Supplementary figures & tables:

Figure S1.

Figure S2.

Figure S3.

Figure S4.

Characteristics	cases		
Total number	20		
Gender			
Male	11		
Femal	9		
Age			
> 60	16		
≤ 60	4		
Tumor size			
\geq 5 cm	16		
< 5 cm	4		
Tumor stage			
I-II	5		
III	15		
Lymph node status			
N_0	3		
N ₁₋₃	17		
Distant metastasis			
\mathbf{M}_0	2		
\mathbf{M}_1	18		
Histology			
Adenocarcinoma	15		
Squamous carcinoma	5		

Table S1: Pathological characteristics of lung cancer patients.

The description of pathological characteristics was based on the international system for staging lung cancer.

Motor Proteins	Inhibitor	Mechnaism	Effect
dynein	ciliobrevin D	Compete with ATP at its binding site in the dynein motor, thus increase the time for dynein attachment to the microtubule in the post-powerstroke conformation[1].	Inhibit dynein to glide on microtubule and vesicular transportation [2].
kynesin	ispinesib	Prevent the release of ADP without preventing the release of the kynesin-ADP complex from the microtubule [3].	Alter the ability of kynesin to bind to microtubules and inhibits its movement [3].
myosin	Blebbistatin	Bind preferentially to the ATPase intermediate with ADP and phosphate bound at the active site, and slow down phosphate release. Block the myosin heads in a products complex with low actin affinity [4, 5].	Inhibit both myosin II contractility and actin-network treadmilling resulting in the decrease of retrograde flow [6].

Table S2: Introduction of motor proteins.

References:

1 Kikkawa M: Big steps toward understanding dynein. J Cell Biol. 2013; 202:15-23.

2 Firestone AJ, Weinger JS, Maldonado M, Barlan K, Langston LD, O'Donnell M, Gelfand VI, Kapoor TM, Chen JK: Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature. 2012; 484:125-129.

3 Lad L, Luo L, Carson JD, Wood KW, Hartman JJ, Copeland RA, Sakowicz R: Mechanism of inhibition of human KSP by ispinesib. Biochemistry. 2008; 47:3576-3585.

4 Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers JR: Mechanism of blebbistatin inhibition of myosin II. J Biol Chem. 2004; 279:35557-35563.

5 Ramamurthy B, Yengo CM, Straight AF, Mitchison TJ, Sweeney HL: Kinetic mechanism of blebbistatin inhibition of nonmuscle myosin IIb. Biochemistry. 2004; 43:14832-14839.

6 Medeiros NA, Burnette DT, Forscher P: Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol. 2006; 8:215-226.