library(GAMBoost); library(parallel) fit.gb <- list() # Boosting fit.gb <- mclapply(X = 1:100, mc.preschedule = FALSE, mc.cores = detectCores() - 1, FUN = function(b) { print(b) set.seed(b) load(paste("simulation/b", b, ".RData", sep = "")) gb <- GAMBoost(y = y, x = NULL, x.linear = X, standardize.linear = FALSE, family = binomial(), penalty.linear = 100, criterion = "deviance", stepno = 500) gb$eta <- gb$hatmatrix <- gb$obsvar <- gb$scoremat <- NULL return(gb) }) save(list = "fit.gb", file = "fit.gb.RData")