Supplementary files

Supplementary Fig. 1. Temporal fingerprinting of miR4673. The expression level of miR4673 as detected by stem-loop qPCR in samples treated with naked miRNA (Δ mi) and the plasmid encoding miR4673 (Δ pl) compared to control cells (tr: transfected; ct: control; n=3 biological samples/time point).

Supplementary Fig. 2. Functional assessment of cell cycle checkpoint modulation by miR4673 signalling. (A) After exposure to UVC (see methods) $mi^{high}\Delta pl$ neural progenitors evaded apoptosis due to suppressed p53/p21/p27 cascades. Few surviving control cells remained quiescent post-exposure. Lowest survival rate post-exposure was observed in $mi^{low}\Delta As$ cells due to hyperactivity of G1-S checkpoint machinery. (B) Neutral comet assay confirmed enhanced accumulation of DNA double stranded breaks in $mi^{high}\Delta pl$ neural progenitors due to suppressed p53/p21 and silenced G1 checkpoint machinery. It is important to note that the accumulation of double-stranded breaks in in $mi^{high}\Delta pl$ neural progenitors reflects constant expression of miR4673 at a high supraphysiological level (see Supplementary Fig. 1). The endogenous expression level of miR4673 is several orders of magnitude lower than the plasmid-driven expression level.

Supplementary Fig. 3. Autophagic depletion of activated Notch-1. Notch-1^{IC} (cleaved intracellular Notch-1) was localized to an expanded endoplasmic reticulum in $mi^{high}\Delta pl$ cells (top left) confirmed also by immuno-gold labelling (top right, blue arrows demonstrate the endoplasmic reticulum). Immuno-gold labelling showed final degradation of activated Notch-1^{IC} in autophagosomes of $mi^{high}\Delta pl$ cells (bottom, blue arrow shows the outer membrane of an autophagosome that has engulfed Notch-1^{IC})

Supplementary Fig. 4. Mathematical interpretation of the cumulative mitotic landscape. Each mitotic wave in the graph (purple circle in A) represents the cumulative normal distribution of mitotic events (B) in a defined period of time. Deviations from linearity in B correspond to the standard deviation of the normal distribution curve (C). Synchronicity of mitotic events leads to a smaller standard deviation in the normal distribution curve and a steeper transition in the cumulative graph (compare the grey and the purple curves in B and C).

Supplementary Fig. 5. Expression of miR4673 in quiescent (Q) cells normalized to the cycling progenitor cells (c).

Supplementary Fig. 6. Transcriptional profile of Yap1 and Taz subsequent to the amplification (Δ pl) and inhibition (Δ TuD) of miR4673 in the growth medium. All values are normalised to β -actin.

Supplementary Fig. 7. Mathematical modelling of brain morphogenesis based on reaction-diffusion model.

The topographical maps were generated using READY and based on the parameters that integrate findings from the bimodal regulation of cell cycle into the reaction-diffusion equations (left: macaque brain; right: human brain). Concentration of morphogens U is shown on a scale from 0 to 1 (supplementary methods).

bp	Ţ	12	AMI	MM		M	М
500	BYS	CDF	CEAC	EPCA	F11R	L1CA	MCA
200 100	÷.,	-					
100		et pl					

Supplementary Fig. 8. Transcriptional fingerprinting of genes involved in control of cell cycle and intercellular communications. Yellow indicates genes that are utilized in figures of the main manuscript.

Supplementary Data 1. In-Silico hybridization of miR4673 to G1 inhibitor gene transcripts

demonstrates the lack of proper seeding regions.

CDKN1B

mfe: -31.7 kcal/mol	
target 5' G GG C GCCG	CAACCAA U 3'
CGG CGGCUCC GCC	UGGA
GUC GCCGAGG CGG	ACCU
<mark>mirna</mark> 3' AG AG A	5 '
$mfe_{1} = 30.4 kgal/mol$	
mie50.4 Kcai/moi	
target 5' C A G UUGCCACCCU	CUCCG U 3'
UCGG C GGCU	CUUGCCUGG
	CCACCCACC
	GGACGGACC
mirna 3. a a G	0 5.

ASPP1

mfe: -35.3 kcal/mol

target	5'	C	G	AAGCUU	ı c	3	G	3'
		CCAGU	CCGG	3	UCCUGU	CUGGG		
		GGUCA	GGCC	2	AGGACG	GACCU		
miRNA	3'	А		G				5'

KAT2B

mfe: -30.8 kcal/mol

target 5' G C CU G 3' CUAGUCC CUCC CCUGGG GGUCAGG GAGG GGACCU miRNA 3' A CC AC 5'

Supplementary Data 2. Protein homology between human cdk-18 and *Saccharomyces cerevisiae* pho85.

Species	Gene Name	Gene ID	% identity (Protein)	% coverage	Genomic location
Homo sapiens	CDK18	ENSG00000117266	30 %	57 %	1:205504595-205532793
Saccharomyce s cerevisiae	Pho85	YPL031C	51 %	94 %	XVI:492018-493037

ENSP00000423665/1-504 YPL031C/1-305	MIMNKMKNFKRRFSLSVPRTETIEESLAEFTEQFNQLHNRRNENLQLGPLGRDPPQECSTFSPTDSGEEPGQLSPGVQFQRRQNQRRFSMEVRASGALPRQVAGCTHKGVHRRAAALQPD
ENSP00000423665/1-504 YPL031C/1-305	FDVSKRLSLPMDIRLPQEFLQKLQMESPDLPKPLSRMSRRASLSDIGFGKLETYVKLOKLGEGTYATVFKGRSKLFRNLVALKHIRISHEBBARCTAIREVSLLMIKHANIVTIHBLIH
ENSP00000423665/1-504 YPL031C/1-305	DRSLTLVFTYLBSDLKOYLDHCGNLMSHHNYLTFMFQLLDGLAYGHHRKILHRDLKPONLLINERGELKLADFGLARAKSVFTKTYINEVVTLHYRPDVILGETEYSTP Denk <mark>ltlvffymndlkrynd</mark> srtvgntprglelnl <mark>vyyg</mark> ow <mark>gle</mark> ghapghenk <mark>ilhrdlkponllinergolaugdpglara</mark> pgi <mark>evnthynapdvimgsrtyst</mark> sidi
ENSP00000423665/1-504 YPL031C/1-305	GV <mark>BCHHYDHATGRPLFPG</mark> STVKEELHLTERLLOTPTEETWEGUTAFSEFRTYSF SC <mark>BCCLARHITGRPLFPG</mark> TNDEROLKLTEDLMGTENSLWESUTKLEFYN-ENIQQRPERDLRQVLQPHTKEE <mark>-L</mark> GGNLMDFHGLDLNFDMELBAKOALHHEWEA

Supplementary tables

Gene	Accession No.	Oligos	Primer sequence	Amplicon size (bps)	
DAD51	NIM 002975 4	F-primer	TGCCAGCTTCCCATTGACCG	120	
KAD51	INM_002875.4	R-primer	CCAGGACATCACTGCCAGAGAG	150	
DDD1D12D	NR 015216 2	F-primer	CCTGCTGGGGGCTGTATCCAC	101	
PPPIKI3B	NM_015516.2	R-primer	AAGTGGCTCCTGGTAGCTGG	101	
EANCI	NM 001112278 1	F-primer	CCCTCCTCTCCTCAGTTTGTGC	123	
FANCI	NW_001113378.1	R-primer	CGAAACATGCAGGCTGAAGAGCA	123	
	NIM 0010242	F-primer	CGTGCTGGTGACGAATCCACA	149	
GADD45A	NM_001924.5	R-primer	GCCATCACCGTTCAGGGAGAT	148	
TD 5 2	NIM 000546 5	F-primer	GCTCAGATAGCGATGGTCTGGC	121	
1155	INM_000346.5	R-primer	CTCATAGGGCACCACCACACT	131	
CEN	NM 0061422	F-primer	AGGGTGACTACTACCGCTACCTG	110	
SEN	NW1_000142.5	R-primer	GGCATCTCCTTCTTGCTGATGTCC	110	
BCL 2	NM 000633.2	F-primer	CTGGTGGACAACATCGCCCTG	00	
BCL2	1414_000033.2	R-primer	CAGTTCCACAAAGGCATCCCAGC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
КАТЭР	NM 002884 4	F-primer	CCTGGAATTAGAGAGACAGGCTGGA	119	
KA I 2D	14141_003004.4	R-primer	GATGGCTCTTCACCTGCTGGA	110	
CCNC1	NIM 004060 2	F-primer	GCCTCAGAATGACTGCAAGACTAAGG	150	
CCNGI	INM_004000.5	R-primer	GGTGCTTGGGCTGTACCTTCA	150	
VDCC2	NIM 001100110-1	F-primer	GCATCAACCAGGTGACAGAGGC	120	
ARCUS	NW_001100119.1	R-primer	GGTCAGCCAGCAGTCTCACC	120	
PDCA1	NM 0072943	F-primer	CAGCTTGACACAGGTTTGGAGTATGC	123	
DRCAI	11111_00/274.3	R-primer	GGCACGGTTTCTGTAGCCCAT	123	
BRCA2	NM 000059 3	F-primer	TTGTGAAGGGTCGTCAGACACC	117	
DICA2	14141_000037.5	R-primer	GCACAGTAGAACTAAGGGTGGGTG	11/	

Supplementary Table 1. Transcript-specific primers used in the current study.

		F-primer	TGACAAACTCAGAACCCCTAGACTTGG	
CUL1	NM_003592.2	R-primer	CGTTCCAACTCTGACGGCAAGG	109
CCND1 showt	NM_053056.2	F-primer	CACCTGGATGCTGGAGATGTGAAG	
isoform	(ENST00000227507. 2)	R-primer	AGGCGGTAGTAGGACAGGAAGTTG	128
CCND1-long		F-primer	CTGCTGCAAATGGAGCTGCTC	
isoform	ENST00000536559.1	R-primer	CTGTTTGTTCTCCTCCGCCTCTG	120
		F-primer	CCGAGAGGTGTCTCTGCTGAAG	
CDK18	NM_002596.3	R-primer	CAGGTACTCAAACACCAGGGTGAG	103
		F-primer	GCATCTGTGCCAGTACGATGTGG	
NOTCH1	NM_017617.4	R-primer	CCGTGTACCCTTCCGTGCA	113
		F-primer	CGAGGTGGACTTGGCAGATGAC	
CRB1	NM_201253.2	R-primer	GGAGGTGACAACAGAAGCAACAATGG	115
	NR 001702 4	F-primer	GAGCTGACCAGCCTCCAACT	117
CDH2	NM_001792.4	R-primer	TGCATGTGCCCTCAAATGAAACCG	116
	NRA 001201540.1	F-primer	CCTGTCACTGTCTTGTACCCTTGTG	10.4
CDKN1A	NM_001291549.1	R-primer	GGAGTGGTAGAAATCTGTCATGCTGG	124
		F-primer	CTGAGGACACGCATTTGGTGGA	
CDKN1B	NM_004064.4	R-primer	GAGTAGAAGAATCGTCGGTTGCAGG	114
		F-primer	GGATGCTCTGAAGAAAGATAGCTCGC	
HES1	NM_005524.3	R-primer	CGGAGGTGCTTCACTGTCATTTCC	81
	NIM 012259 2	F-primer	CATACGGCAGGAGGGAAAGGTTAC	120
HEY1	NM_012258.5	R-primer	AAGCGGGTCAGAGGCATCTAGT	138
	XXX 017010(20.1	F-primer	GCAACAGGGGGTAAAGGCTACT	150
HEY2	XM_017010629.1	R-primer	AGATGAGACACAAGCCGCACC	158
	NR4 001017404.0	F-primer	GGTGACTACGTTGCAGGTGGAT	00
TREK	NM_001017424.2	R-primer	GCAGCAAAGTAAGCAAGCCCTACAA	98
		F-primer	TCCAGCAGATGGGCATCTATGC	110
TRPV1	NM_080706.3	R-primer	CACCACCGCTGTGGAAAACC	113
RB1	NM_000321.2	F-primer	CCCTTGCATGGCTCTCAGATTCAC	88
1	1		1	

		R-primer	GCAGATTCAAGGTGATCAGTTGGTCC		
	NB4 0011012	F-primer	AGAGCTACGAGCTGCCTGACG	101	
АСТВ	NM_001101.3	R-primer	GGACTCCATGCCCAGGAAGGA	101	
	NIM 005172 1	F-primer	GTGCAGAAGCAGAGACGGCTA	175	
ATOH1	ATOH1 NM_005172.1		GCTCGGACAAGGCGTTGATGTAG	173	
	NIM 0042162	F-primer	CGGACGAGGGCTCTTACGAC	120	
MASH1	NM_004516.5	R-primer	GTGCGATCACCCTGCTTCCA	129	
	NR 024010 2	F-primer	CGCTGAGGCACAGTTAGAGCC	161	
NGN2	NM_024019.3	R-primer	GCTCCTCCTCCTCTTCTTCGTCG	161	

Supplementary Table 2. Primers used in stem–loop RT–PCR.

Primer	Utility	Sequence
SL-RT	RT primer	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCCGCA
SL-F	Forward primer	CACGCAGTCCAGGCAGGA
SL-R	Reverse primer	CCAGTGCAGGGTCCGAGGTA

Table S3. Primer utilized for detection of endoplasmic reticulum stress.

Gene	Accession No.	Oligos	Primer sequence	Amplicon size (bps)
XBP1-short	NM_001079539	F-primer	CTGAGTCCGAAGCAGGTGCAG	109
	.1	R-primer	ATGCCCAACAGGATATCAGACTCTGA	
		F-primer	GCAGCACTCAGACTACGTGCA	107
XBP1-long	NM_005080.3	R-primer	ATGCCCAACAGGATATCAGACTCTGA	127

Supplementary Table 4. Primer used in TRAP assay.

Oligo	Primer sequence
TS (forward)	AATCCGTCGAGCAGAGTT
CX (reverse)	CCCTTACCCTTACCCTAA

Supplementary movies

Movie S1. Live-imaging microscopy of $mi^{high}\Delta pl$ neural progenitors. Note the stationary nature of these G0 synchronised cells.

Movie S2. Type or paste caption here. Live-imaging microscopy of control neural progenitors.

Movie S3. Type or paste caption here. Live-imaging microscopy of $mi^{high}\Delta mi$ neural progenitors.

Movie S4. Type or paste caption here. Live-imaging microscopy of $mi^{low} \Delta As$ neural progenitors.