𝑛( is completely equivalent to using those of 𝑛(/𝑁*+.) 
The distribution of 𝑛( among all the genes for some value of 𝑁*+is the convolution of the lognormal and 
the negative binomial: 

𝐹LM
∗ (𝑛) ≡ 𝑃𝑟𝑜𝑏 𝑛( ≤ 𝑛 =

	 𝑓RG(
.
S
; 𝜇, 𝜎)𝐹GU(𝑛;𝑁*+, 𝑝)𝑑

.
S

WX
Y , 

(4) 

where 𝑓RG is the probability density function of the lognormal distribution and 𝐹GU the negative 
binomial cumulative distribution function.  
 
Fitting model parameters. Model parameters are fitted by minimizing the distance between an 
expected distribution (given the parameters), and an empirical one. As a distance metric, we used a 
modification of the Cramér-von Mises criterion, which is a goodness of fit criterion, measuring the 
difference between the cumulative density functions of empirical and fitted distributions. We applied it 
here to the distributions of 𝑛( in different 𝑁*+  categories (Equation 4). The empirical distribution 
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𝐹GHIis obtained directly from the data, and we use numerical sampling to approximate the theoretical 
𝐹GHI
∗  (sampling 100,000 times for each pair of parameter values 𝜇, 𝜎). For any 𝑁*+ category, we have  

𝜔GHI
[ = 

𝐹LM 𝑛;𝑁*+ −WX
Y

𝐹LM
∗ 𝑛; 𝑁*+

[
𝑑𝐹LM

∗ (𝑛;𝑁*+), 

(5) 

with 𝜔GHI
[  denoting the integral of squared distance between two functions for all genes with 𝑁*+ TA 

sites. In order to fit model parameters that describe non-essential genes, we tried to avoid data that are 
potentially “contaminated” by essential ones in the parameter estimation phase. To address this, we use 
a modified version of the Cramér–von Mises criterion 𝜔[ as follows:  

𝜔GHI
[ = 

𝐹LM 𝑛;𝑁*+ −WX
L[^/_]

𝐹LM
∗ 𝑛; 𝑁*+

[
𝑑𝐹LM

∗ (𝑛; 𝑁*+), 

(6) 

where 𝑛[./a] is the low 25 percentile of read counts in this 𝑁*+ category. This practically means that 
minimizing this distance is only affected by the goodness of fit to the higher 75% of the empirical 
distribution, which is not expected to contain essential genes.  

The model parameters can be determined by minimizing the sum of this modified 𝜔[ for any of the 
different 𝑁*+ categories, and the resulting parameters are not affected much by this choice. Yet we 
observed that for genes with a low number of TA sites there was not much separation between the 
essential and non-essential populations. Conversely, for the gene categories with large 𝑁*+, where this 
separation is very pronounced, the number of genes in these categories is too small and leads to less 
robust fits. We have estimated the variability of the fitted parameters under perturbations of the data and 
concluded that using values of 𝑁*+ between 5 and 15 yield robust fits (Fig. S8). The parameters used for 
the results in this paper are based on fitting the distributions at 𝑁*+ = 10. 
 
Calling essential genes. For each Tn-Seq dataset (= a replicate of strain x medium), after identifying 
parameters 𝜇, 𝜎 for non-essential genes, we construct the background distribution for each 𝑁*+ category 
by sampling 105 observations of (𝑛(∗ ) from the theoretical distribution (Equation 4). The actual number 
of reads for each gene is then compared to the background distribution for the corresponding 𝑁*+ 
category, and a p-value is calculated as the probability of obtaining this number reads (𝑛() or less “by 
chance”: 

𝑝-𝑣𝑎𝑙𝑢𝑒 = 𝑃(𝑛(∗ < 𝑛(). (7) 

In each medium and strain, we have more than 5000 genes being tested simultaneously. Accounting 
for multiple testing is required for obtaining true signals. Two-layer multiple comparison adjustments 
were conducted. First, in order to obtain a more conservative essential set, we adjusted for family-wise 
error rate. Family-wise error rate (FWER) is a conservative correction method for multiple hypothesis, 
by controlling type I error we allow low probability of making one or more false discoveries. In our 
analysis, we used Holm-Bonferroni method with type I error rate 𝛼 = 0.05, indicating that we have only 
5% chance of obtaining even a single false positive call in the dataset. Second, to reduce the risk of 
losing important targets by being too conservative, we used Benjamini-Hochberg procedure, which is a 
less strict approach controlling for false-discovery rate. After either correction process, genes with 
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adjusted p-value smaller than 0.05 in both replicates are identified as “confident essential” (FWER) or 
“candidate essential” (FDR). 

Gene deletions. Gene deletions were performed as previously described in strain PA14 (9). Briefly, 
800-1200 bp regions flanking the target deletion gene of interest were PCR amplified, stitched and 
recombined into the pEXG2 (9) plasmid containing GentR and SacB markers using Gateway Cloning. 
Plasmids were conjugated into PA14 using the E. coli helper plasmid pRK2013 for 8 hours, followed by 
selection on LB agar containing 15 µg/ml irgasan + 30 µg/ml gentamicin. Individual colonies were 
grown in liquid LB for 4 hours, followed by streaking to LB agar supplemented with 10% sucrose and 
grown at 37°C for 16 hours. Colonies were confirmed to be GentS and successful gene deletions were 
confirmed by PCR amplification and sequencing.  
 
Comparison of FiTnEss to a HMM. Analytical tools can also vary significantly, as they all have 
different strengths and weaknesses, often having been developed to answer different questions. One of 
the greatest challenges for the analytical tools is to translate measurements from Tn-Seq, which is really 
quantifying a continuum of fitness – from optimal growth in a particular condition to slow growth, from 
static for growth to cell death – to a binary classification of essential versus non-essential in the service 
of comprehensively defining candidate targets for antibiotic discovery. The different tools can vary 
dramatically both in the assumptions built into the analysis and how conservatively each model calls 
essentiality i.e., whether one is more willing to tolerate false positives or false negatives.  

For example, a Hidden Markov Model (HMM) and sliding window approach rely on a stretch of 
TA sites that have zero to very low level insertions to denote an essential gene (10, 11). An advantage of 
these methods is that intergenic regions and essential domains within a larger gene can be queried. The 
disadvantage is that genes containing more insertions than the HMM and sliding window approaches 
tolerate in an essential gene, can in fact be essential with detectable insertions resulting because death of 
the corresponding mutant is slow or delayed. Because FiTnEss considers genes rather than individual 
TA sites as the basic unit for determining essentiality, it leverages all TA sites in a gene, allowing it to 
more easily distinguish whether low insertion numbers are indicative of low coverage in a non-essential 
gene or background noise in an essential gene.  

Another set of genes that are often discrepant between analytical methods is short genes that may 
be flanked by genes of the opposite classification. Here, approaches that examine “windows” of adjacent 
TA sites (~5-10 adjacent sites) can misclassify the short gene of interest (<5 TA sites) by erroneously 
integrating in data from the flanking genes that are of the opposite classification; because FiTnEss 
examines the gene independent of flanking regions, it can avoid being misled by the behavior of the TA 
sites in the flanking genes. In the particular case of longer genes containing a mix of essential and 
nonessential domains, the power of FiTnEss to detect essentiality is reduced because of it cannot 
distinguish the even distribution of reads across the gene (resulting in a call of non-essentiality) with a 
bimodal distribution of reads among the essential and non-essential domains (which should result in a 
call of essentiality). Here, other methods such as HMM outperform FiTnEss (Fig. S7 for comparison of 
methods, Dataset S3 for complete FiTnEss/HMM gene calls).  

While the methods are complementary, in the analysis of the datasets generated in this study, 
FiTnEss seemed to be generally more powerful for calling essential genes than HMM, with greater 
accuracy in calling the 115 conditionally essential gene-growth condition combinations that we 
validated using clean genetic deletions (Fig. 2 and Fig. S4). While the HMM method did not have any 
false positives (if combining essential and growth defective categories), it did miss calling many 
essential genes, i.e. tolerated a high false negative rate (Table S2). Meanwhile, FiTnEss attempted to 
balance false positive and false negative rates for this limited set of deletions resulting in greater overall 
accuracy. Of note, the genes selected for validation were skewed towards falling relatively clearly in the 
essential or non-essential distributions; thus, they may overestimate the positive predictive power of 
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FiTnEss, particularly for genes that lay at the boundary of the bimodal distribution. Nevertheless, 
overall, FiTnEss appears to perform well in its binary classification of genes. 
 
  



Poulsen B.E.	et al.	

Figures 

 

Figure S1. Transposon mutagenesis and Illumina library construction. E. coli SM10 donor cells 
containing either the pC9 transposase or pMAR transposon are mated with recipient P. aeruginosa. 
Transposon-integrated P. aeruginosa mutants are selected on solid medium: LB, M9 minimal, fetal 
bovine serum, synthetic cystic fibrosis sputum or urine followed by outgrowth, cell collection, and 
genomic DNA purification. Illumina libraries of isolated genomic DNA were constructed by: 1) end 
repair of ~1.5kb sheared DNA and ligation of Illumina P5 adapters; 2) PCR amplification using primers 
specific to the P5 ligated ends and transposon (Tn) while introducing the P7 Illumina flow cell binding 
site sequence; 3) size-selection of 400-500bp fragments containing the genomic-transposon junction. 
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Figure S2. Removal of non-permissive and gene-termini insertion sites from Tn-seq data analysis. 
A. Non-permissive TA sites. Reads at TA sites with the surrounding sequence (GC)GNTANC(GC) have 
significantly reduced reads compared to a random subsample of TA sites (p < 0.0001, n = 6352, 
Kolmogorov-Smirnov test); PA14 LB dataset. B. Reads at termini of essential genes. 42 genes identified 
from our Tn-seq data that contain reads. These 42 genes are part of the consensus of 109 published 
essential genes (Dataset S6) and contain >10 reads from the PA14-LB dataset, as indicated with a dot. 
Reads in these essential genes are found <50 bp from either the 5’ or 3’ end regardless of gene size, thus 
distal TA sites were removed from analysis in all genes. 
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Figure S3. Distributions of read numbers in Tn-Seq data in relation to gene size. A. Distribution of 
average number of reads/TA site in a gene (ng/NTA) for all genes and B. in genes with only 1, 5, 10, 15 
TA sites. The red curves are theoretical distributions for the non-essential genes simulated from our 
parameters; actual Tn-Seq data shown as histograms. C. Distribution of number of reads at one random 
sampled TA site in a gene for all genes and D. in genes with only 1, 5, 10, 15 TA sites. E. Standard 
deviation of average number of reads/TA site in a gene for these NTA categories is decreasing, as 
expected with increasing numbers of TA sites. F. Standard deviation of number of reads at one random 
TA site is relatively constant across different numbers of TA sites, thus showing that all TA sites are 
behaving similarly, regardless of gene length and numbers of TA sites in a gene. 
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Figure S4. FiTnEss validation using conditionally essential gene deletions. 23 gene deletions in 
strain PA14 grown on 5 media (left to right: LB, M9, serum, SCFM sputum, urine). FiTnEss essentiality 
predictions (left columns) are depicted by: dark green circle, non-essential; no circle, maximal 
stringency essential; light green circle, high stringency essential. Images of growth (middle columns) are 
categorized using densitometry of 2 biological replicates relative to 10 replicates of WT (right columns): 
essential (E, 0-20% of WT), intermediate (GD, 21-50% of WT), non-essential (NE, > 50% of WT).  
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Figure S5. Number of essential genes in genome as defined by FiTnEss. A. Maximal stringency 
(FWER) and B. high stringency (FDR) numbers of essential genes in whole genome for each strain and 
medium. Strains are ordered based on genome size, demonstrating the increase of accessory essential 
genes with genome size. Core genome essential genes are shown with solid lines, and total essential 
genes including the accessory genome essential genes are shown with dashed lines. C. Number of 
maximal stringency (red), high stringency (pink), and non-essential (green) genes common to each strain 
across all media, distributed between the 4903 core genes (left) and accessory genes (right). D. Number 
of essential genes common across all strains in each medium, highlighting the 321 core essential (blue) 
and conditionally essential (yellow) genes. 
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Figure S6. MCA analysis of strain-media conditions. MCA results of high-stringency essential genes 
identified by FiTnEss after FDR correction, projected on first two dimensions. Here we can see that 
conditions are grouped finely together based on their growth media, with PA14 being outlier in M9 
minimal and urine media. 
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Figure S7. Explanations of discrepancies between FiTnEss and TRANSIT (HMM method) 
predictions using the example PA14 on M9 media. A. FiTnEss prediction categories (Essential 
(FWER), maximal stringency essential; Essential (FDR), high stringency essential; Non-Essential) 
versus HMM predictions (Essential; Growth Defective; Non-Essential). Pie sizes are proportional to 
number of genes that fall into each category (incremental circular scale shown), with pie components 
indicating explanations of discrepant calls. The vast majority of genes are concordant between the two 
methods and are colored in pink, with 5012 ‘Non-Essential’ genes and 327 essential genes. The ‘Growth 
Defective’ vs ‘Essential (FWER)’, ‘Non-Essential’ vs ‘Essential (FWER)’ and ‘Non-Essential’ vs 
‘Essential (FDR)’ panels show genes that detected by FiTnEss as essential but are called less confidently 
(growth defective category) or completely non-essential by HMM. These genes for the most part fall 
unequivocally on the left mode of the ng distribution, and therefore justify FiTnEss’s calls. Closer 
examination of the data suggested that for most genes in this category, there are a moderately low 
number of reads that are distributed evenly across the genes. Since HMM focuses on consecutive runs of 
essential TA sites (that typically have near-zero reads), it has less power to detect the essentiality of such 
genes, whereas FiTnEss leverages all the TA sites in the gene and can thus more easily find a significant 
overall deficiency (No E interval). Another set of genes in this category are short genes with very few 
or no reads, flanked by non-essential genes with many reads. Here too, the HMM’s focus on runs of 
usually 5 or more essential TA sites reduces the method’s power to detect essentiality (NE Short). B. 
Scaled-up section from panel A, as indicated by the red boxes. ‘Essential’ vs ‘Essential (FDR)’, 
‘Essential’ vs ‘Non-Essential’, and ‘Growth Defective’ vs ‘Non-Essential’ are genes that are called 
essential or growth defective by HMM but are called less confidently or not essential at all by FiTnEss. 
Many of the genes in this category do not fall convincingly in the left mode of ng distribution. These 
genes tend to be short and seem to “mislead” HMM by being flanked by essential genes (E short). 
Finally, there is a small set of genes that HMM seems justified in called essential as they exhibit a clear 
interval of essential TA sites, typically an essential region of a large gene, but that interval is being 
“diluted” over the entire gene and thus reduces the power of FiTnEss to detect them (E interval). In 
summary, while there is complementarity between the methods, FiTnEss seems to be more powerful for 
calling essential genes than HMM, with only a very small tradeoff for genes where the latter has an 
advantage. 
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A         B 

 
 
Figure S8. Robustness test of FiTnEss parameters. A. Variation of fitted parameters using genes with 
different number of TA site categories. Genes with 𝑵𝑻𝑨 number of TA sites (𝑵𝑻𝑨 ∈ [𝟏, 𝟑𝟎]) were used 
to fit parameters respectively, and we repeated this process for 10 times in order to learn the variance. In 
this plot, dot showing the optimized parameter obtained from 10 runs for each 𝑵𝑻𝑨 category, while error 
bars showing 3 standard deviations around mean of those 10 runs. Color shows number of genes in each 
𝑵𝑻𝑨 category. We found that parameters obtained using genes with 5-15 TA sites (median 𝑵𝑻𝑨 = 𝟗) 
were relatively consistent with small variations. In our analysis, we chose genes with 10 TA sites to fit 
parameters. B. Consistency of essential genes called by different parameters. We repeated essential gene 
calling process using optimized parameters obtained using genes of each 𝑵𝑻𝑨 category. Each row shows 
results using parameters obtained from corresponding 𝑵𝑻𝑨 categories shown on y-axis, with gene 
colored red to be essential, and blue to be non-essential. We could see that results are robust regardless 
of which 𝑵𝑻𝑨 category we used to fit parameters. Row with “current” label are our current results using 
genes with 10 TA sites. 
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Tables 
 
 

Table S1. Summary of removed and usable TA insertion sites from analysis. 
 

Strain Total coding 
region sites 

Non-
permissive 
to insertion 

Homologous 
surrounding 

sequences 

Site at 5' 
or 3' 

gene end 

Total 
sites 

removeda 

Total 
Usable 

TA sites 
19660 83542 6558 1942 10274 17684 65858 
BL23 92065 6874 2720 11413 19732 72333 

BWH005 84887 6574 1194 10400 17196 67691 
BWH013 84102 6647 966 10120 16864 67238 
BWH015 78683 6374 786 9448 15785 62898 

CF77 89916 6936 2475 10826 19166 70750 
PA14 81328 6367 1122 9829 16499 64829 
PS75 75854 6199 671 9249 15309 60545 

X13273 88610 6793 1416 10849 18085 70525 
aTA sites may fall under multiple categorical reasons for removal from analysis 
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Table S2. Summary of TRANSIT (HMM) performance based on gene deletion growth profiles 
from Fig. S4. 
 

 TRANSIT: HMM Predictiona 

Growth category Essential 
Growth-
defective 

Non-
Essential 

Essential 100% (15) 80% (12) 8% (7) 
Intermediate 0% (0) 20% (3) 14% (12) 
Non-essential 0% (0) 0% (0) 78% (66) 

 
aStrain-medium instances are in parentheses 
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