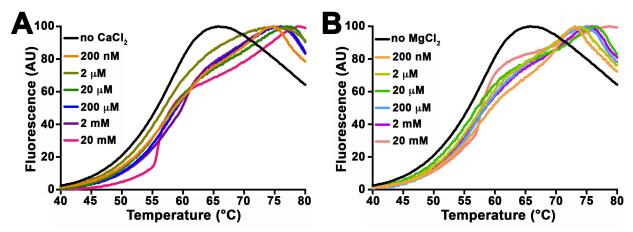
Supporting Information for

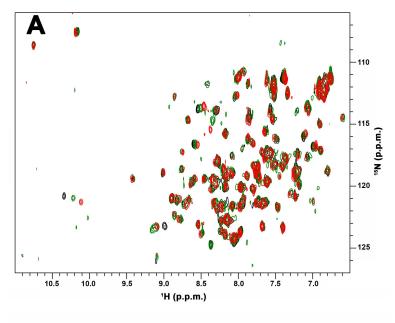
High-resolution structure of RGS17 suggests a role for Ca²⁺ in promoting the GAP activity by RZ subfamily members

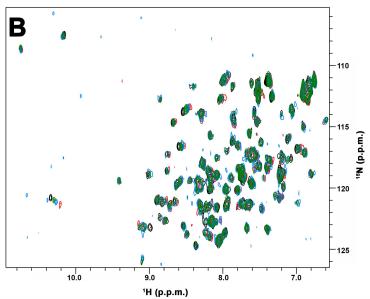
Monita Sieng¹, Michael P. Hayes³, Joseph B. O'Brien³, C. Andrew Fowler⁴, Jon C. Houtman⁵, David L. Roman³, Angeline M. Lyon^{1,2}

From the Departments of Chemistry¹ and Biological Sciences², Purdue University, West Lafayette, IN 47907 and the Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy³ and NMR Facility, Roy J. and Lucille A. Carver College of Medicine⁴, Department of Microbiology & Immunology⁵, University of Iowa, Iowa City, IA 52242

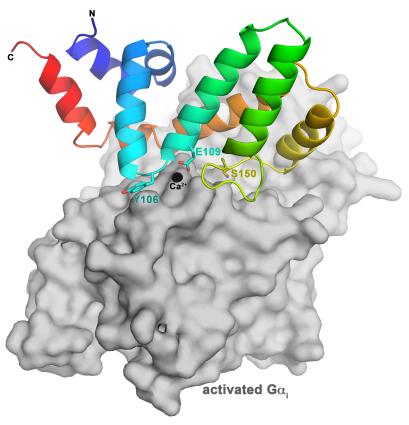

Running title: Regulation of RGS17 by Ca²⁺

To whom correspondence should be addressed: Angeline M. Lyon, Departments of Chemistry and Biological Sciences, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, Telephone: (765) 494-5291; email: lyonam@purdue.edu


Supporting Table 1. Thermal Stability of RGS17


	RGS17	+ CaCl ₂	+ MgCl ₂
	$(T_m \pm SEM)$	$(T_m \pm SEM)$	$(T_m \pm SEM)$
protein only	55.3 ± 0.346		
+ 200 nM		56.1 ± 0.63	58.3 ± 0.870
+ 2 μM		58.0 ± 1.14	56.9 ± 0.80
+ 20 μM		56.3 ± 1.07	56.1 ± 1.05
+ 200 μM		58.2 ± 1.21	57.9 ± 1.07
+ 2 mM		57.3 ± 0.566	59.5 ± 1.44
+ 20 mM		51.7 ± 0.189	55.5 ± 1.07

Data represents at least three independent experiments performed in triplicate.



Supporting Figure 1. RGS17 is not significantly thermally stabilized by the addition of $CaCl_2$ or $MgCl_2$. Differential scanning fluorimetry (DSF) was used to determine whether the binding of Ca^{2^+} or Mg^{2^+} perturbed the melting temperature (T_m) of RGS17. RGS17 was incubated with a fluorescent dye and increasing concentrations of $CaCl_2$ or $MgCl_2$, and the sample heated. As RGS17 denatures, the dye fluoresces, and the inflection point of the curve corresponds to the T_m (43).

Supporting Figure 2. ¹H-¹⁵N spectra of RGS2 in the presence of CaCl₂ or MgCl₂. (A) ¹H-¹⁵N 2D HSQC spectra of RGS2 alone (black) and upon addition of 20 (green) or 250 molar excess of CaCl₂ (red). (B) ¹H-¹⁵N 2D HSQC spectra of RGS2 alone (black) and upon addition of 100 (green), 250 (blue), or 500 molar excess MgCl₂ (red).

Supporting Figure 3. Model of RGS17 bound to activated $G\alpha_i$. RGS17 is proposed to bind to the switch regions of $G\alpha$ subunits to promote GTP hydrolysis, based on superposition of RGS17 with RGS4 in its complex with activated $G\alpha_i$ (PDB ID 1AG4) (6). Ser150 is required for GAP activity, and is equivalent to Asn128 in RGS4 (9). Tyr106 and Glu109 coordinate a Ca^{2+} ion (shown as a black sphere) in the structure of RGS17, and are located on the predicted $G\alpha_i$ binding surface. RGS17 is shown color-ramped from blue at the N-terminus to red at the C-terminus, and activated $G\alpha_i$ is shown as a gray surface.