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I. SI Materials and Methods 

Construction of DAF, MCP, DAF-MCP chimeras and substitution mutants of D2D3M3M4 
and CR1 LHR-A (CCP1-3) 

Human DAF (D1-D4) and MCP (M1-M4) were amplified from their respective cDNAs and 
cloned into the yeast expression vector pPICZα (Invitrogen, Carlsbad, CA) as well as the 
bacterial expression vector pET-28b. The DAF-MCP chimeras were constructed using the 
gene splicing and overlap extension method as described (1) and then cloned either into the 
yeast expression vector pPICZα or into the bacterial expression vector pET-28b. The CR1 
LHR-A (CCP1-3) was amplified from CR1 cDNA and cloned in the pET-28b for its 
expression. The primer sets used to amplify the required regions of DAF, MCP and CR1 are 
listed in Table S3. The substitution mutants of D2D3M3M4 and CR1 LHR-A (CCP1-3) were 
constructed using the Quick-change site-directed mutagenesis kit II (Stratagene, La Jolla, 
CA) and cloned into the bacterial expression vector pET-28b. The mutagenic primers utilized 
for the site-directed mutagenesis are listed in Table S3. The DAF deletion mutant D2-D3 was 
amplified from DAF cDNA and cloned into pET-28b; primer sets used are listed in Table S3. 
Following cloning, all the constructs were validated by DNA sequencing (1st Base 
Laboratories Sdn Bhd, Malaysia). For expression, the proteins/mutants cloned into pPICZα 
were integrated into Pichia pastoris as per the manufacturer’s protocol, whereas those cloned 
into pET-28b were transformed into Escherichia coli BL21 (DE3) cells.  

Expression and purification of DAF, MCP, DAF-MCP chimeras and substitution mutants 
of D2D3M3M4 

Human DAF, MCP and the DAF-MCP chimeras namely D2M2-4 (chimera containing the 
DAF linker between D2-D3) and D2M2-4-ML (chimera containing the linker between M1-
M2) were expressed in P. pastoris as described (2, 3) and purified as below. Firstly, all the 
expressed proteins were concentrated by ultrafiltration and precipitated using 80% 
ammonium sulphate on ice. The pellets obtained were then dissolved in PBS and processed 
further. For purification of DAF, the pellet dissolved in PBS was mixed with 500 mM NaCl 
and loaded onto a DEAE-Sephacel column (Sigma, St. Louis, Mo.) pre-equilibrated with 
PBS containing 500 mM NaCl. The flow-through obtained was then passed through a PD-10 
column (GE Healthcare Life Sciences, Pittsburgh, PA) for buffer exchange and loaded onto a 
Mono Q column in 20 mM Tris, pH 8.0. Elution of the bound DAF was achieved by passing 
a linear gradient of 0 to 500 mM NaCl. For purification of MCP and the chimeras (D2M2-4-
DL and D2M2-4-ML), the pellet dissolved in PBS was subjected to buffer exchange against 
10 mM sodium phosphate, pH 7.4 and loaded onto a DEAE-Sephacel column in the same 
buffer.  The bound proteins were eluted with a linear gradient of 0-500 mM NaCl. The 
fractions containing MCP or the respective chimera were pooled, exchanged into 20 mM 
Tris, pH 8.0, loaded onto Mono Q column and eluted with a linear gradient of 0-500 mM 
NaCl. Eluted fractions in all the above purifications were subjected to SDS-PAGE and 
Western blot analysis using the appropriate antibody. All the purified proteins were dialyzed 
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in PBS and concentrated by ultrafiltration; purity of all the proteins exceeded 95% as 
determined by SDS-PAGE (Figs. S10A and S10B). 

Human DAF and MCP were also expressed in E. coli. Other mutants that were expressed in 
E. coli include the DAF mutant D2D3, DAF-MCP chimeras D2D3M3M4 and D2D3D4M4, 
and substitution mutants of D2D3M3M4. The CR1 LHR-A (CCP1-3) and its mutant CR1 
LHR-Amut (CCP1-3, D109N/E116K) were also expressed in E. coli. Expression of these 
proteins was performed essentially as described earlier (4, 5). In brief, proteins were purified 
using Ni-NTA column in the presence of urea as they were present in the inclusion bodies. 
They were then subjected to refolding by rapid dilution method (3) and passed through gel 
filtration column (Superose 12; GE Healthcare Life Sciences). All the proteins refolded 
properly as judged by the presence of a monodisperse population in the size exclusion 
chromatography profiles, and mobility differences on SDS-PAGE under reducing and non-
reducing conditions (an indication of disulfide bond formation) (Figs. S10A and S10B). The 
purity of all the E. coli expressed proteins exceeded 95% as determined by SDS-PAGE. 

CP and AP C3-convertase decay-accelerating activity assay 

The classical/lectin and alternative pathway C3-convertase decay-accelerating activity of 
DAF, DAF-MCP chimeras and the mutants of D2D3M3M4 was measured using hemolytic 
assays as described (2, 6). Briefly, the respective convertases were formed on erythrocytes 
using purified complement components and allowed to decay in the presence or absence of a 
regulator. The activity of the remaining convertases was estimated by incubating the 
erythrocytes with guinea pig sera containing 40 mM EDTA (a source of C3-C9) and 
measuring lysis. The data obtained were normalized by considering 100% C3-convertase 
activity equal to the lysis that occurred in the absence of an inhibitor. The activity obtained 
was then plotted against the concentration to determine the inhibitor concentration required to 
inhibit 50% of enzyme activity (IC50). Each of the inhibitors was tested at various 
concentrations to determine the concentration range at which it inhibits and then it was tested 
at three specific concentrations to determine the IC50 as performed earlier (7-10).    

C3b and C4b cofactor activity assay 

The cofactor activity of MCP, DAF-MCP chimeras and the mutants of D2D3M3M4 was 
measured by incubating each of the regulator with C3b (purified as described (11)) or C4b 
(Complement Technology, Inc., Tyler, TX) and serine protease factor I in PBS and 
measuring C3b/C4b cleavage. Briefly, C3b (10 µg) or C4b (15 µg) was mixed with 1 µM (for 
C3b) or 2 µM (for C4b) of the regulator and 250 ng (for C3b) or 500 ng (for C4b) of factor I 
in a total reaction volume of 75µl and incubated at 37OC. Aliquots of 15µl were then taken 
out at the indicated time periods, mixed with the sample buffer containing DTT and ran on 
either 9% (for C3b) or 10% (for C4b) SDS-PAGE gels for determining cleavage of α’-chain 
of C3b/C4b. The percentage of α’-chain cleaved was calculated by densitometric analysis 
using the Quantity one software (Bio-Rad); the amount of α’-chain was normalized to β-chain 
(loading control). A plot of percent cleavage of the α’-chain of C3b/C4b against time 



4 

 

provided the 50% cleavage of α’-chain of C3b/C4b. Activity differences of >3-fold were 
considered significant (12, 13). 

Surface plasmon resonance measurements 

Binding measurements of DAF, MCP, DAF-MCP chimeras and substitution mutants of 
D2D3M3M4 to C3b and C4b were performed on Biacore 2000 (Biacore AB, Uppsala, 
Sweden). First, the target proteins C3b and C4b biotinylated at their free –SH groups using 
EZ-Link PEO-maleimide-activated biotin (Pierce, Rockford, IL), were immobilized on flow 
cells 2 and 3 of a streptavidin chip (Sensor Chip SA; Biacore AB). The flow cell-1 
immobilized with biotinylated bovine serum albumin (BSA) served as the control flow cell. 
Next, each of the analytes (DAF, MCP and DAF-MCP chimeras and the mutants of 
D2D3M3M4) in PBS-T was flowed over the chip at 50 µl/min at 25OC to measure binding. 
The association and dissociation of the analyte was measured for 120 and 180 s, respectively, 
and chip regeneration was achieved by 30s pulses of 0.2 M sodium carbonate, pH 9.5. The 
specific binding response was derived by subtracting the control flow cell data from the 
target protein immobilized flow cell data. 

ELISA for measurement of effect on CP, AP and LP  

We employed the Wieslab complement system screen ELISA assay (Euro-Diagnostica, 
Malmo, Sweden) to test the relative complement pathway-specific inhibitory activity of the 
multi-5 mutant with that of MCP, DAF, CR1 LHR-A (CCP1-3) and CR1 LHR-Amut (CCP1-
3, D109N/E116K). Herein, the graded concentrations of each of the test proteins were made 
in the pathway-specific diluent and mixed with a fixed percentage of normal human serum 
concentration as detailed in the manual. The reaction mixtures (100 µl) were then added to 
the microtiter wells coated with pathway-specific activators and kept for 60 min at 37OC. 
Thereafter, wells were washed three times with the washing solution supplied in the kit and 
incubated for 30 min at room temperature with an antibody against C5b-9 (100µl) labelled 
with alkaline-phosphatase. The wells were again washed three times with the washing 
solution and incubated for 30 min at room temperature with the substrate (100µl). The 
absorbance was read at 405 nm on a microplate reader. The level of serum activity in the 
presence of regulatory proteins was expressed as percent of activity measured without the 
proteins. 

Modelling of D2D3M3M4 chimera 

The sequence of DAF (UniProt ID: P08174) and MCP (UniProt ID: P15529) were retrieved 
from the UniProt Protein sequence database. The sequence of D2D3 extracted from DAF and 
M3M4 from MCP to construct chimera sequence. The structural co-ordinates of DAF and 
MCP were separated from co-crystal structures of C3b-DAF (PDB id: 5FOA) and C3b-MCP 
(PDB id: 5FO8) respectively. We modelled the structure of chimera (D2D3M3M4) based on 
DAF and MCP template structures using Modeller 9.11 (14) implemented in Discovery 
Studio v 3.5 ((15); Dassault Systèmes BIOVIA 2016). Subsequently, a loop modelling option 
was used to model the loop regions. The single best model was selected on the basis of the 
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DOPE score.  The stereochemical quality of the predicted model was evaluated using 
PROCHECK (16) and PROSA-Web servers (17). Then, using Discovery studio, we mutated 
naturally occurring residues of the chimera with mutant residues (F197I, S199K, P216K, 
E219CREIY224 to I219CEKVL224) derived from experimental evidence as described in the main 
text. The individual mutant structure of a chimera was then subjected to a calculation of its 
mutational energy and its stability. 

Construction of ternary DAA complex (C3b-D2D3M3M4-Bb) and its interface analysis  

The DAA ternary complex with chimera D2D3M3M4 as the regulator was modelled by using 
the template structures of DAF-C3b (PDB id: 5FOA) and C3bBb (PDB id: 2WIN) along with 
the above-modelled structure of chimera D2D3M3M4. Briefly, the D2D3M3M4 chimera was 
superimposed to DAF in the C3b-DAF structure to make the D2D3M3M4-C3b complex. The 
D2D3M3M4-C3b and C3bBb were then superimposed together with reference to C3b 
molecule to generate a ternary model of C3b-D2D3M3M4-Bb. The final ternary complex 
was subjected to energy minimisation by the steepest descent method. The interface analysis 
of the ternary complex was performed by PISA (Protein interface analysis program, 
www.ebi.ac.uk/msd-srv/prot_int/pistart.html) to understand the interaction between C3b and 
D2D3M3M4 as well as Bb and D2D3M3M4. 

Construction of ternary complex (C3b-multi-4 mutant-FI) and MD simulation 

The ternary complex of C3b-FH-FI (PDB id: 5O32) was retrieved from PDB and the model 
of the multi-4 mutant was superimposed against the FH molecule of the complex. The 
coordinates of FH were removed and a ternary complex of C3b-multi-4 mutant-FI was 
generated using UCSF Chimera (18). The generated ternary complex of C3b-multi-4 mutant-
FI was then subjected to MD simulation with OPLS-AA force field using the GROMACS 
5.0.4 package (19, 20). The protein was solvated with simple point charge (SPC) water model 
and neutralized with NA+ counter ions. The solvated structure was minimized by steepest 
descent energy minimization followed by 500 ps equilibration in NVT ensemble with 
position restraints applied to protein. Subsequently, the system was equilibrated for 2 ns 
using NPT ensemble. Finally, each ternary complex system was subjected to 50 ns MD 
simulation in the NPT ensemble. A time step of 2 fs was used throughout simulation with 
periodic boundary conditions. The LINCS algorithm (21) was used to restrain all bonds to the 
hydrogen atom, permitting a time step of 2 fs. The long-range electrostatic interactions were 
calculated using the PME algorithm with a cutoff distance 1.2 nm (22). Structural clustering 
was performed on the whole trajectory with RMSD cutoff 2.0 Å using g_cluster tool 
implemented in GROMACS (23). The single representative conformation was extracted from 
the highest populated cluster of each system. The trajectory was analysed using VMD and 
simulation images were generated using Discovery Studio ((15); Dassault Systèmes BIOVIA 
2016). 

http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html


 

II. SI Tables 

   Table S1: Summary of the complement regulatory activities of DAF, MCP and various DAF-MCP chimeric mutants 
 C3b CFA  C4b CFA  AP-DAA  CP-DAA  

Wild type /Mutant 
Time (min.) for 
50% cleavage of 

C3b α'-chain 

Relative C3b 
CFA 

Time (min.) for 
50% cleavage of 

C4b α'-chain 

Relative 
C4b 
CFA 

DAA 
IC50 
(nM) 

Relative      
AP-DAA 

DAA IC50 
(nM) 

Relative      
CP-DAA 

a. DAF-MCP chimeras         
DAF NA NA NA NA 1.1 ± 0.3 1 14.5 ± 6.5 1 
MCP 3.5 ± 1.7 - 16.5 ± 4.9 - NA NA NA NA 

D2M2-4 ND ND ND ND > 10 ˂ 0.1 456.7 ± 60.3 0.03 
D2M2-4 (MCP linker) ND ND ND ND > 10 ˂ 0.1 > 1000 ˂ 0.01 

         
DAF NA NA NA NA 2.3 ± 1.6 1 2.6 ± 2.6 1 
MCP 2.1 ± 0.2 1 12 ± 6.8 1 NA NA NA NA 

D2D3M3M4 80.7 ± 2.5 34 428.6 ± 77.8 35 2.4 ± 1.6 1 5.1 ± 4.5 0.5 
D2D3D4M4 ND ND ND ND 5.6 ± 3.2 0.4 5.7 ± 8.8 0.4 

D2D3 ND ND ND ND > 10 ˂ 0.2 10.9 ± 4.7 ˂ 0.3 
 

b. Gain-of-function mutants of D2D3M3M4         
D2D3M3M4 82.6 ± 4.6 1 464.7 ± 65.4 1 2.1 ± 0.30 1 15.9 ± 6.7 1 

T192E 74.3 ± 22.3 1.1 268 ± 61.6 1.7 2.3 ± 0.3 0.9 15.3 ± 6.7 1 
K195Y complete loss complete loss > 540 ˂ 0.85 > 10 0.2 > 100 0.2 
F197I 49.8 ±  5.2 1.7 66.7 ± 22 7 4.4 ± 1.6 0.5 30.7 ± 8.0 0.5 
S199K 18.9 ± 2.6 4.4 181.3 ± 37.1 2.5 6.6 ± 2.3 0.3 21.7 ± 14.2 0.7 
T200Y 103.3 ± 11.0 0.8 513.3 ± 46.2 0.9 3.7 ± 0.20 0.56 17.7 ± 6.4 0.9 
L205K 103.6 ± 10.2 0.8 433.3 ± 94.5 1.07 > 10 0.2 9.2 ± 5.8 1.7 
P216K 30.1 ± 4.1 2.7 93.3 ± 15.2 5 3.4 ± 0.5 0.6 21 ± 12 0.75 
multi-1 27.3 ± 3.2 3 433.3 ± 117.1 1.07 1.9 ± 0.6 1.1 22.6 ± 10.2 0.7 
multi-2 4.3 ± 0.52 19.2 44.3 ± 17 10.5 > 10 0.2 5.8 ± 3.3 2.7 
multi-3 3.8 ± 2.1 22 16.7 ± 0.6 28 8.5 ± 1.6 0.24 12.3 ± 7.2 1.3 

c. Multi mutants of D2D3M3M4         MCP 4.5 ± 0.5 1 9.3 ± 1.2 1 NA NA NA NA 
multi-4 17.5 ± 5.5 0.25 5.5 ± 2.0 1.7 > 10 ˂ 0.3 39.3 ± 7.8 0.4 
multi-5 3.3 ± 0.5 1.3 3.1 ± 0.3 3 2.4 ± 0.4 1.3 12.7 ± 6.5 1.3 
DAF NA NA NA NA 3.1 ± 0.8 1 16.5 ± 8.7 1 

Boldface indicates the mutants and data with a > 3-fold difference in activity, which was considered significant. NA – No activity, ND- not determined. Data are reported as mean 
± SD of three independent experiments. Multi-1 (linker substitution ; 219ECREIY224 to ICEKVL), multi-2 (linker substitution + S199K) and multi-3 (215DPL217 to PKA), mul-
ti-4 (linker substitution + S199K + P216K + F197I), multi-5 (linker substitution + P216K + F197I) 

 



Table S2: Comparison of complement regulatory activities of multi-5 (DCP) with DAF, MCP, LHR-A (CCP1-3), LHR-A (CCP1-3, 
D109N/E116K). 
 
 
Table S2A: 

  Total pathway inhibitory activity 

 Wild type    /Mutant  
Inhibition of 
AP activity  
IC50 (µM) 

Relative AP 
activity 

Inhibition of  
LP activity  
IC50 (µM) 

Relative 
LP activity 

Inhibition of  
     CP activity  

IC50 (µM) 

Relative CP 
activity 

 1. DAF 0.3 ± 0.2  1 0.11  ± 0.07 1 0.05  ± 0.02  1 
 2. MCP 1.4 ± 0.4 0.21 2.0  ± 0.3 0.05 > 2.25 ˂ 0.02 
 3. multi-5 (DCP) 0.04 ± 0.01 7.5 0.05  ± 0.02 2.2 0.01 ± 0.02 5 

   
 

Table S2B: 
            

  Total pathway inhibitory activity 

 Wild type/Mutant  
Inhibition of 
AP activity  
IC50 (µM) 

Relative AP 
activity 

Inhibition of  
LP activity  
IC50 (µM) 

Relative 
LP activity 

Inhibition of  
     CP activity  

IC50 (µM) 

Relative CP 
activity 

 1. CR1 LHR-A (CCP1-3) 0.64 ± 0.09 1 0.08 ± 0.04 1 0.06 ± 0.02 1 
 2. CR1 LHR-Amut (CCP1-3, 

D109N/E116K) 0.17 ± 0.02 3.8 0.015  ±  0.002 5.3 0.02 ± 0.005 3 

 3. multi-5 (DCP) 0.06 ± 0.008 10.6 0.02  ± 0.004 4 0.04 ± 0.02  1.5 
 
 
Boldface indicates the mutants and data with a >2-fold difference in activity, which was considered significant. Data are reported as 
mean ± SD of three independent experiments. AP, alternative pathway; CP, classical pathway; LP, lectin pathway. 

 



 
 
Table S3: Primers used for the cloning of wild-type DAF, MCP and DAF-MCP region swap mutants 
 
Wild type/Mutanta    Amplified 

productb  Primer  Sequencec 

DAF-pichia D1-D4 Forward ggAATTCgACTGTggCCTTCCCCCAgATg 
DAF-pichia D1-D4 Reverse gCTCTAgA TTATCTgCATTCAggTggTgggCC 
DAF D1-D4 Forward ggAATTCCATATggACTgTggCCTTCCCCCAgATg 
DAF D1-D4 Reverse CCgCTCgAgTCTgCATTCAggTggTgggCCAC 
MCP-pichia M1-M4 Forward ggAATTCgCCTgTgAggAgCCACCAAC 
MCP-pichia M1-M4 Reverse gCTCTAgATTAAAgACACTTTggAACTggggg 
MCP M1-M4 Forward CATgCCATgggCAAgTgTgAggAgCCACCAACATTTgAAgCTATggAgCTCATTggTAAACCAAAACCC 
MCP M1-M4 Reverse CGCAAGCTTAAGACACTTTGGAACTGGG 
D2D3 D2D3 Forward CCCAAgCTTTgCgAggTgCCAACAAggCTAAATTC 

 D2D3 Reverse CCgCTCgAgATAAATTTCTCTgCACTCTggCAACgg 
D2M2-4 D2 Forward ggAATTCTgCgAggTgCCAACAAggC 

 D2 Reverse CCCgTATATATggACATgATTTCTTTTTACAAAATTCgACTg 

 M2M3M4 Forward CgAATTTTgTAAAAAgAAATCATgTCCATATATACgggATCCTTTAAATgg 

 M2M3M4 Reverse gCTCTAgAgCAAgACACTTTggAACTggggg 
D2M2-4 (ML) D2(ML) Forward ggAATTCTgCgAggTgCCAACAAggC 

 D2(ML) Reverse ggACATgTTTCTCTATAACAAAATTCgACTgCTgTggACC 

 M2M3M4 Forward CAgCAgTCgAATTTTgTTATAgAgAAACATgTCCATATATACg 

 M2M3M4 Reverse gCTCTAgAgCAAgACACTTTggAACTggggg 
D2D3M3M4 D2D3 Forward CATgCCATgggCTgCgAggTCCCAACAAgg 

 D2D3 Reverse ggAggTggTgTACAATAAATTTCTCTgCACTCTggC 

 M3M4 Forward gTgCAgAgAAATTTATTgTACACCACCTCCAAAAATAAAAAATgg 

 M3M4 Reverse CGCAAGCTTAAgACACTTTggAACTggg 
D2D3D4M4 D2D3D4 Forward CATgCCATgggCTgCgAggTCCCAACAAgg 

 D2D3D4 Reverse gACATTTgACCACTTTgCATTCAggTggTgggCCAC 

 M4(ML) Forward ggACCACCTgAATgCAAAgTggTCAAATgTCgATTTCC 

 M4(ML) Reverse CgCAAgCTTAAgACACTTTggAACTggg 
LHR-Amut (CR1CCP1-3 D109N)      - Forward CATgCATCATCTCAggTAACACTgTCATTTgggATAAT 
  Reverse ATTATCCCAAATgACAgTgTTACCTgAgATgATgCATg 
LHR-Amut (CR1CCP1-3 E116K)      - Forward CTgTCATTTgggATAATAAAACACCTATTTgTgACAg 
  Reverse CTgTCACAAATAggTgTTTTATTATCCCAAATgACAg 

a CCP Domains of  DAF and MCP are denoted by D and M, respectively, and numbers denote the domain number of the respective regulator.  
b Restriction sites are underlined. Boldface region indicate the overlapping region of primer with the neighbouring regions/linker at 5’ and/or 3’ regions. Italics letters represent the   
  mutation 
c Pichia indicates the proteins were cloned in pPICZA vector. All other proteins were cloned in pET-28b vector.  
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Fig. S1. Binding analysis of DAF, MCP and the DAF-MCP chimeras to C3b and C4b. (A) 
Relative binding of DAF, MCP and the DAF-MCP chimeras to C3b (left panel) and C4b (right 
panel). The bar graphs represent RUs achieved at the steady state following binding of the respec-
tive protein (1µM) to C3b and C4b. The amount of C3b and C4b-biotin immobilised were 3330 
RUs and 1630 RUs, respectively. The data is presented as mean ± SD of three independent experi-
ments. (B) Binding of D2D3M3M4, D2D3D4M4 and the multiresidue mutants of D2D3M3M4 to 
C3b (left panel) and C4b (right panel). Data shown here is one of the three independent experiments 
shown in panel C. (C) Relative binding of D2D3M3M4, D2D3D4M4 and the multiresidue mutants 
of D2D3M3M4 to C3b (left panel) and C4b (right panel). The data is mean ± SD of three independ-
ent experiments.
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Fig. S2. Interface analysis of the D2D3M3M4 chimera with Bb and C3b in the C3b-D2D3M3M4-Bb com-
plex. The interface of the chimera with C3b and Bb in the modelled structure C3b-D2D3M3M4-Bb complex was 
analyzed by protein interface analysis program PISA, www.ebi.ac.uk/msd-srv/prot_int/pistart.html. The residues 
in the D2-D3 domains of  D2D3M3M4 chimera that are at the interface of C3b (A) and Bb (B) are shown as verti-
cal bars (which indicates buried surface area (BSA) score) and are colored in blue and black, respectively. The 
regions of Bb and C3b that interact with these residues of chimera are also marked above the vertical bars. The 
star marks represent the residues which have been identified earlier by mutagenesis as important for DAA (17). 
AP-DAA – Blue, CP-DAA –Yellow, both CP and AP-DAA – Red. 
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Fig. S3. Cofactor activity measurements of MCP and the DAF-MCP chimera D2D3M3M4. The 
cofactor activity of these proteins was measured by incubating them with C3b (A) or C4b (B) and 
factor I at 37ºC for the indicated time in PBS. The cleavage products of C3b/C4b were observed by 
running them on SDS-PAGE (9% for C3b and 10% for C4b) under reducing conditions. In C3b-CFA, 
the α’-chain is cleaved into N-terminal 68-kDa and C-terminal 46-kDa fragments amongst which the 
46-kDa fragment is further cleaved into 43-kDa fragment. In C4b-CFA, the α’-chain is cleaved into 
N-terminal 27-kDa, central C4d and C-terminal 16-kDa fragments; the C-terminal fragment is not 
visualized on the gel. 
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Fig. S4. Structure-based sequence alignment of CCP1-4 of DCP (multi-5 mutant) with homologous domains 
of various complement regulators. The modelled structure of DCP was aligned with experimental structures of 
DAF (PDB:1OJV), MCP (PDB:3O8E), Factor H (PDB:2WII), CR1 (PDB:1GKG), and SPICE (PDB:5FOB) , and 
the modelled structures of Kaposica and CCPH based on CRRY (PDB:2XRB) using the PROMALS3D tool 
(http://prodata.swmed.edu/promals3d/). Blue arrows indicate the mutations (F197I, S199K, P216K, 
219ECREIY224 to ICEKVL) that enhanced CFA in D2D3M3M4 chimera, while orange arrows indicate the muta-
tions (T192E, K195Y, T200Y, L205K) that did not enhance CFA. The highlighted residues indicate interfaces of the 
respective protein with C3b (light blue) and factor I (light orange). The red boxes indicate previous mutations that 
resulted in loss in CFA and the violet boxes indicate the mutations that resulted in loss in DAA. The numbering of 
the domains (shown in the beginning of each CCP sequence) is made according to the uniprot numbering.
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Fig. S5A. Comparison of cofactor activity of the point mutants of D2D3M3M4 with D2D3M3M4. (A) C3b 
cofactor activity (C3b-CFA) of D2D3M3M4 and the point mutants D2D3M3M4. Arrowheads indicates the 
cofactor protein/mutant used in the assay. 
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Fig. S5B. Comparison of cofactor activity of the point mutants of D2D3M3M4 with D2D3M3M4 
and MCP. (B) C4b cofactor activity (C4b-CFA) of MCP, D2D3M3M4 and the point mutants of 
D2D3M3M4. Arrowheads indicates the cofactor protein/mutant used in the assay. 



0

20

40

60

80

100

120

%
 C

P 
C3

-c
on

ve
rta

se
 a

ct
iv

ity

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

%
 A

P 
C3

-c
on

ve
rta

se
 a

ct
iv

ity

0

20

40

60

80

100

120

A

B

Inh. (µM)

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0

20

40

60

80

100

120

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

0.
00

01
0.

00
1

0.
01

%
 A

P 
C3

-c
on

ve
rta

se
 a

ct
iv

ity

0

20

40

60

80

100

120

%
 C

P 
C3

-c
on

ve
rta

se
 a

ct
iv

ity

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

0.
00

1
0.

01 0.
1

Inh. (µM)

Inh. (µM)

Inh. (µM)

DAF multi-1S199KT192E K195YD2D3-
M3M4

DAF D2D3-
M3M4

T200Y L205K F197I P216K multi-3

DAF D2D3-
M3M4

T200Y L205K F197I P216K multi-3

0.
00

1
0.

01 0.
1

multi-2

0.
00

01
0.

00
1

0.
01

DAF multi-1S199KT192E K195YD2D3-
M3M4

multi-2

Fig. S6. CP-DAA and AP-DAA measurements of DAF, D2D3M3M4, and the single and multiresidue 
mutants of D2D3M3M4. (A) CP-DAA of the respective protein was measured by evaluating their ability to 
decay the pre-formed CP C3-convertase (C4b2a). (B) AP-DAA of the respective proteins was measured by evalu-
ating their ability to decay the pre-formed AP C3-convertase (C3bBb). The data was normalized by considering 
the 100% C3-convertase activity to be equal to the activity without the inhibitor (Inh.). Data shown are mean ± 
SD of three independent experiments. 



Time (min)            30     30      5     15     20    30

α’

β

                 -     +     +     +     +     +

                 +    +     +     +     +     +

                +     -     +     +     +     +

MCP

C3b

FI
Time (min)            30     30     5      15    20    30

          4    -     +     +     +     +    +

                 +    +     +     +     +    +

                +     -     +     +     +    +

multi

C3b

FI

► ►

Time (min)            30     30     5      15    20    30

                -     +     +     +     +    +

                +     +     +    +     +    +

               +     -     +     +     +    +

multi5

C3b

FI

►

A              
            

Time (min)            30     30     5      10    20    30

                 -       +     +     +     +     +

                 +      +     +     +     +     +

                +       -     +     +     +     +

MCP

C4b

FI
Time (min)            30     30     5     10    20    30

                 -       +     +     +    +     +

                 +      +     +     +    +     +

                +       -     +     +    +     +

multi4

C4b

FI
Time (min)            30     30     5     10     20    30

                 -      +     +     +     +     +

                 +     +     +     +     +     +

                +      -     +     +     +     +

multi5

C4b

FI

α’
β

C4d

►
27 kDa

►

68KDa
46KDa
43KDa

γ chain

%
 L

P 
ac

tiv
ity

 in
hi

bi
tio

n

DAF              MCP          multi-5

   
  0

.0
5 

  %
 A

P 
ac

tiv
ity

 in
hi

bi
tio

n

DAF               MCP           multi-5

 0
.1

 %
 C

P 
ac

tiv
ity

 in
hi

bi
tio

n

Inh.(μM)

DAF                MCP            multi-5

0.
05

   
 

C

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

C3b-CFA

C4b-CFA

Wieslab assay

Inh.(μM)Inh.(μM)

α’

β
68KDa
46KDa
43KDa

α’

β
68KDa
46KDa
43KDa

α’
β

C4d

27 kDa
γ chain ►

α’
β

C4d

27 kDa
γ chain

B              
            

0

20

40

60

80

100

%
 C

P 
ac

tiv
ity

 in
hi

bi
tio

n

Inh.(μM)

multi-5            LHR-A         LHR-Amut
                      (CCP1-3)        (CCP1-3
                                         D109N/E116K)

0.
02

5 

0.
05

 

0.
01

25
 0

20

40

60

80

100

%
 L

P 
ac

tiv
ity

 in
hi

bi
tio

n

Inh.(μM)

multi-5            LHR-A        LHR-Amut
                      (CCP1-3)        (CCP1-3
                                         D109N/E116K)

0.
01

25
  

0.
1 

 

0.
01

25
  0

20

40

60

80

100

120

%
 A

P 
ac

tiv
ity

 in
hi

bi
tio

n

multi-5           LHR-A         LHR-Amut
                     (CCP1-3)        (CCP1-3
                                         D109N/E116K)

0.
02

5 

0.
25

 

0.
12

5 Inh.(μM)

Fig. S7. Comparison of cofactor activity of the multi-residue mutants of D2D3M3M4 with MCP. (A) C3b 
cofactor activity (C3b-CFA) of MCP, multi-4 and multi-5. (B) C4b cofactor activity (C4b-CFA) of MCP, multi-4 and 
multi-5. Arrowheads indicates the cofactor protein/mutant used in the assay. (C) Relative effect of DAF, MCP, CR1 
LHR-A (CCP1-3),  CR1 LHR-A (CCP1-3 D109N/E116K) and the D2D3M3M4 mutant multi-5 on the classical, 
alternative and lectin pathways. The relative effect of the indicated proteins was measured by employing Wieslab 
total complement ELISA kit. Data are mean ± SD of three independent experiments.
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Fig. S8A

Fig. S8A. RMSD and RMSF plots of C3b-multi4-FI complex. (i) Backbone RMSD of C3b-multi4-FI 
complex for 50ns simulation. (ii) Root mean square fluctuation (RMSF) of chimera residues for the entire 
simulation time. (iii) Plot showing the RMSF of the multi-4 mutant residues located in the region where 
gain-of-function mutations have been identified.  
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Fig. S8B. Validation of the D2D3M3M4 chimera model. The chimera D2D3M3M4 constructed 
using the template structures of DAF and MCP was evaluated using the PROCHECK program. The 
generated Ramachandran plots for D2D3M3M4 chimera and multi-4 mutant showing their phi-psi 
profiles are shown in (i) and (ii) respectively.

Fig. S8B
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Fig. S9. Mapping of interaction of multi-4 mutant with C3b and FI in C3b-multi-4 mutant-FI complex. (A) 
DAF (D2-D3) as well MCP domains (M3-M4) of multi-4 mutant show interaction with C3b. The zoomed views 
show interacting residues in α’-NT (Pink), MG6 (Orange), MG2 (blue), CUB (magenta), MG1 (red), and TED 
(green) domains. B) C3b interacting residues of multi-4 mutant. The coloring of the C3b interacting residues of 
multi-4 mutant is according to the color of the C3b domains with which it interacts. C) Interactions of the M3 
domain residues with FI. Glu177 and Glu179 show strong charge interactions with Arg480 of FI. Also, Lys195 
show charge interaction with Asp403 of FI which is helped by its hydrogen bond with Ser214 of the M3 domain. 
V178 display a pi-alkyl bond with Trp399 of FI. 
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Fig. S10A. Size exclusion chromatography analysis of DAF, MCP, the DAF-MCP chimeras D2D3M3M4 
and D2D3D4M4, and the single and multiresidue mutants of D2D3M3M4. (i) DAF, MCP and the DAF-MCP 
chimeras. (ii) Single residue mutants of D2D3M3M4. (iii) Multi-residue mutants of D2D3M3M4 - multi-1, 
multi-2, multi-3, multi-4 and multi-5 along with CR1 LHR-A (CCP1-3) and it’s double mutant CR1 LHR-A 
(CCP1-3 D109N/E116K). Proteins were loaded onto Superose-12 column (GE Healthcare Life Sciences) pre-
equilibrated with PBS (pH 7.4). The gel filtration standards (Bio-Rad) used were: a, Thyroglobulin (670,000 
Da); b, Gamma globulin (158,000 Da); c, Ovalbumin (44,000 Da); d, Myoglobin (17,000 Da); e, Vitamin B-12 
(1,350 Da).  
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Fig. S10B. SDS-PAGE analysis of purified DAF, MCP, the DAF-MCP chimeras D2D3M3M4 
and D2D3D4M4, and the single and multiresidue mutants of D2D3M3M4. (i) DAF, MCP and the 
DAF-MCP chimeras. (ii) Single and multiresidue (multi-1) mutants of D2D3M3M4. (iii) multi-
residue mutants of D2D3M3M4 (iv) CR1 LHR-A CCP(1-3) and its double mutant CR1 LHR-A 
(CCP1-3 D109N/E116K). All the proteins were run on 9% SDS-PAGE under reducing (R) and non-
reducing (NR) conditions and were stained with Coomassie blue. 
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