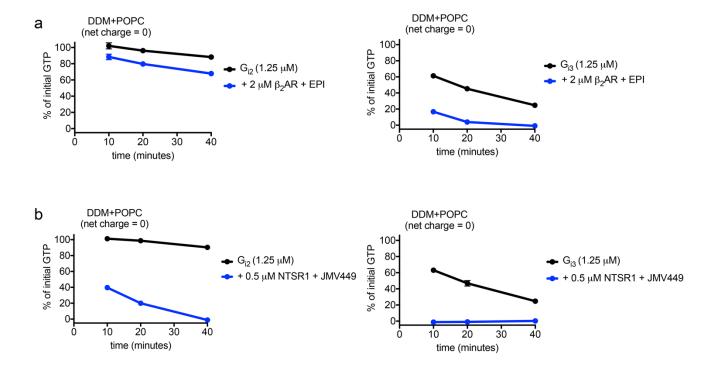
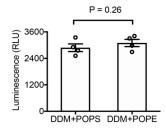
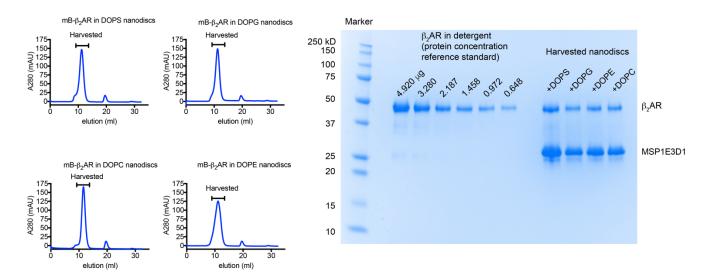

Supplementary Figures

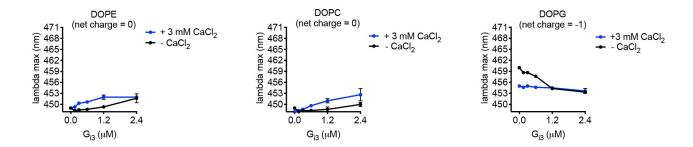
Local membrane charge regulates β_2 adrenergic receptor coupling to G_{i3} Strohman et al.

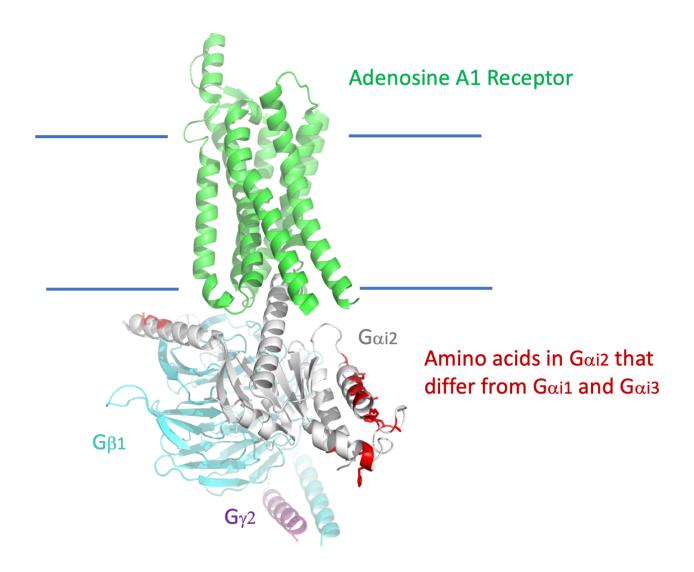


Supplementary figure 1. Simulated mB- β_2 AR populations


This figure shows simulations to establish that, under the particular conditions of the experiments reported here, fluorescence emission maxima can be used to measure the fraction of G protein coupled β₂AR. (a) Left: Representative raw spectra from Figure 1d (DDM+CHS+POPC condition). Spectra are labeled as followed: A represents Apo mB- β_2AR , **E** represents mB- β_2AR bound to 100 μ M epinephrine and **G** represents the mBβ₂AR-G_s complex. Right: Spectrum **E** relative to a simulated spectral population calculated as the weighted average intensity of spectra A and G $(Merged_{AG}=0.75*Intensity_A+0.25*Intensity_G)$. (b) Left: Spectra **A** and **G** from panel A, with smoothed spectra underlaid in black. Middle: Simulated spectra with varying fractions of A and G. The simulated spectra were calculated as in panel A and were subsequently smoothed. Right: The λ_{max} has a linear correlation with the fraction of spectrum **G**. Data represent mean +/- s.e.m from three simulations based on spectra from three independent experiments. (c) Left: Spectra E and G from panel A, with smoothed spectra underlaid in black. Middle: Simulated spectra with varying fractions of **E** and **G**. The simulated spectra were calculated as in panel A and were subsequently smoothed. Right: The λ_{max} has a linear correlation with the fraction of spectrum **G**. Data represent mean +/- s.e.m from three simulations based on spectra from three independent experiments. Source data are provided in the Source Data File.


Supplementary figure 2. Effect of PKA phosphorylation on mB- β_2 AR interaction with G_i (a) Phosphorylation status of mB- β_2 AR before and every 0.5 hours after the addition of protein kinase A (PKA) and excess ATP (2 mM). -P indicates the unphosphorylated m β - β_2 AR used in Panel B; +P indicates the phosphorylated m β - β_2 AR used in Panel B (b) Effect of PKA phosphorylation on G_{i1} , G_{i2} , G_{i3} , and G_s interaction with mB- β_2 AR in the presence of epinephrine. Measurements were performed in DDM+CHS+POPC mixtures (5:1:1 DDM:CHS:POPC mole ratio). mB- β_2 AR concentration is 300 nM. Data are mean +/- s.e.m of three independent experiments. Source data, including uncropped images, are provided in the Source Data File.


Supplementary figure 3. GTP turnover activity of G_{i2} (left) and G_{i3} (right) in DDM+POPC (5:1 DDM:POPC mole ratio) mixed micelles, in the absence or presence of ligand-stimulated β_2AR (panel A) and NTSR1 (panel B), using the ligand epinephrine (EPI) and JMV 449, respectively. Data are mean +/- s.e.m of three independent experiments. Source data are provided in the Source Data File.


Supplementary figure 4. Luminescence signals from the Fig. 1f condition with G_{i3} alone (0.25 μ M). Data are mean +/- s.e.m of four independent experiments. Statistical significance was determined using a two-sided Student's *t*-test. Source data are provided in the Source Data File.

Supplementary figure 5. Left: Size exclusion profiles of nanodisc mB- β_2 AR; Right: SDS-PAGE of harvested nanodisc mB- β_2 AR after concentration

Supplementary figure 6. Effect of Ca^{2+} on basal mB- β_2AR - G_{i3} interaction in bilayers of varying phospholipid composition The effect of G_{i3} concentration on mB- β_2AR fluorescence (+/- 3 mM $CaCl_2$) was examined in DOPE, DOPC, and DOPG nanodisc bilayers in the absence of epinephrine. mB- β_2AR concentration is 100 nM. Data are mean +/- s.e.m of three independent experiments. The net charge of the phospholipid is indicated in parentheses. Source data are provided in the Source Data File.

Supplementary figure 7. Cryo-electron microscopy structure of the adenosine A1- G_{i2} complex (PDB: 6D9H). Highlighted in red are amino acids in the Ras domain of $G_{\alpha_{i2}}$ that differ from $G_{\alpha_{i1}}$ and $G_{\alpha_{i3}}$.