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Supplementary Figure 1. Type I error (top) and power (bottom) for detecting G-C 

interaction using MRNM for the same data used in Figures 2 and 3. 

The MRNM performed similarly with RNM (Figures 2 and 3), i.e. the type I error rate was 0.05 

and the power was 1 in this figure. 



 

 

Supplementary Figure 2. Artificial heterogeneous density and variances across four 

discrete groups classified according to 25, 50 and 75% quantiles (red dashed lines) of a 

covariate that is continuous and normally distributed. 



 

Supplementary Figure 3. Spurious signals generated by incorrect (univariate) model can be 

controlled by applying multivariate RNM for detecting G-C interaction in a simulation 

with relatively low genetic correlation. 

One hundred replicates of data were simulated under a null model that assumed genotype-

covariate correlation but no genotype-covariate interaction. Simulation was based QCed ARIC 

data consisting of 7,263 individuals and 583,058 SNPs. The model is specified as y = α0 + α1×c 

+ e with c= β + ε, all effects drawn from a multivariate normal distribution, where the variance-

covariance structure between α0, β, and α1 (in this order) is �
1 0.1 0

0.1 1 0
0 0 0

� and that between e 

and ε is � 1 0.3
0.3 1 �. For every replicate, a univariate RNM and a multivariate RNM were fitted 

separately to obtain a p-value for the G-C interaction by comparing the null (H0) and alternative 

hypothesis (H1) model. For the univariate RNM, the H0 and H1 models were y = α0 + e and y = 



α0 + α1×c + e. For the multivariate RNM, the H0 and H1 models were y = α0 + e with c = β + ε 

and y = α0 + α1×c + e with c = β + ε. This figure shows the proportions of significant p-values, 

i.e., type I error rate, for both models, which are 0.25 (univariate RNM) and 0.04 (multivariate 

RNM). Note that p-values are inverse normal transformed, such that the statistical significance 

level, i.e., 1.65, shown as dashed lines, is equivalent to the 0.05 level before the transformation. 

Refer Supplementary Table 3 for the estimated variance components. 

  



 

 

Supplementary Figure 4. Univariate RNM and multivariate RNM have a similar level of 

statistical power for detecting G-C interaction.  

A hundred replicates of data were simulated under a model that assumed the presence of 

genotype–covariate correlation and interaction. Simulation was based QCed ARIC data 

consisting 7,263 individuals and 583,058 SNPs. The model is specified as y = α0 + α1×c + e with 

c = β + ε, all effects drawn from a multivariate normal distribution, where the variance-

covariance structure of α0, β, and α1 (in this order) is �
1 0.5 0.05

0.5 1 0
0.05 0 0.25

� and that of e and ε is 

� 1 0.3
0.3 1 �. For every replicate, a univariate RNM and a multivariate RNM were fitted separately 

to obtain a p-value for the G-C interaction by comparing the null (H0) and alternative hypothesis 

(H1) model. For the univariate RNM, the H0 and H1 models were y = α0 + e and y = α0 + α1×c + 



e. For the multivariate RNM, the H0 and H1 models were y = α0 + e with c = β + ε and y = α0 + 

α1×c + e with c = β + ε. This figure shows the proportions of significant p-values, i.e., statistical 

power, for the two models, which are 1 for both. Note that p-values are inverse normal 

transformed, such that the statistical significance level, i.e., 1.65, shown as dashed lines, is 

equivalent to the 0.05 level before the transformation.  

  



 

 
Supplementary Figure 5. Adjusting the main trait for the covariate can control spurious 

signals of G-C interaction when using RNM.  

One hundred replicates of data were simulated under a null model that assumed genotype-

covariate correlation but no genotype-covariate interaction. Simulation was based QCed ARIC 

data consisting of 7,263 individuals and 583,058 SNPs. The model is specified as y = α0+ α1×c 

+ e with c = β + ε, all effects drawn from a multivariate normal distribution, where the variance-

covariance structure between α0, β, and α1 (in this order) is �
1 0.5 0

0.5 1 0
0 0 0

� and that between e 

and ε is � 1 0.3
0.3 1 �. For each replicate, a RNM was fitted under two scenarios, one where the 

main trait (i.e., y) was adjusted for the covariate (i.e., c) using a linear regression, and the other 

where the main trait was not adjusted. For each replicate, a p-value was obtained via a likelihood 

ratio test comparing the null (H0) and alternative hypothesis (H1) models. The H0 and H1 models 



were y = α0 + e and y = α0 + α1×c + e. In the top panel, the phenotypes (y) were adjusted for the 

covariate (c) as a fixed effect in a linear model and the residuals were used. In the bottom panel, 

the phenotypes were used without such adjustment. This figure shows the proportions of 

statistically significant p-values for detecting a genotype-covariate interaction, i.e., type I error 

rate, under the two scenarios, which are 0.04 (top) and 1 (bottom). Note that p-values are inverse 

normal transformed, such that the statistical significance level, i.e., 1.65, shown as dashed lines, 

is equivalent to the 0.05 level before the transformation.  

 

  



 

 

Supplementary Figure 6. The statistical power of detecting G-C interaction with or without 

adjusting the main trait for the covariate when using RNM.  

One hundred replicates of data were simulated under a model that assumed the presence of 

genotype-covariate correlation and interaction. Simulation was based QCed ARIC data 

consisting of 7,263 individuals and 583,058 SNPs. The model is specified as y = α0 + α1×c + e 

with c = β + ε, all effects drawn from a multivariate normal distribution, where the variance-

covariance structure of α0, β, and α1 (in this order) is �
1 0.5 0.05

0.5 1 0
0.05 0 0.25

� and that of e and ε is 

� 1 0.3
0.3 1 �. For each replicate, a RNM was fitted under two scenarios, one where the main trait 

(i.e., y) was adjusted for the covariate (i.e., c) using a linear regression, and the other where the 

main trait was not adjusted. For each replicate, a p-value was obtained via a likelihood ratio test 

comparing the null (H0) and alternative hypothesis (H1) models. The H0 and H1 models were y = 



α0 + e and y = α0 + α1×c + e. In the top panel, the phenotypes (y) were adjusted for the covariate 

(c) as a fixed effect in a linear model and the residuals were used. In the bottom panel, the 

phenotypes were used without such adjustment. This figure shows the proportions of statistically 

significant p-values for detecting the genotype-covariate interaction, i.e., statistical power, under 

the two scenarios, which is 1 for both. Note that p-values are inverse normal transformed, such 

that the statistical significance level, i.e., 1.65, shown as dashed lines, is equivalent to the 0.05 

level before the transformation. 

 

 



 
Supplementary Figure 7. Type I error rate of detecting genotype-covariate interaction is 

under control for RNM, MRNM, RR-GREML and GCI-GREML. 



Five hundred replicates of data were simulated under each of two scenarios that assumed no 

genotype-covariate interaction but a residual-covariate interaction of different magnitudes. 

Simulation was based QCed ARIC data consisting of 7,263 individuals and 583,058 SNPs. The 

models of the two scenarios are specified as y = α0 + τ0 + τ1×c with c = β + ε, all effects drawn 

from a multivariate normal distribution, where the variance-covariance structure between α0 and 

β is �1 0
0 1� and that between τ0, ε and τ1 is �

1 0 0.05
0 1 0

0.05 0 var(𝛕𝛕𝟏𝟏)
� with var(τ1) = 0.25 (left 

panels) or 1 (right panels). For every replicate, each of four methods, i.e., RNM, MRNM, RR-

GREML and GCI-GREML, was applied to obtain a p-value for detecting a G-C interaction via a 

comparison between the null (H0) and alternative hypothesis (H1) models. For RNM, the H0 and 

H1 models were y= α0 + τ0 + τ1×c and y = α0 + α1×c + τ0 + τ1×c. For MRNM, the H0 and H1 

models were y = α0 + τ0 + τ1×c with c= β+ ε and y = α0 + α1×c + τ0 + τ1×c with c = β+ ε. For 

RR-GREML and GCI-GREML, the H0 and H1 models were y = α0 + e and y = α0 + α1×c + e. In 

RR-GREML and GCI-GREML, samples were arbitrarily stratified into four different groups 

according to the covariate levels. RR-GREML explicitly estimates residual variance for each of 

the four groups whereas GCI-GREML assumes homogeneous residual variance across the four 

groups and estimates a single residual variance. This figure shows the proportions of significant 

p-values, i.e., type I error rate, for each method (top to bottom) under the two simulation 

scenarios (left versus right). For var(τ1) = 0.25 (left panels), type I error rates from top to bottom 

are 0.052, 0.04, 0.058 and 0.024, respectively. For var(τ1) = 1 (right panels), type I error rates 

from top to bottom are 0.06, 0.06, 0.062 and 0.058, respectively. Note that p-values are inverse 

normal transformed, such that the statistical significance level, i.e., 1.65, shown as dashed lines, 



is equivalent to the 0.05 level before the transformation. Refer to Supplementary Data 1 for 

estimated variance components of the four methods. 



 

Supplementary Figure 8. Statistical power of detecting genotype-covariate interaction for 

RNM, MRNM, RR-GREML and GCI-GREML.  



One hundred replicates of data were simulated under a model that assumed the presence of 

genotype-covariate interaction and residual-covariate interaction. Simulation was based QCed 

ARIC data consisting of 7,263 individuals and 583,058 SNPs. The model are specified as y = α0 

+ α1×c + τ0 + τ1×c with c = β + ε, all effects drawn from a multivariate normal distribution, 

where the variance-covariance structure of α0, β, and α1 (in this order) is �
1 0 0.05
0 1 0

0.05 0 0.25
� and 

that of τ0, ε, and τ1 is �
1 0 0.05
0 1 0

0.05 0 var(𝛕𝛕𝟏𝟏)
� with var(τ1) =0.25 for one scenario and 1 for the 

other. For every replicate, each of four methods, i.e., RNM, MRNM, RR-GREML and GCI-

GREML, was applied separately to obtain a p-value for detecting a G-C interaction via a 

comparison between the null (H0) and alternative hypothesis (H1) models. For RNM, the H0 and 

H1 models were y = α0 + τ0 + τ1×c and y = α0 + α1×c + τ0+ τ1×c. For MRNM, the H0 and H1 

models were y = α0 + τ0 + τ1×c with c = β + ε and y = α0 + α1×c + τ0 + τ1×c with c = β + ε. For 

RR-GREML and GCI-GREML, the H0 and H1 models were y = α0 + e and y = α0 + α1×c + e. In 

RR-GREML and GCI-GREML, samples were arbitrarily stratified into four different groups 

according to the covariate levels. RR-GREML explicitly estimates residual variance for each of 

the four groups whereas GCI-GREML assumes homogeneous residual variance across the four 

groups and estimates a single residual variance. This figure shows the proportions of significant 

p-values, i.e., power, for each method (top to bottom) under the two simulation scenarios (left 

versus right). For var(τ1) = 0.25 (left panel), power from top to bottom are 0.77, 0.69, 0.62 and 

0.54, respectively. For var(τ1) = 1 (right panel), power from top to bottom are 0.35, 0.31, 0.23 

and 0.28, respectively. Note that p-values are inverse normal transformed, such that the statistical 

significance level, i.e., 1.65, shown as dashed lines, is equivalent to the 0.05 level before the 



transformation. Refer to Supplementary Data 2 for estimated variance components of the four 

methods  



 
Supplementary Figure 9. Type I error rates of detecting genotype-covariate interaction for 

MRNM, RR-GREML and GCI-GREML. 

Five hundred replicates of data were simulated under a model that assumed no genotype-

covariate interaction but with the presence of genotype-covariate correlation and with the 

presence of residual-covariate correlation and interaction. Simulation was based QCed ARIC 

data consisting of 7,263 individuals and 583,058 SNPs. The models are specified as y = α0 + τ0 + 

τ1×c with c = β + ε, all effects drawn from a multivariate normal distribution, where the 



variance-covariance structure between α0 and β is � 1 0.5
0.5 1 � and that between τ0, ε and τ1 is 

�
1 0.3 0.05

0.3 1 0
0.05 0 var(𝛕𝛕𝟏𝟏)

� with var(τ1) = 0.25 (left panels) or 1 (right panels). For every replicate, 

each of three methods, i.e., MRNM, RR-GREML and GCI-GREML, was applied to obtain a p-

value for detecting a G-C interaction via a comparison between the null (H0) and alternative 

hypothesis (H1) models. For MRNM, the H0 and H1 models were y = α0 + τ0 + τ1×c with c = β 

+ ε and y = α0 + α1×c + τ0 + τ1×c with c = β + ε. For RR-GREML and GCI-GREML, the H0 and 

H1 models were y = α0 + e and y = α0 + α1×c + e. In RR-GREML and GCI-GREML, samples 

were arbitrarily stratified into four different groups according to the covariate levels. RR-

GREML explicitly estimates residual variance for each of the four groups whereas GCI-GREML 

assumes homogeneous residual variance across the four groups and estimates a single residual 

variance. This figure shows the proportions of significant p-values, i.e., type I error rate, for each 

method (top to bottom) under the two simulation scenarios (left versus right). For var(τ1) = 0.25 

(left panels), type I error rates from top to bottom are 0.060, 0.068, and 0.044, respectively. For 

var(τ1) = 1 (right panels), type I error rates from top to bottom are 0.048, 0.050, and 0.03, 

respectively. Note that p-values are inverse normal transformed, such that the statistical 

significance level, i.e., 1.65, shown as dashed lines, is equivalent to the 0.05 level before the 

transformation. Refer to Supplementary Data 3 for estimated variance components of the three 

methods. 

  



 
Supplementary Figure 10. Power of detecting genotype-covariate interaction for MRNM, 

RR-GREML and GCI-GREML. 

One hundred replicates of data were simulated under a model that assumed the presence of 

genotype-covariate correlation and interaction and the presence of residual-covariate correlation 

and interaction. Simulation was based QCed ARIC data consisting of 7,263 individuals and 

583,058 SNPs. The models are specified as y = α0 + α1×c + τ0 + τ1×c with c = β+ ε, all effects 

drawn from a multivariate normal distribution, where variance-covariance structure between α0, 



β, and α1 (in this order) is �
1 0.5 0.05

0.5 1 0
0.05 0 0.25

� and that between τ0, ε and τ1 is 

�
1 0.3 0.05

0.3 1 0
0.05 0 var(𝛕𝛕𝟏𝟏)

� with var(τ1) = 0.25 (left panels) and 1 (right panels). For every replicate, 

each of three methods, i.e., MRNM, RR-GREML and GCI-GREML, was applied to obtain a p-

value for detecting a G-C interaction via a comparison between the null (H0) and alternative 

hypothesis (H1) models. For MRNM, the H0 and H1 models were y = α0 + τ0 + τ1×c with c = β 

+ ε and y = α0 + α1×c + τ0 + τ1×c with c = β + ε. For RR-GREML and GCI-GREML, the H0 and 

H1 models were y = α0 + e and y = α0 + α1×c + e. In RR-GREML and GCI-GREML, samples 

were arbitrarily stratified into four different groups according to the covariate levels. RR-

GREML explicitly estimates residual variance for each of the four groups whereas GCI-GREML 

assumes homogeneous residual variance across the four groups and estimates a single residual 

variance. This figure shows the proportions of significant p-values, i.e., power, for each method 

(top to bottom) under the two simulation scenarios (left versus right). For var(τ1) = 0.25 (left 

panel), power from top to bottom are 0.77, 0.70, and 0.58, respectively. For var(τ1) = 1 (right 

panel), power from top to bottom are 0.35, 0.31 and 0.28, respectively. Note that p-values are 

inverse normal transformed, such that the statistical significance level, i.e., 1.65, shown as 

dashed lines, is equivalent to the 0.05 level before the transformation. Refer to Supplementary 

Data 4 for estimated variance components of the three methods. 

 

  



 

Supplementary Figure 11. Power of detecting genotype-covariate interaction for MRNM, 

RR-GREML and GCI-GREML. 

One hundred replicates of data were simulated under a model that assumed the presence of 

genotype-covariate correlation and interaction and the presence of residual-covariate correlation 

and interaction. Simulation was based QCed ARIC data consisting of 7,263 individuals and 

583,058 SNPs. The models are specified as y = α0 + α1×c + τ0 + τ1×c with c = β+ ε, all effects 

drawn from a multivariate normal distribution, where variance-covariance structure between α0, 



β, and α1 is �
1 0.5 0.05

0.5 1 0
0.05 0 1

� and that between τ0, ε and τ1 is �
1 0.3 0.05

0.3 1 0
0.05 0 var(𝛕𝛕𝟏𝟏)

� with 

var(τ1) = 0.25 (left panels) or 1 (right panels). For every replicate, each of three methods, i.e., 

MRNM, RR-GREML and GCI-GREML, was applied separately to obtain a p-value for detecting 

a G-C interaction via a comparison between the null (H0) and alternative hypothesis (H1) models. 

For MRNM, the H0 and H1 models were y = α0 + τ0 + τ1×c with c = β + ε and y = α0 + α1×c + 

τ0 + τ1×c with c = β + ε. For RR-GREML and GCI-GREML, the H0 and H1 models were y = α0 

+ e and y = α0 + α1×c + e. In RR-GREML and GCI-GREML, samples were arbitrarily stratified 

into four different groups according to the covariate levels. RR-GREML explicitly estimates 

residual variance for each of the four groups whereas GCI-GREML assumes homogeneous 

residual variance across the four groups and estimates a single residual variance. This figure 

shows the proportions of p-values that are statistically significant, i.e., power, for each method 

(top to bottom) under the two simulation scenarios (left versus right). For var(τ1) = 0.25 (left 

panels), power from top to bottom are 1, 1, and 1, respectively. For var(τ1) = 1 (right panels), 

power from top to bottom are 1, 1 and 1, respectively. Note that p-values are inverse normal 

transformed, such that the statistical significance level, i.e., 1.65, shown as dashed lines, is 

equivalent to the 0.05 level before the transformation. Refer to Supplementary Data 5 for 

estimated variance components of the three methods. 

 

 



 

Supplementary Figure 12. Estimated heritability from data simulated under G-C (left) or 

R-C interaction model (right), using GREML, LDSC and RNM. 

Prop. G-C or R-C interaction is the proportion of variance due to α1 or τ1 (see below) in the total 

phenotypic variance (i.e. var(α1))/var(y) in G-C interaction model or var(τ1)/var(y) in R-C 

interaction model).  

Simulation was based QCed ARIC data consisting of 7,263 individuals and 583,058 SNPs. 

Simulation for G-C interaction (α1): The phenotype data were generated using y = α0 + α1×c + e 

with c = β + ε, all effects drawn from a multivariate normal distribution. The variance-covariance 

structure of α0, β, and α1 (in this order) is �
1 0 0.05
0 1 0

0.05 0 var(𝛂𝛂𝟏𝟏)
� with var(α1) = 0, 0.25, 0.5, 0.75 

and 1 and that for e and ε is �1 0
0 1�. 

Simulation for R-C interaction (τ1): The phenotype data were generated using y = α0 + τ0 + τ1×c 

with c = β + ε, all effects drawn from a multivariate normal distribution. The variance-covariance 

structure of α0 and β is �1 0
0 1� and that of τ0, ε, and τ1 (in this order) is �

1 0 0.05
0 1 0

0.05 0 var(𝛕𝛕𝟏𝟏)
� 

with var(τ1) = 0, 0.25, 0.5, 0.75 and 1.  



The error bar is a 95% confidence interval, which was estimated over 100 replicates. 

The model for GREML is y= α0 + e and the model for RNM in the left panel is y = α0 + α1×c + e. 

The model for RNM in the right panel is y = α0 + τ0 + τ1×c. 

 

  



 

Supplementary Figure 13. Genetic and residual correlations between different covariate 

levels calculated based on the Vg and Re matrices in Figures 6 and 7. 

The scale of Z-axis for graph between 0.7 and 1.1.  

 

  



 

Supplementary Figure 14. Comparisons of –log10(p-value) and likelihood ratio for the 

meta-analyses across multiple studies against those for the analyses of individual studies. 

The solid circles were based on meta-analyses of five studies each with 4,000 individuals. 

The green triangles were based on meta-analyses of two studies each with 4,000 individuals. 

The grey dashed line is where y = x. 

The simulation was based on the first release of UKBB data (QCed), including 72,417 

individuals and 1,009,054 SNPs, in which 10k SNPs were used as causal SNPs.  

The simulated phenotypes were generated as y = α0+ α1×c+ τ0+ τ1×c with c = β+ ε, all effects 

drawn from a multivariate normal distribution. The variance-covariance structure of α0, β, and 

α1 is �
1 0.5 0

0.5 1 0
0 0 var(α1)

� where var(α1) was randomly sampled from a uniform distribution 

(U(0,1)). The variance-covariance structure of τ0, ε, and τ1 is �
1 0.3 0.05

0.3 1 0
0.05 0 0.25

�. 



 

Supplementary Figure 15. Comparisons of –log10(p-value) and likelihood ratio for the 

meta-analyses across multiple subgroups against those for the full analyses of the whole 

group.  



The same simulation scheme was applied as in Figure S9. For the top three rows, the sample size 

increased from 5K to 10K and 20K where the sample was randomly selected and divided into 

two subgroups with an equal number. For the last row, the sample was randomly selected and 

divided into five subgroups with an equal number.  

  



 

Supplementary Figure 16. Distributions of covariates of interest after quality control.  

A.BMI: Body mass index. B. Smoking: pack years of smoking. C. Alcohol: weekly alcohol 

consumption. D. Major dietary changes in the last 5 years. 0 is a generally stable diet. 1 is 

changing their diet due to health reasons.  2 is voluntarily changing their diet within five years 

prior to measurement. E. Variation in diet. 1 is Never or rarely. 2 is sometimes, 3 is often. F: 



Townsend deprivation index at recruitment. G: Neuroticism score. 0 is the most optimistic, 12 is 

the least optimistic. H: the first principle component.  

  



 

Supplementary Figure 17. The distribution of error values drawn from a gamma 

distribution with a shape parameter k=2, 1.5, 1 or 0.5 and scale parameter θ=0.5, denoted 

as Gamma(k, θ) in the figure. 

Simulation detail and results based on these error values are in Supplementary Table 13. 

 

 

 



 

Supplementary Figure 18. P-values from likelihood ratio tests comparing null vs RNM G-C 

(left panel) and null vs RNM R-C (right panel) based on raw phenotypes and inverse 

normal transformed phenotypes in simulation. 

Simulated data are the same used in Supplementary Table 13. Five hundred replicates of data 

were simulated under a null model that assumed no genotype-covariate correlation and no 

interaction. Simulation was based QCed ARIC data that have 7,263 individuals and 583,058 



SNPs. The model is specified as y = α0+ α1×c + e with c = β + ε, where α0, β, and α1 (in this 

order) follows a multivariate normal distribution with mean zero and the variance-covariance 

structure being �
1 0 0
0 1 0
0 0 0

� and that between e and ε is �1 0
0 1�. The residual error values are 

drawn from a gamma distribution with a shape parameter of 0.5, 1, 1.5 or 2. The simulated 

residual error values were further scaled as mean zero and variance 1. For each replicate, we fit 

Uni-GREML (as null model), RNM G-C, RNM R-C, and RNM Full models with rank-based 

inverse normal transformed phenotypes (denoted as ‘INT’) or with raw phenotypes (denoted as 

‘RAW’). 

The red dashed lines are where p-values equal 0.05.  

Type I error rate for each comparison can be seen in Supplementary Table 13.  

  



 

Supplementary Figure 19. Agreement between the theoretical variance of residual variance 

estimated from RNM and the empirical covariance between residual variances estimated 

from RNM and GREML. 

X represents the estimated residual variance from RNM. Y represents the estimated residual 

variance from GREML. Theoretical σX2  represents the variance of estimated residual variance 

from RNM (see Supplementary Note). 

Different colors represent difference levels of interaction (i.e. variance of α1 on the left panel and 

variance of τ1 on the right panel). 

The bars are 95% confidence interval, which were estimated based on the mean of 100 replicates 

of bootstrap. In each replicate, the bootstrap was performed 1000 times. 

For the left panel, the simulated phenotypes were generated as y = α0 + α1×c + e with c = β + ε, 

all effects drawn from a multivariate normal distribution. The variance-covariance structure of 

α0, β, and α1 (in this order) is �
1 0 0.05
0 1 0

0.05 0 var(𝛂𝛂𝟏𝟏)
� with var(𝛂𝛂𝟏𝟏) = 0, 0.5 and 1 and that of e and 

ε is �1 0
0 1�. The number of replicates is 500. 



For the right panel, the simulated phenotype was generated as y = α0 + τ0+ τ1×c with c = β+ ε. 

The variance-covariance structure of α0, β is �1 0
0 1� and that of τ0, ε, and τ1 is 

�
1 0 0.05
0 1 0

0.05 0 var(𝛕𝛕𝟏𝟏)
� with var(τ1) =0, 0.5 and 1. The number of replicates is 500. Simulation was 

based QCed ARIC data consisting of 7,263 individuals and 583,058 SNPs. 

  



 

 

Supplementary Figure 20. Differences between estimated residual variance from RNM (X) 

and that from GREML (Y). 

Simulated data are the same used in Supplementary Figure 19. In the x-axis, the true values used 

for var (α1) and var (τ1) are shown. In the y-axis, ‘X-Y’ represents the difference between the 

estimated residual variances from RNM and GREML.  

Different colors represent difference levels of simulated interaction variances (i.e. var (α1) and 

var (τ1)). 

 



 

Supplementary Figure 21. Estimated residual variance from RNM (X) and that from 

GREML (Y) in a simulation with the absence of GCCI and RCCI. 

The data used in this Figure are the same in Supplementary Figure 20 when var (α1) and var (τ1) 

are both zeros. 

X represents the estimated residual variance from RNM. Y represents the estimated residual 

variance from GREML. 

  



 

 

Supplementary Figure 22. Estimated G-C or R-C interaction variance under the null 

simulation model (i.e. no interaction) with residual error values drawn from a gamma 

distribution (with shape parameter of 0.5, 1, 1.5 or 2). 

Simulation model detail is in Supplementary Table 13. 

Different colors represent estimated interaction variances from the gamma distributions with 

different shape parameters (0.5, 1, 1.5 and 2). 

The solid lines stand for the estimated interaction variances using raw phenotypes. 

The dashed lines stand for the estimated interaction variances using rank-based inverse normal 

transformed phenotypes. 

The vertical dashed lines stand for the true simulated interaction (x=0, i.e. no interaction). 

G-C interaction was estimated from RNM G-C model (left panel), and R-C interaction was 

estimated from RNM R-C model (right panel). Results are very similar when using RNM Full 

model (considering G-C and R-C jointly) (results not shown). 

  



 

Supplementary Figure 23. Type I error rate for detecting G-C interaction under a null 

simulation with two covariates. 

Five hundred replicates of data were simulated under a null model that assumed no genotype-

covariate correlation and interaction between two covariates and phenotype. Simulation was 

based QCed ARIC data consisting of 7,263 individuals and 583,058 SNPs. The models of 

simulation are specified as y = α0 + α1×c1+ α2×c2 + τ0 with c1 = β1+ ε1 and c2 = β2+ ε2, all 

effects drawn from a multivariate normal distribution, where variance-covariance structure 

between α0, β1, β2, α1 and α2 (in this order) is 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤
 and that between τ0, ε1 

and ε2 is �
1 0 0
0 1 0
0 0 1

�. For each replicate, a p-value was obtained via a likelihood ratio test 

comparing the null (H0) and alternative hypothesis (H1) models. The H0 and H1 models were y = 

α0 + τ0 and y = α0 + α1×c1+ α2×c2 + τ0. The type I error rate was 0.056. 

Refer Supplementary Table 18 for the estimated variances.  



Supplementary Table 1. Summary of models used in this study. 

Name  Brief feature Model 

Univariate interaction models 

RR-GREML Allows for G-C interaction and discrete 
covariates, and estimates residual 
variance for each level 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞  

GCI-GREML Allows for G-C interaction and discrete 
covariates, and assumes homogeneous 
residual variance 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞  

RNM Null model Equivalent to univariate GREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝐞𝐞  

RNM R-C model 
Allows for R-C interaction and 
continuous covariates, and assumes 
homogeneous genetic variance across 
different covariate levels 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜  

RNM G-C model  
Allows for G-C interaction and 
continuous covariates, and assumes 
homogeneous residual variance across 
different covariate levels 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞  

RNM Full model Allows for G-C and R-C interaction, 
and continuous covariates 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜  

Multivariate interaction models 

MRNM Null model Equivalent to multivariate GREML 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 +  𝐞𝐞  

𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  

MRNM R-C model 

Allows for G-C correlation and R-C 
correlation and interaction (RCCI), and 
continuous covariates, and assumes 
homogeneous genetic variance across 
different covariate levels 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜  

𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  

MRNM G-C model  

Allows for G-C correlation and 
interaction (GCCI) and R-C correlation, 
and continuous covariates, and assumes 
homogeneous residual variance across 
different covariate levels 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞  

𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  

MRNM Full model Allows for GCCI and RCCI, and 
continuous covariates 

𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜 

𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆 

Note: T1 is the residual of main trait adjusted for confounders. T2 is the residual of c adjusted for 

confounders.  



Supplementary Table 2. Estimated variance components of random regression coefficients 

from data simulated under a model that assumed the presence of genotype-covariate 

interaction.  

Parameters var(e) var(α0) var(α1) cov(α0, α1) 
True value 1.00 1.00 0.25 0.05 
RNM   1.00 (0.011)a 1.00 (0.011) 0.25 (0.002) 0.05 (0.002) 
RR-GREMLb 1.17 (0.031)  

1.00 (0.012) 
0.98 (0.013) 
1.20 (0.035) 

2.01 (0.021) 0.50 (0.016) 0.10 (0.011) 

GCI-GREMLc 1.08 (0.022) 0.86 (0.013) 0.56 (0.023)  
aStandard errors (in brackets) of estimates from 100 replicates.  

bIn RR-GREML, samples were arbitrarily stratified into four different groups according to the 

covariate levels. RR-GREML explicitly estimated residual variance for each of the four groups. 

It is noted that RR-GREML used Legendre polynomial function such that the scale of the 

estimated var(α0) was different from RNM or GCI-GREML. 

cIn GCI-GREML, as in RR-GREML, samples were arbitrarily stratified into four different 

groups according to the covariate levels. GCI-GREML assumes homogeneous residual variance 

across the four groups and estimates a single residual variance. 

Simulation was based QCed ARIC data consisting 7,263 individuals and 583,058 SNPs. 
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Supplementary Table 3. Variance components estimated based on a simulation with a relatively low genetic correlation 

  var(τ0) var(ε) cov(τ0,ε) var(α0) var(α1) cov(α0, α1) var(β) cov(α0, β) cov(α1, β) 
GREML Est 1.012   0.990      

 SE 0.009   0.009      
RNM G-C Est 0.980   0.990 0.016 0.000    

 SE 0.009   0.009 0.001 0.001    
MVGREML Est 1.011 1.017 0.293 0.991   0.983 0.104  

 SE 0.009 0.008 0.007 0.009   0.009 0.007  
MRNM G-C Est 1.014 1.017 0.293 0.991 -0.002 0.000 0.983 0.104 -0.001 

 SE 0.009 0.008 0.007 0.009 0.001 0.001 0.009 0.007 0.001 
One hundred replicates of data were simulated under a null model that assumed genotype-covariate correlation but no genotype-covariate 

interaction. The model is specified as y = α0 + α1×c + e with c= β + ε, all effects drawn from a multivariate normal distribution, where the 

variance-covariance structure between α0, β, and α1 (in this order) is �
1 0.1 0

0.1 1 0
0 0 0

� and that between e and ε is � 1 0.3
0.3 1 �. For every replicate, 

a univariate RNM and a multivariate RNM were fitted separately to obtain a p-value for the G-C interaction by comparing the null (H0) and 

alternative hypothesis (H1) model. For the univariate RNM, the H0 and H1 models were y = α0 + e and y = α0 + α1×c + e. For the multivariate 

RNM, the H0 and H1 models were y = α0 + e with c = β + ε and y = α0 + α1×c + e with c = β + ε. This figure shows the proportions of 

significant p-values, i.e., type I error rate, for both models, which are 0.25 (univariate RNM) and 0.04 (multivariate RNM). Note that p-values 

are inverse normal transformed, such that the statistical significance level, i.e., 1.65, shown as dashed lines, is equivalent to the 0.05 level before 

the transformation. Refer Supplementary Figure 3 for the type I error. 
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Supplementary Table 4. Estimated variance components of random regression coefficients from data simulated under a model that 

assumes the presence of genotype-covariate correlation (i.e. cov(α0, β) > 0) and interaction (i.e. var(α1) > 0).  

Parameters var(e) var(ε) cov(e,ε) var(α0) var(α1) cov(α0, α1) var(β) cov(α0, β) cov(α1, β) 
True value 1.00 1.00 0.30 1.00 0.25 0.05 1.00 0.50 0.00 

RNM 0.93 
(0.011) 

 
N/A 

 
N/A 

0.95 
(0.011) 

0.31 
(0.002) 

0.05 
(0.002) 

 
N/A 

 
N/A 

 
N/A 

MRNM 1.00 
(0.011) 

1.00 
(0.009) 

0.29 
(0.008) 

0.96 
(0.011) 

0.25 
(0.002) 

0.05 
(0.002) 

1.00 
(0.009) 

0.51 
(0.008) 

0.00  
(0.002) 

Estimates and standard errors (in brackets) are based on 100 replicates. 

For RNM, the model was y = α0 + α1×c + e. For MRNM, the model was y = α0 + α1×c + e with c = β + ε, all effects drawn from a multivariate 

normal distribution. 

Simulation was based QCed ARIC data consisting 7,263 individuals and 583,058 SNPs.
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Supplementary Table 5. Estimated variance components (standard error) of random 

regression coefficients after adjusting for the covariance in the model with or without 

genotype–covariate interaction. 

Parameters var(e) var(α0) var(α1) cov(α0, α1) 
Presence of genotype–covariate interaction 
True value 1.00 1.00 0.25 0.05 
Estimates 
(SE) 

0.919 
(0.008) 

0.757 
(0.008) 

0.252 
(0.002) 

0.049  
(0.002) 

Absence of genotype–covariate interaction 
True value 1.00 1.00 0 0 
Estimates 
(SE) 

0.929 
(0.007) 

0.751 
(0.006) 

0.001 
(0.001) 

0.001 
(0.001) 
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Supplementary Table 6. Variance components estimated based on a simulation with non-zero cov(ε,τ1) and cov(α1, β) 

var(τ1)  var(τ0) var(ε) cov(τ0,ε) var(τ1) cov(τ0,τ1) cov(ε,τ1) var(α0) var(α1) cov(α0, α1) var(β) cov(α0, β) cov(α1, β) 

True  1 1 0.3 0.25 or 1 0.05 0.1 1 1 0.05 1 0.5 0.1 
0.25 Est 1.029 1.007 0.315 0.263 0.055 0.110 0.967 0.240 0.047 0.996 0.488 0.093 

 SE 0.022 0.017 0.013 0.012 0.012 0.012 0.021 0.012 0.013 0.017 0.015 0.013 
1 Est 1.014 1.017 0.322 0.982 0.041 0.095 0.966 0.269 0.048 0.985 0.466 0.109 
 SE 0.017 0.017 0.014 0.024 0.015 0.013 0.017 0.021 0.016 0.017 0.014 0.014 

The models are specified as y = α0 + α1×c + τ0 + τ1×c with c = β+ ε, all effects drawn from a multivariate normal distribution, where 

variance-covariance structure between α0, β, and α1 (in this order) is �
1 0.5 0.05

0.5 1 0.1
0.05 0.1 0.25

� and that between τ0, ε and τ1 is 

�
1 0.3 0.05

0.3 1 0.1
0.05 0.1 var(𝛕𝛕𝟏𝟏)

� with var(τ1) = 0.25 and 1. 

The standard errors were based in 100 replicates. 
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Supplementary Table 7. Estimated residual and genetic variances from data simulated under G-C (left) or R-C interaction 

model (right) with the presence of genetic correlation, using MVGREML, LDSC and MRNM 

 G-C interaction R-C interaction 
%Interactiona var(e) var(α0) h2 rg var(e) var(α0) h2 rg 

  Est SE Est SE Est SE Est SE Est SE Est SE Est SE Est SE 
MVGREML 

0 1.00 0.02 0.99 0.02 0.50 0.01 0.50 0.01 1.00 0.01 1.00 0.01 0.50 0.00 0.50 0.01 
0.1 1.54 0.02 0.97 0.02 0.39 0.01 0.51 0.01 1.49 0.01 1.01 0.01 0.41 0.00 0.49 0.01 

0.17 2.00 0.03 1.01 0.04 0.34 0.01 0.52 0.02 1.99 0.02 1.01 0.01 0.34 0.00 0.49 0.01 
0.21 2.42 0.03 1.07 0.03 0.31 0.01 0.51 0.01 2.50 0.02 1.00 0.02 0.29 0.00 0.50 0.01 
0.25 2.98 0.05 1.04 0.05 0.26 0.01 0.51 0.01 3.03 0.02 0.99 0.02 0.25 0.00 0.51 0.01 

LDSC 
0 1.05 0.04 0.95 0.04 0.47 0.02 0.50 0.02 1.03 0.02 0.97 0.02 0.48 0.01 0.51 0.01 

0.1 1.53 0.04 0.97 0.04 0.39 0.01 0.53 0.02 1.49 0.02 1.01 0.02 0.40 0.01 0.48 0.01 
0.17 2.00 0.05 1.00 0.05 0.33 0.02 0.53 0.02 2.02 0.02 0.98 0.02 0.33 0.01 0.48 0.01 
0.21 2.42 0.05 1.08 0.05 0.31 0.01 0.52 0.03 2.55 0.03 0.95 0.03 0.27 0.01 0.49 0.01 
0.25 3.02 0.07 0.98 0.07 0.25 0.02 0.50 0.02 3.07 0.02 0.93 0.02 0.23 0.01 0.50 0.02 

MRNM 
0 1.00 0.02 1.00 0.02 0.50 0.01 0.50 0.01 1.00 0.01 1.00 0.01 0.50 0.01 0.50 0.01 

0.1 1.01 0.02 0.99 0.02 0.49 0.01 0.50 0.02 0.99 0.01 1.01 0.01 0.52 0.01 0.50 0.01 
0.17 1.00 0.03 1.01 0.03 0.50 0.02 0.52 0.01 1.00 0.01 1.00 0.01 0.52 0.01 0.49 0.01 
0.21 0.96 0.03 1.06 0.03 0.53 0.01 0.51 0.01 1.02 0.01 0.98 0.01 0.49 0.01 0.50 0.01 
0.25 0.98 0.03 1.03 0.04 0.51 0.02 0.51 0.01 1.00 0.01 1.00 0.01 0.51 0.01 0.50 0.01 
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aThe proportion of variance due to α1 or τ1 (see below) in the total phenotypic variance (i.e. var(α1))/var(y) in G-C interaction model 

or var(τ1)/var(y) in R-C interaction model). 

Simulation for G-C interaction (α1): The phenotype data were generated using y = α0 + α1×c + e with c = β + ε, all effects drawn from 

a multivariate normal distribution. The variance-covariance structure of α0, β, and α1 (in this order) is �
1 0.5 0.05

0.5 1 0
0.05 0 var(𝛂𝛂𝟏𝟏)

� with 

var(α1) = 0, 0.25, 0.5, 0.75 and 1 and that for e and ε is �1 0
0 1�. 

Simulation for R-C interaction (τ1): The phenotype data were generated using y = α0 + τ0 + τ1×c with c = β + ε, all effects drawn from 

a multivariate normal distribution. The variance-covariance structure of α0 and β is � 1 0.5
0.5 1 � and that of τ0, ε, and τ1 (in this order) 

is �
1 0 0.05
0 1 0

0.05 0 var(𝛕𝛕𝟏𝟏)
� with var(τ1) = 0, 0.25, 0.5, 0.75 and 1.  

The standard errors were estimated over 100 replicates. 

The model for MVGREML is y= α0 + e and c = β + ε. The model for MRNM in the left panel is y = α0 + α1×c + e and c = β + ε. The 

model for MRNM in the right panel is y = α0 + τ0 + τ1×c and c = β + ε. 
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Supplementary Table 8. P-values of likelihood ratio tests for model comparisons in UKBB analyses of rank-based inverse 

normal transformed BMI as the main trait, considering either SMK, NEU or PC1 as a covariate 

Index Model comparison   SMKa NEUb PC1c 
Univariate 

M1 H0: RR-GREML k=0d 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎                 + 𝐞𝐞   2.17E-04 1.23E-03 6.38E-01 H1: RR-GREML k=1d 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞  

M2 H0: Uni-GREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎                 + 𝐞𝐞   1.85E-09 8.88E-01 1.00E+00 H1: GCI-GRMEL 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞  

M3 H0: Uni-GREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝐞𝐞   6.61E-86 7.18E-38 9.52E-01 H1: RNM Full 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜  

M4 H0: Uni-GREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎  + 𝐞𝐞   1.55E-83 1.14E-36 9.70E-01 H1: RNM R-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎  + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜  

M5 H0: Uni-GREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝐞𝐞   2.47E-75 2.18E-35 8.00E-01 H1: RNM G-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞  

M6 H0: RNM G-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞   1.32E-13 3.62E-05 8.83E-01 H1: RNM Full 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜  

M7 H0: RNM R-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎                 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜   2.11E-05 6.91E-04 7.29E-01 H1: RNM Full 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜  
Multivariate 

M8 H0: MVGREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 +  𝐞𝐞                                    , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  5.67E-159 3.21E-36 9.50E-01 H1: MRNM Full 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜    , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆 

M9 H0: MVGREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 +  𝐞𝐞                                  , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  1.50E-159 1.31E-35 9.61E-01 H1: MRNM R-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 +  𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜                 , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆 

M10 H0: MVGREML 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 +  𝐞𝐞                                  , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  4.79E-121 2.06E-34 9.28E-01 H1: MRNM G-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞                  , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆 

M11 H0: MRNM G-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞                  , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  3.51E-41 1.44E-04 7.58E-01 H1: MRNM Full 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜   , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆 

M12 H0: MRNM R-C 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎                +  𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜   , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆  3.63E-03 1.99E-03 7.20E-01 H1: MRNM Full 𝐓𝐓𝟏𝟏 = 𝛂𝛂𝟎𝟎 + 𝛂𝛂𝟏𝟏 ∙ 𝐜𝐜 + 𝛕𝛕𝟎𝟎 + 𝛕𝛕𝟏𝟏 ∙ 𝐜𝐜   , 𝐓𝐓𝟐𝟐 = 𝛃𝛃 + 𝛆𝛆 
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aSMK: Pack years of smoking. 

bNEU: Neuroticism score treated as continuous variable. 

cThe first principal component provided by UK Biobank. 

dSamples used in the respective model were arbitrarily stratified into four different levels according to covariates, SMK, NEU and 

PC1. Residual variance was estimated in each level for RR-GREML whereas GCI-GREML assumes homogeneous residual variance 

across the four groups and estimates a single residual variance. 
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Supplementary Table 9. Estimated variance components and standard errors of BMI when fitting both SMK and NEU 

simultaneously as multiple covariates in RNMa. 

 var(τ0) var(τ1) cov(τ0,τ1) var(τ1) cov(τ0,τ1) var(α0)  var(α1) cov(α0, α1) var(α1) cov(α0, α1)  
  SMK NEU   SMK NEU 
Est 16.19 -0.15 0.71 0.05 0.49 4.92  0.44 -0.14 0.26 0.38 
SE 0.23 0.17 0.13 0.18 0.11 0.17  0.15 0.11 0.13 0.11 
ayi = αi0 + αi11×SMKi+ αi21×NEUi+ τi0 + τi11×SMKi+ τi21×NEUi 
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Supplementary Table 10. Statistical tests for the difference between residual variances for BMI estimated from MRNMa and 

MVGREMLb 

 Differencec SEd Difference in% SE of Difference in % h2 (MVGREML) h2 (MRNM) Pe 
SMK -0.245 0.095 1.456 0.564 0.220 0.217f 9.827E-03 
NEU -0.339 0.125 2.062 0.759 0.227 0.231 6.564E-03 
PC1 0.017 0.088 -0.101 0.524 0.227 0.227 8.469E-01 

aAlternative hypothesis model (H1) of M8 in Table 1 

bNull hypothesis model (H0) of M8 in Table 1 

cDifference = the residual variance estimated from MRNM – the residual variance estimated from MVGREML. 

dStandard error of the difference was calculated based on the theory in Supplementary Note. 

eP value was obtained based a two-tailed Wald test using the difference of residual variances and its SE. 

fIn this analysis, h2 was decreased because the covariance terms, cov(α1, β) and cov(τ1, ε), captured some of the main genetic variance 

in MRNM such that the estimated main genetic variance was lower than that in MVGREML that did not parameterize such covariance 

components. When omitting cov(α1, β) and cov(τ1, ε) from MRNM, the main genetic variance is similar between MRNM and 

MVGREML. For a more fair comparison, please see Table 2.  
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Supplementary Table 11. Computational requirements of each modela. 

 N=7000 N=60000 
Model RAM Wall time  RAM Wall time  
RNM null 1.2GB 4min  50.1 GB 2.5h  
RNM R-C 3.7GB 10min  328.3 GB 6.0h  
RNM G-C 2.7 GB 9mim  213.8 GB 4.75h  
RNM Full 4.1 GB 10min  328.3 GB 10h  
MRNM Null 2.0 GB 7min  146.0 GB 30h  
MRNM R-C 12.4 GB 55min  1015.9 GB 277h  
MRNM G-C 9.1 GB 10min  737.7 GB 100h  
MRNM Full 12.4 GB 67min  1015.9 GB 304h  

 

aThose analyses were run on 14 CPUs with each2.6 GHz CPUs.  When increasing the number of 

CPUs, the computational efficiency will be further increased (e.g. by a factor of 2-fold when 

using a 4-fold higher number of CPUs). To load input files including relationship matrices (for 

which parallel computing is not allowed), MTG2 takes few seconds with a sample size of 7000, 

or takes approximately one hour with a sample size of 60000.  
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Supplementary Table 12. Estimated variance components when an assumption of constant SNP variance across minor allele 

frequency is violated 

  var(τ0) var(ε) cov(τ0,ε) var(α0) var(α1) cov(α0, α1) var(β) cov(α0, β) cov(α1, β) 
TRUE  1 1 0.3 1 0.25 0.05 1 0.5 0 

MRNM G-C Est 0.946 0.952 0.273 1.060 0.250 0.051 1.046 0.534 0.003 

 SE 0.011 0.008 0.008 0.011 0.002 0.002 0.008 0.008 0.002 
MVGREML Est 1.451 0.952 0.275 1.054   1.046 0.532  

 SE 0.011 0.008 0.008 0.012   0.008 0.008  One hundred replicates of data were simulated with the presence of genotype-covariate interaction and correlation, and residual-

covariate correlation. Simulation was based QCed ARIC data consisting of 7,263 individuals and 583,058 SNPs. The model was 

specified as y = α0 + α1×c + e with c = β + ε, all effects drawn from a multivariate normal distribution, where the variance-covariance 

structure of α0, β, and α1 (in this order) was �
1 0.5 0.05

0.5 1 0
0.05 0 0.25

� and that of e and ε was � 1 0.3
0.3 1 �. We simulated genetic variance 

due to each causal variant as var(SNPi) ∝ [p(1-p)]s with the scale parameter s = 0 and applied estimation models (MRNM G-C and 

MVGREML) that assumes a constant SNP variance across MAF, i.e. the scale parameter s = -1 in estimating a genomic relationship 

matrix (the standard approach)1-3. 



55 

 

Estimated genetic variance and SNP-heritability may be biased if an assumption of the variance due to causal variants across different 

MAF spectrums is violated1-3. As expected and agreed with previous studies2 , the genetic variance (var(𝛂𝛂𝟎𝟎), var(𝜷𝜷)) and covariance 

(cov(𝛂𝛂𝟎𝟎,𝛃𝛃)) were slightly overestimated. However, we found that the estimated interaction effects were robust to the assumption 

violation (when estimation model is different from the true model). Nonetheless, whether there was the assumption violation or not, it 

was similarly observed that a reduced model (e.g. MVGREML) estimated a much higher residual variance while estimating a similar 

genetic variance, compared to the MRNM G-C model (estimated heritability was var(α0) / [var(α0) + var(τ0)] = 0.53 and 0.42 for 

MVGREML and MRNM G-C, respectively).  
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Supplementary Table 13. Type I error rates with and without rank-based inverse normal transformation based on simulations 

of non-normal variables 

Pheno Shape in Gamma NULLvsGC NULLvsRC RCvsFULL GCvsFULL NULLvsFULL Kurtosis Skewness 
RINT 0.5 0.054 0.056 0.076 0.086 0.084 2.99 0 
RAW 0.5 0.294 0.324 0.096 0.102 0.28 6.01 1 
RINT 1 0.054 0.062 0.07 0.062 0.07 2.99 0 
RAW 1 0.168 0.198 0.066 0.07 0.166 4.50 0.71 
RINT 1.5 0.06 0.052 0.056 0.056 0.068 2.99 0 
RAW 1.5 0.122 0.12 0.062 0.06 0.112 4.00 0.58 
RINT 2 0.046 0.044 0.068 0.078 0.048 2.99 0 
RAW 2 0.102 0.116 0.052 0.074 0.088 3.76 0.50 
 

Five hundred replicates of data were simulated under a null model that assumed no genotype-covariate correlation and no interaction. 

Simulation was based QCed ARIC data that have 7,263 individuals and 583,058 SNPs. The model is specified as y = α0+ α1×c + e 

with c = β + ε, where α0, β, and α1 (in this order) follows a multivariate normal distribution with mean zero and the variance-

covariance structure being �
1 0 0
0 1 0
0 0 0

� and that between e and ε is �1 0
0 1�. The residual values are drawn from a gamma distribution 

with a shape parameter of 0.5, 1, 1.5 or 2. The simulated residual values were further scaled as mean zero and variance 1. For each 

replicate, we fit Uni-GREML (as null model), RNM G-C, RNM R-C, and RNM Full models with rank-based inverse normal 

transformed phenotypes (denoted as ‘RINT’) or with raw phenotypes (denoted as ‘RAW’). Kurtosis and skewness were measured for 
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the simulated phenotypes using functions kurtosis and skewness in R4. It was shown that type I error rates were mostly controlled 

when using rank-based INTed phenotypes although they were inflated when using raw phenotypes. When using raw phenotypes 

without rank-based INT, the inflation of type I error rates was probably because the sampling variance of estimated interaction 

variances was increased due to the normality assumption violation, but not because the mean of estimated interaction variances was 

biased or shifted (as illustrated in Supplementary Figure 22). This larger sampling variance appeared to be controlled by using rank-

based INTed phenotypes. It is also noted that the type error rates were not much inflated when using a model comparison between RC 

vs Full or GC vs Full even when using skewed phenotypes without rank-based INT. This RC vs Full or GC vs Full test appeared to be 

able to account for inflated estimates in RC or GC model if there was any inflation, which was explicitly used in the real data analysis 

(M6, M7, M11 or M12 in Table 1 and Supplementary Table 8). 
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Supplementary Table 14. Variance components estimated based on a simulation with non-

zero correlation between two random effects  

 var(τ0) var(α0) var(α1) cov(α0, α1) var(α2) cov(α0, α2) 
TRUE 1 1 0.25 0 0.25 0 
Est 0.981 1.022 0.245 -0.002 0.249 0.002 
SE 0.011 0.011 0.002 0.002 0.002 0.002 
Fitting one covariate only 
Est 1.475 1.025 0.245 -0.001   
SE 0.012 0.012 0.002 0.002   

The models were specified as y = α0 + α1×c1+ α2×c2 + τ0 with c1 = β1+ ε1 and c2 = β2+ ε2, all 

effects drawn from a multivariate normal distribution, where variance-covariance structure 

between α0, β1, β2, α1 and α2 (in this order) was 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0.25 0.1
0 0 0 0.1 0.25⎦

⎥
⎥
⎥
⎤
 and that between τ0, 

ε1 and ε2 was �
1 0 0
0 1 0
0 0 1

�. SE were estimated based on 100 replicates. When fitting two 

uncorrelated covariates simultaneously, all of the estimated variance components were unbiased. 

When fitting one random effect (α1) only (assuming that the second covariate, c2, is missing), the 

estimated main and interaction variances for the fitted random effect were unbiased although the 

residual variance (var(τ0)) was overestimated due to the unmodelled random effect (as agreed 

with the results in Figure 5).  
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Supplementary Table 15. Variance components estimated based on a simulation with non-

zero correlation between two covariates  

  var(τ0) var(α0) var(α1) cov(α0, α1) var(α2) cov(α0, α2)  
TRUE 1 1 0.25 0 0.25 0 
Est 1.002 1.000 0.251 -0.001 0.248 -0.003 
SE 0.013 0.013 0.002 0.002 0.003 0.002 
Fitting one covariate only 
Est 1.462 1.004 0.268 -0.003   
SE 0.013 0.013 0.002 0.002   

The models were specified as y = α0 + α1×c1+ α2×c2 + τ0 with c1 = β1+ ε1 and c2 = β2+ ε2, all 

effects drawn from a multivariate normal distribution, where variance-covariance structure 

between α0, β1, β2, α1 and α2 (in this order) was 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 0.25 0
0 0 0 0 0.25⎦

⎥
⎥
⎥
⎤
 and that between 

τ0, ε1 and ε2 was �
1 0 0
0 1 0
0 0 1

�. SE were estimated based on 100 replicates. When fitting two 

correlated covariates simultaneously, the estimates were unbiased. When fitting one random 

effect, α1, only (assuming that the second covariate, c2, is missing), the estimated var(α1) could 

partly capture var(α2) because of the correlation between c1 and c2. 
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Supplementary Table 16. Variance components estimated based on a simulation with non-

zero correlations both between two covariates and between two random effects 

  var(τ0) var(α0) var(α1) cov(α0, α1) var(α2) cov(α0, α2)  
TRUE 1 1 0.25 0 0.25 0 
Est 0.973 0.994 0.282 0.002 0.280 -0.002 
SE 0.013 0.013 0.002 0.002 0.003 0.002 
Fitting one covariate only 
Est 1.471 0.995 0.317 -0.0003   
SE 0.013 0.013 0.003 0.0023   

 

The models were specified as y = α0 + α1×c1+ α2×c2 + τ0 with c1 = β1+ ε1 and c2 = β2+ ε2, all 

effects drawn from a multivariate normal distribution, where variance-covariance structure 

between α0, β1, β2, α1 and α2 (in this order) was 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 0.25 0.1
0 0 0 0.1 0.25⎦

⎥
⎥
⎥
⎤
 and that between 

τ0, ε1 and ε2 was �
1 0 0
0 1 0
0 0 1

�. SE were estimated based on 100 replicates. When fitting two 

correlated covariates simultaneously, interaction variances were biased due to unmodeled 

correlation between α1 and α2. When fitting one random effect, α1, only (assuming that the 

second covariate, c2, is missing), the estimated var(α1) could partly capture var(α2) because of 

the correlation between c1 and c2 and between α1 and α2.   
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Supplementary Table 17. Variance components estimated with a covariate that is not a 

modulator itself but correlated with a modulator 

  var(τ0) var(α0) var(α1) cov(α0, α1) var(α2) cov(α0, α2)  
TRUE 1 1 0.25 0 0 0 
Est 1.004 0.992 0.249 0.000 0.001 -0.004 
SE 0.011 0.011 0.002 0.002 0.001 0.001 
Fitting one covariate only 
Est 1.473 0.989 - - 0.017 -0.004 
SE 0.012 0.012 - - 0.002 0.002 

The models of simulation were specified as y = α0 + α1×c1+ α2×c2 + τ0 with c1 = β1+ ε1 and c2 

= β2+ ε2, all effects drawn from a multivariate normal distribution, where variance-covariance 

structure between α0, β1, β2, α1 and α2 (in this order) was 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 0.25 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤
 and that 

between τ0, ε1 and ε2 was �
1 0 0
0 1 0
0 0 1

�. SE were estimated based on 100 replicates. The fitted 

model was y = α0 + α2×c2 + τ0. When fitting a single covariate, c2, (which was not a modulator 

but correlated with a modulator, c1), the estimated var(α2) could partly capture var(α1) as 

expected due to the correlation structure. When fitting two covariates simultaneously (i.e. full 

information), the estimates of all variance components were unbiased.  
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Supplementary Table 18. Variance components estimated based on a null simulation model 

(i.e. no interactions) with two covariates 

  var(τ0) var(α0) var(α1) cov(α0, α1) var(α2) cov(α0, α2)  
TRUE 1 1 0 0 0 0 
Est 1.016 0.989 0.001 0.001 0.000 0.000 
SE 0.009 0.009 0.001 0.001 0.001 0.001 

The models of simulation were specified as y = α0 + α1×c1+ α2×c2 + τ0 with c1 = β1+ ε1 and c2 

= β2+ ε2, all effects drawn from a multivariate normal distribution, where variance-covariance 

structure between α0, β1, β2, α1 and α2 (in this order) was 

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 0 0
0 0 0 0 0⎦

⎥
⎥
⎥
⎤
 and that 

between τ0, ε1 and ε2 was �
1 0 0
0 1 0
0 0 1

�. SE were estimated based on 100 replicates. The fitted 

model was y = α0 + α1×c1+ α2×c2 + τ0. When there was no interaction, there was no spurious 

interaction signal even with fitting correlated covariates (a type I error rate of 0.056 

(Supplementary Figure 23)). It was already shown that type I error rate was well controlled for a 

single covariate model (results not shown here).  
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Supplementary Table 19. P values of likelihood ratio tests in the meta-analyses across the 

first and second groups (g1 and g2) within UKBB1. 

  Likelihood ratio  P value 
  g1 g2 Meta Full g1 g2 Meta Full 

SMK 
M1  1.26 9.14 10.41 13.82 5.31E-01 1.03E-02 3.41E-02 1.00E-03 
M2  5.82 12.11 23.48 27.04 1.59E-02 5.02E-04 1.01E-04 1.99E-07 
M3  129.78 89.02 202.79 13.82 4.34E-27 2.12E-18 9.42E-43 1.89E-49 
M4  128.57 80.14 208.71 27.04 1.21E-28 3.97E-18 5.04E-44 8.76E-48 
M5  116.65 78.18 194.83 13.82 4.67E-26 1.06E-17 4.85E-41 1.19E-44 
M6  13.13 10.85 23.98 27.04 1.41E-03 4.41E-03 8.08E-05 1.35E-07 
M7  1.21 8.89 10.10 13.82 5.45E-01 1.18E-02 3.88E-02 1.83E-04 
M8  325.18 315.97 603.26 27.04 3.26E-67 3.08E-65 3.05E-129 1.97E-135 
M9  321.86 311.25 622.49 13.82 1.84E-69 3.66E-67 2.11E-133 6.10E-137 
M10  257.24 254.35 501.39 27.04 1.78E-55 7.50E-55 3.36E-107 2.93E-101 
M11  67.95 61.62 122.07 13.82 1.17E-14 2.65E-13 1.93E-25 2.37E-37 
M12  3.32 4.73 5.42 27.04 3.45E-01 1.93E-01 2.47E-01 3.26E-02 

NEU 
M1  0.97 6.05 7.02 13.82 6.15E-01 4.85E-02 1.35E-01 6.82E-04 
M2  0.02 0.02 0.42 27.04 8.99E-01 8.99E-01 9.80E-01 6.18E-01 
M3  100.69 138.89 223.19 13.82 7.00E-21 4.88E-29 3.85E-47 1.05E-49 
M4  100.53 131.79 232.32 27.04 1.48E-22 2.42E-29 4.18E-49 2.36E-48 
M5  87.19 131.30 218.49 13.82 1.17E-19 3.08E-29 3.95E-46 1.15E-46 
M6  13.50 7.59 21.09 27.04 1.17E-03 2.25E-02 3.04E-04 7.73E-06 
M7  0.16 7.10 7.26 13.82 9.23E-01 2.87E-02 1.23E-01 3.77E-04 
M8  104.96 139.45 214.22 27.04 2.32E-20 1.31E-27 3.28E-45 4.12E-48 
M9  104.20 132.36 227.89 13.82 1.94E-22 1.68E-28 3.76E-48 2.18E-47 
M10  88.60 131.63 211.73 27.04 4.39E-19 2.41E-28 1.13E-44 1.17E-45 
M11  16.36 7.82 19.90 13.82 9.56E-04 5.00E-02 5.23E-04 2.36E-05 
M12  0.76 7.09 5.65 27.04 8.59E-01 6.90E-02 2.27E-01 1.08E-03 

PC1 
M1  1.59 2.36 3.95 13.82 4.52E-01 3.07E-01 4.12E-01 7.00E-01 
M2  0.24 0.00 0.94 27.04 6.26E-01 1.00E+00 9.19E-01 1.00E+00 
M3  7.42 3.33 5.69 13.82 1.15E-01 5.04E-01 2.23E-01 8.39E-01 
M4  5.24 1.32 6.56 27.04 7.29E-02 5.17E-01 1.61E-01 5.63E-01 
M5  1.79 0.56 2.36 13.82 4.08E-01 7.54E-01 6.71E-01 5.02E-01 
M6  5.63 2.77 8.40 27.04 5.98E-02 2.51E-01 7.80E-02 9.74E-01 
M7  7.42 3.33 10.76 13.82 2.44E-02 1.89E-01 2.95E-02 8.69E-01 
M8  9.00 3.96 4.27 27.04 1.74E-01 6.82E-01 3.71E-01 8.98E-01 
M9  6.38 1.93 5.78 13.82 9.46E-02 5.86E-01 2.16E-01 7.09E-01 
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M10  2.24 1.08 1.78 27.04 5.25E-01 7.81E-01 7.76E-01 7.09E-01 
M11  6.76 2.88 6.83 13.82 7.99E-02 4.11E-01 1.45E-01 8.39E-01 
M12  2.62 2.03 2.72 27.04 4.54E-01 5.66E-01 6.06E-01 8.40E-01 
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Supplementary Table 20. P values of likelihood ratio tests for different models in the meta-

analyses across UKBB1 and UKBB2. 

  Likelihood ratio  P value 
  G1a G2b G0c Meta G1 G2 G0 Meta 

SMK 
M1  13.02 2.43 13.82 29.27 1.49E-03 2.97E-01 1.00E-03 5.41E-05 
M2  5.19 5.47 27.04 46.33 2.27E-02 1.93E-02 1.99E-07 2.55E-08 
M3  123.84 93.55 233.92 425.75 8.09E-26 2.32E-19 1.89E-49 8.12E-89 
M4  111.12 91.04 216.71 418.87 7.43E-25 1.70E-20 8.76E-48 2.45E-87 
M5  122.86 90.06 202.29 415.20 2.10E-27 2.78E-20 1.19E-44 1.50E-86 
M6  0.98 3.49 31.63 36.10 6.13E-01 1.75E-01 1.35E-07 2.64E-06 
M7  12.72 2.51 17.21 32.44 1.73E-03 2.86E-01 1.83E-04 1.34E-05 
M8  606.13 592.52 642.05 1776.12 1.11E-127 9.57E-125 1.97E-135 0.00E+00 
M9  600.76 586.60 633.29 1802.78 6.90E-130 8.09E-127 6.10E-137 0.00E+00 
M10  470.79 472.08 468.67 1394.42 1.02E-101 5.35E-102 2.93E-101 3.91E-298 
M11  135.34 120.44 173.38 415.62 3.81E-29 6.21E-26 2.37E-37 1.22E-86 
M12  5.37 5.92 8.76 15.00 1.47E-01 1.16E-01 3.26E-02 2.03E-02 

NEU 
M1  5.12 7.84 14.58 27.54 7.73E-02 1.98E-02 6.82E-04 1.15E-04 
M2  5.19 5.47 27.04 46.33 2.27E-02 1.93E-02 1.99E-07 2.55E-08 
M3  239.63 144.21 235.10 591.22 1.11E-50 3.54E-30 1.05E-49 1.83E-124 
M4  232.56 136.82 219.33 588.71 3.16E-51 1.95E-30 2.36E-48 6.35E-124 
M5  190.94 123.08 211.56 525.57 3.46E-42 1.88E-27 1.15E-46 2.61E-110 
M6  48.70 21.13 23.54 93.37 2.66E-11 2.58E-05 7.73E-06 6.02E-18 
M7  7.07 7.39 15.77 30.23 2.91E-02 2.48E-02 3.77E-04 3.55E-05 
M8  243.16 148.88 235.94 576.50 1.19E-49 1.33E-29 4.12E-48 2.73E-121 
M9  235.84 136.76 219.83 577.98 7.53E-51 1.89E-29 2.18E-47 1.31E-121 
M10  194.54 126.06 211.83 518.29 6.38E-42 3.82E-27 1.17E-45 9.66E-109 
M11  48.62 22.82 24.12 86.52 1.57E-10 4.39E-05 2.36E-05 1.60E-16 
M12  7.32 12.13 16.11 29.15 6.25E-02 6.96E-03 1.08E-03 5.70E-05 

PC1 
M1  11.04 1.67 0.71 13.42 4.01E-03 4.34E-01 7.00E-01 3.69E-02 
M2  5.19 5.47 27.04 46.33 2.27E-02 1.93E-02 1.99E-07 2.55E-08 
M3  10.26 1.96 1.43 7.58 3.62E-02 7.43E-01 8.39E-01 2.70E-01 
M4  1.94 0.44 1.15 3.53 3.80E-01 8.03E-01 5.63E-01 7.41E-01 
M5  2.22 0.63 1.38 4.23 3.30E-01 7.28E-01 5.02E-01 6.46E-01 
M6  8.04 1.33 0.05 9.42 1.79E-02 5.15E-01 9.74E-01 1.51E-01 
M7  8.33 1.52 0.28 10.13 1.56E-02 4.67E-01 8.69E-01 1.19E-01 
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M8  12.16 2.19 2.23 6.10 5.84E-02 9.02E-01 8.98E-01 4.12E-01 
M9  2.82 0.63 1.39 2.66 4.19E-01 8.90E-01 7.09E-01 8.50E-01 
M10  2.25 0.73 1.38 2.28 5.21E-01 8.65E-01 7.09E-01 8.92E-01 
M11  9.91 1.46 0.84 8.97 1.94E-02 6.93E-01 8.39E-01 1.75E-01 
M12  9.34 1.56 0.84 8.52 2.51E-02 6.68E-01 8.40E-01 2.02E-01 

aA random half group of the second release of UK Biobank 

bThe remaining individuals (the other half) of the second release of UK Biobank 

cThe first release of UK Biobank 
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Supplementary Notes 
 

Supplementary Note 1. Note for more general equations with a higher order 

Reaction norm model (RNM) 

To account for phenotypic plasticity and norms of reaction in response to different covariate or 

environmental conditions among samples5,6, the dependent variable for individual i can be 

modelled as 

𝑦𝑦𝑖𝑖 = 𝑏𝑏𝑖𝑖 + 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖 =  𝑏𝑏𝑖𝑖 + ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=0 + 𝑒𝑒𝑖𝑖                                                       (1) 

where yi is the phenotypic observation, bi represents fixed effects, gi is the random genetic effect, 

αiz is the zth order of random regression coefficients (z = 0 ~ k), ci is the covariate value, and ei 

is the residual effect for the ith individual. Assuming that each individual has unique covariate 

value, the variance-covariance matrix of observed phenotypes (yi) is  

 

var(𝐲𝐲) = �
𝐙𝐙1𝐀𝐀σ𝑔𝑔1

2 𝐙𝐙1′ + 𝐙𝐙1𝐈𝐈σ𝑒𝑒1
2 𝐙𝐙1′ ⋯ 𝐙𝐙1𝐀𝐀𝜎𝜎𝑔𝑔1,𝑁𝑁𝐙𝐙𝑁𝑁

′ +𝐙𝐙1𝐈𝐈𝜎𝜎𝑒𝑒1,𝑁𝑁𝐙𝐙𝑁𝑁
′

⋮ ⋱ ⋮
𝐙𝐙N𝐀𝐀𝜎𝜎𝑔𝑔1,𝑁𝑁𝐙𝐙1

′+𝐙𝐙N𝐈𝐈𝜎𝜎𝑒𝑒1,𝑁𝑁𝐙𝐙1
′ ⋯ 𝐙𝐙𝑁𝑁𝐀𝐀σ𝑔𝑔𝑁𝑁

2 𝐙𝐙N′ + 𝐙𝐙𝑁𝑁𝐈𝐈σ𝑒𝑒𝑁𝑁
2 𝐙𝐙𝑁𝑁′

�, 

where A is the N x N genomic relationship matrix based on genome-wide SNP information, Zi is 

an incidence matrix for 𝑔𝑔𝑖𝑖, and I is an N x N identity matrix. The terms σ𝑔𝑔𝑖𝑖
2  and σ𝑒𝑒𝑖𝑖

2  denote the 

genetic and residual variances at the ith covariate level. The terms 𝜎𝜎𝑔𝑔𝑖𝑖,𝑗𝑗and 𝜎𝜎𝑒𝑒𝑖𝑖,𝑗𝑗 indicate the 

genetic and residual covariance between the ith and jth covariate levels (i=1, … , N, and j=1, … , 

N), respectively.7 The random genetic and residual effect are assumed following a normal 

distribution with mean as zero and variance as 𝐀𝐀𝜎𝜎𝑔𝑔2 and 𝐈𝐈𝜎𝜎𝑒𝑒2. The random genetic effect, 𝑔𝑔𝑖𝑖, can 

be regressed on the covariate gradient (reaction norm), which can be efficiently modelled with 
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random regression coefficients. The variance-covariance matrix of random regression 

coefficients (K) is 

𝐊𝐊 = cov(𝛂𝛂𝑖𝑖 ,𝛂𝛂𝑙𝑙) = �
var(𝛂𝛂0) ⋯ cov(𝛂𝛂0,𝛂𝛂k)

⋮ ⋱ ⋮
cov(𝛂𝛂0,𝛂𝛂k) ⋯ var(𝛂𝛂k)

� 

where 𝛂𝛂𝑖𝑖 and 𝛂𝛂𝑙𝑙 are the zth and lth order random regression coefficients (z = l = 0 ~ k). The 

genetic (co)variance matrix of genetic effects between N individuals or N covariate values 

(because each individual has unique covariate value) is a function of random regression 

coefficients and polynomials, which can be expressed as 

𝐕𝐕𝐠𝐠 = 𝚽𝚽𝐊𝐊𝚽𝚽′ = �
σ𝑔𝑔1
2 ⋯ 𝜎𝜎𝑔𝑔1,𝑁𝑁

⋮ ⋱ ⋮
𝜎𝜎𝑔𝑔𝑁𝑁,1 ⋯ σ𝑔𝑔𝑁𝑁

2
� 

where Φ is the N × (k +1) matrix of polynomials evaluated given N covariate values as 𝑐𝑐𝑖𝑖𝑖𝑖 with z 

= 0 ~ k. For example, with an order k=1, the polynomial matrix is 𝚽𝚽𝒊𝒊 = [𝒄𝒄𝑖𝑖0, 𝒄𝒄𝑖𝑖1]. 

Given that this model does not explicitly parameterise the correlation between yi and ci, it 

naively assumes that yi and ci are uncorrelated. For this reason, this model is also referred to as a 

genotype-covariate interaction (G-C interaction) model. 

 

Multivariate reaction norm model (MRNM) 

The naïve assumption of the univariate RNM (or G-C interaction model) that yi and ci are 

uncorrelated is often violated. In a more proper model, the covariate value for individual i is 

decomposed as 𝑐𝑐𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝜀𝜀𝑖𝑖, where 𝜇𝜇Ri is fixed effects, βi is the random genetic effect, and εi 

is the residual effect. When considering the main response (y) and covariate (c) jointly in a 

multivariate model, the variance-covariance matrix of observed phenotypes yi and ci is 
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cov(𝐲𝐲, 𝐜𝐜) =

⎣
⎢
⎢
⎢
⎡ 𝐙𝐙1𝐀𝐀σ𝑔𝑔1

2 𝐙𝐙1′ + 𝐙𝐙1𝐈𝐈σ𝑒𝑒1
2 𝐙𝐙1′ ⋯ 𝐙𝐙1𝐀𝐀𝜎𝜎𝑔𝑔1,𝑁𝑁𝐙𝐙𝑁𝑁

′ +𝐙𝐙1𝐈𝐈𝜎𝜎𝑒𝑒1,𝑁𝑁𝐙𝐙𝑁𝑁
′ 𝐙𝐙1𝐀𝐀𝜎𝜎𝑔𝑔1,𝛽𝛽𝐙𝐙𝑐𝑐

′+𝐙𝐙1𝐈𝐈𝜎𝜎𝑒𝑒1,𝜀𝜀𝐙𝐙𝑐𝑐
′

⋮ ⋱ ⋮ ⋮
𝐙𝐙N𝐀𝐀𝜎𝜎𝑔𝑔1,𝑁𝑁𝐙𝐙1

′+𝐙𝐙N𝐈𝐈𝜎𝜎𝑒𝑒1,𝑁𝑁𝐙𝐙1
′ ⋯ 𝐙𝐙𝑁𝑁𝐀𝐀σ𝑔𝑔𝑁𝑁

2 𝐙𝐙N′ + 𝐙𝐙𝑁𝑁𝐈𝐈σ𝑒𝑒𝑁𝑁
2 𝐙𝐙𝑁𝑁′ 𝐙𝐙𝑁𝑁𝐀𝐀𝜎𝜎𝑔𝑔𝑁𝑁,𝛽𝛽𝐙𝐙𝑐𝑐′+𝐙𝐙𝑁𝑁𝐈𝐈𝜎𝜎𝑒𝑒𝑁𝑁,𝜀𝜀𝐙𝐙𝑐𝑐′

𝐙𝐙𝑐𝑐𝐀𝐀𝜎𝜎𝑔𝑔1,𝛽𝛽𝐙𝐙1′+𝐙𝐙c𝐈𝐈𝜎𝜎𝑒𝑒1,𝜀𝜀𝐙𝐙1′ ⋯ 𝐙𝐙𝑐𝑐𝐀𝐀𝜎𝜎𝑔𝑔𝑁𝑁,𝛽𝛽𝐙𝐙𝑁𝑁′ +𝐙𝐙c𝐈𝐈𝜎𝜎𝑒𝑒𝑁𝑁,𝜀𝜀𝐙𝐙𝑁𝑁′ 𝐙𝐙𝑐𝑐𝐀𝐀σ𝛽𝛽2𝐙𝐙𝑐𝑐′ + 𝐙𝐙𝑐𝑐𝐈𝐈σ𝜀𝜀2𝐙𝐙𝑐𝑐′ ⎦
⎥
⎥
⎥
⎤
 

 

where Zc is an incidence matrix for the vector of the random genetic and residual effects, β and ε, 

underlying c. The genetic and residual variances of covariate c are denoted as σ𝛽𝛽2  and σ𝜀𝜀2, 

respectively. The terms 𝜎𝜎𝑔𝑔𝑖𝑖,𝛽𝛽 and 𝜎𝜎𝑒𝑒𝑖𝑖,𝜀𝜀 indicate the genetic and residual covariance between main 

trait and covariate at the ith covariate levels (i =1,…, N), respectively. The random genetic and 

residual effects of y are the same as defined above. The random genetic and residual effect of c 

are assumed following a normal distribution with mean as zero and variance as 𝐀𝐀𝜎𝜎𝛽𝛽2 and 𝐈𝐈𝜎𝜎𝜀𝜀2.The 

genetic (co)variance matrix of individual genetic effects in the multivariate model can be written 

as 

𝐕𝐕g,β = �
𝚽𝚽𝐊𝐊𝐲𝐲𝚽𝚽′ 𝚽𝚽𝐊𝐊𝐲𝐲,𝐜𝐜

𝐊𝐊𝐲𝐲,𝐜𝐜
′ 𝚽𝚽′ var(𝛃𝛃)� =

⎣
⎢
⎢
⎢
⎡ σ𝑔𝑔1

2 ⋯ 𝜎𝜎𝑔𝑔1,𝑁𝑁 𝜎𝜎𝑔𝑔1,𝛽𝛽
⋮ ⋱ ⋮ ⋮

𝜎𝜎𝑔𝑔𝑁𝑁,1 ⋯ σ𝑔𝑔𝑁𝑁
2 𝜎𝜎𝑔𝑔𝑁𝑁,𝛽𝛽

𝜎𝜎𝑔𝑔1,𝛽𝛽 ⋯ 𝜎𝜎𝑔𝑔𝑁𝑁,𝛽𝛽 σ𝛽𝛽2 ⎦
⎥
⎥
⎥
⎤
                                        (2) 

where Ky is the same as K defined above, and Ky,c consists of the covariance between β and the 

random regression coefficients, that is 

𝐊𝐊y,c = �
cov(𝛂𝛂𝟎𝟎,𝛃𝛃)

⋮
cov(𝛂𝛂𝐤𝐤,𝛃𝛃)

�. 

The multivariate residual covariance structure is 

𝐑𝐑e,ε = �
var(𝐞𝐞) cov(𝐞𝐞, 𝛆𝛆)

cov(𝐞𝐞, 𝛆𝛆) var(𝛆𝛆) �, 
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where e is the vector of residual effects for the main phenotypes, assuming that var(e) is 

homogenous across different levels of covariate values, i.e. σ𝑒𝑒1
2 = σ𝑒𝑒2

2 =, … , = σ𝑒𝑒𝑁𝑁
2 , which can be 

relaxed for the case of heterogeneous residual variances (see the next section), and 𝛆𝛆 is the vector 

of residual effects for the covariate, defined as above, and var(𝛆𝛆) is the residual variance of the 

covariate. 

This model explicitly parameterises covariance between the random regression coefficients for 

the main phenotypes and the genetic effects underlying the covariate (i.e. 𝐊𝐊y,c), therefore, is 

referred to as a genotype-covariate correlation and interaction (GCCI) model. Importantly, 

values for cov(𝛂𝛂0,𝛃𝛃) or cov(𝐞𝐞, 𝛆𝛆) are often non-negligible. Neglecting these terms can cause 

confounding between G-C correlation and interaction, thereby generating spurious signals and 

biased estimates for the interaction. Yet many studies do not account for G-C correlations when 

estimating and testing G-C interaction8. 

 

Multivariate reaction norm model (MRNM) accounting for heterogeneous residual variance, i.e. 

residual-covariate correlation and interaction (RCCI) 

The models we described so far assume that the residual variance for the main phenotypes, 

var(𝐞𝐞), is homogeneous across different values of the covariate. However, it is often possible 

that residual-covariate (R-C) correlation and interaction exist, resulting in heterogeneous residual 

variances across different covariate values. To account for this possibility, MRNM can be further 

generalised as 

𝑦𝑦𝑖𝑖 = 𝑏𝑏𝑖𝑖 + 𝑔𝑔𝑖𝑖 + 𝑒𝑒𝑖𝑖 =  𝑏𝑏𝑖𝑖 + ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=0 + ∑ 𝜏𝜏𝑖𝑖𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=0                                         (3) 
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where the residual term, ei, can be also regressed on the covariate gradient, modelled with the 

random regression coefficients 𝜏𝜏𝑖𝑖𝑖𝑖 and the zth order polynomial of the covariate (z = 0 ~ m). 

The variance-covariance structure of the genetic effect for this model is the same as for the 

multivariate reaction norm model described in Eq. (2) in the previous section. The multivariate 

residual covariance structure in this generalised MRNM becomes  

𝐑𝐑e,ε = �
𝚽𝚽𝐌𝐌𝐲𝐲𝚽𝚽′ 𝚽𝚽𝐌𝐌𝐲𝐲,𝐜𝐜

𝐌𝐌𝐲𝐲,𝐜𝐜
′ 𝚽𝚽′ var(𝛆𝛆)� =

⎣
⎢
⎢
⎢
⎡ σ𝑒𝑒1

2 ⋯ 𝜎𝜎𝑒𝑒1,𝑁𝑁 𝜎𝜎𝑒𝑒1,𝜀𝜀
⋮ ⋱ ⋮ ⋮

𝜎𝜎𝑒𝑒𝑁𝑁,1 ⋯ σ𝑒𝑒𝑁𝑁
2 𝜎𝜎𝑒𝑒𝑁𝑁,𝜀𝜀

𝜎𝜎𝑒𝑒1,𝜀𝜀 ⋯ 𝜎𝜎𝑒𝑒𝑁𝑁,𝜀𝜀 σ𝜀𝜀2 ⎦
⎥
⎥
⎥
⎤
                                    (4) 

where 𝐌𝐌𝐲𝐲 is the variance and covariance matrix of random regression coefficients for the 

residual components and can be written as  

𝐌𝐌𝐲𝐲 = cov( 𝛕𝛕𝑖𝑖 , 𝛕𝛕𝑙𝑙) = �
var(𝛕𝛕0) ⋯ cov(𝛕𝛕0, 𝛕𝛕𝑚𝑚)

⋮ ⋱ ⋮
cov(𝛕𝛕0, 𝛕𝛕𝑚𝑚) ⋯ var(𝛕𝛕𝑚𝑚)

�, 

where 𝛕𝛕𝑖𝑖 and 𝛕𝛕𝑙𝑙 are the zth and lth order random regression coefficients (z = l = 0 ~ k) for the 

residual effects. 𝐌𝐌𝐲𝐲,𝐜𝐜 is a vector with the covariance between 𝛆𝛆 and the random regression 

coefficients for the residual effects, and can be expressed as 

𝐌𝐌𝐲𝐲,𝐜𝐜 = �
cov(𝛕𝛕0, 𝛆𝛆)

⋮
cov(𝛕𝛕𝑚𝑚, 𝛆𝛆)

�. 

 

RNM with multiple covariates 

RNM can be further extended to include multiple covariates. A model fitting with multiple 

covariates can be expressed as  

𝑦𝑦𝑖𝑖 = 𝑏𝑏𝑖𝑖 + ∑ 𝑔𝑔𝑖𝑖𝑖𝑖𝑥𝑥
𝑖𝑖=1 + 𝑒𝑒𝑖𝑖 =  𝑏𝑏𝑖𝑖 + ∑ ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 ∙ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑗𝑗
𝑖𝑖=0

𝑥𝑥
𝑖𝑖=1 + 𝑒𝑒𝑖𝑖, 



72 

 

where 𝑥𝑥 is the number of random effects, each of which is associated with a unique combination 

of a relationship matrix and covariate (see below), kj is the polynomial order for the jth random 

effect, and 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  are the zth order random regression coefficient and polynomial covariate 

of the jth random effect for the ith individual. Therefore, this model is a multiple random effects 

model fitting multiple components9, but it allows the inclusion of interaction effects, modelled 

with the random regression coefficients and covariate, for each random effect. As in the original 

multiple random effects model, it is assumed that there is no correlation between the random 

effects10. 

The variance-covariance matrix of observed phenotypes (yi) for this multiple random effects 

model is 

 

var(𝐲𝐲) = �
∑ 𝐙𝐙1𝐀𝐀𝑖𝑖σ(𝑔𝑔1)𝑗𝑗

2 𝐙𝐙1′ +𝑥𝑥
𝑖𝑖=1 𝐙𝐙1𝐈𝐈σ𝑒𝑒1

2 𝐙𝐙1′ ⋯ ∑ 𝐙𝐙1𝐀𝐀𝑖𝑖𝜎𝜎(𝑔𝑔1,𝑁𝑁)𝑗𝑗𝐙𝐙𝑁𝑁
′𝑥𝑥

𝑖𝑖=1 +𝐙𝐙1𝐈𝐈𝜎𝜎𝑒𝑒1,𝑁𝑁𝐙𝐙𝑁𝑁
′

⋮ ⋱ ⋮
∑ 𝐙𝐙N𝐀𝐀𝑖𝑖𝜎𝜎(𝑔𝑔1,𝑁𝑁)𝑗𝑗𝐙𝐙1

′+𝐙𝐙N𝐈𝐈𝜎𝜎𝑒𝑒1,𝑁𝑁𝐙𝐙1
′𝑥𝑥

𝑖𝑖=1 ⋯ ∑ 𝐙𝐙𝑁𝑁𝐀𝐀𝑖𝑖σ(𝑔𝑔𝑁𝑁)𝑗𝑗
2 𝐙𝐙N′ + 𝐙𝐙𝑁𝑁𝐈𝐈σ𝑒𝑒𝑁𝑁

2 𝐙𝐙𝑁𝑁′𝑥𝑥
𝑖𝑖=1

�, 

where Aj is the genomic relationship matrix for the jth random effect, σ(𝑔𝑔𝑖𝑖)𝑗𝑗
2  is the genetic 

variance at the ith covariate level for the jth random effect, 𝜎𝜎(𝑔𝑔1,𝑁𝑁)𝑗𝑗 is, for example, the genetic 

covariance between the first and the last covariate levels, and other terms are defined as above. 

As in the RNM fitting with a single covariate, gij in each random effect (j=1~x) can be regressed 

on the covariate gradient in the same manner. The variance-covariance matrix of random 

regression coefficients for each random effect (Kj) can be written as 

𝐊𝐊𝑖𝑖 = cov�𝛂𝛂𝑖𝑖𝑖𝑖 ,𝛂𝛂𝑖𝑖𝑙𝑙� = �
var(𝛂𝛂𝑖𝑖0) ⋯ cov(𝛂𝛂𝑖𝑖0,𝛂𝛂𝑖𝑖𝑘𝑘𝑗𝑗)

⋮ ⋱ ⋮
cov(𝛂𝛂𝑖𝑖0,𝛂𝛂𝑖𝑖𝑘𝑘𝑗𝑗) ⋯ var(𝛂𝛂𝑖𝑖𝑘𝑘𝑗𝑗)

�. 
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Similarly, the genetic (co)variance matrix of individual genetic effects between N individuals can 

be obtained as 

 𝐕𝐕g𝑗𝑗 = 𝚽𝚽𝑖𝑖𝐊𝐊𝑖𝑖𝚽𝚽𝑖𝑖
′ = �

σ(𝑔𝑔1)𝑗𝑗
2 ⋯ 𝜎𝜎(𝑔𝑔1,𝑁𝑁)𝑗𝑗
⋮ ⋱ ⋮

𝜎𝜎(𝑔𝑔1,𝑁𝑁)𝑗𝑗 ⋯ σ(𝑔𝑔𝑁𝑁)𝑗𝑗
2

�, 

where 𝚽𝚽𝑖𝑖 is the N × (kj +1) matrix of covariate polynomials for the jth random effect, and the 

variance covariance components are defined in the variance-covariance matrix of observed 

phenotypes above (i.e. var(y)). This multiple random effects model fitting with multiple 

covariates can be feasibly extended to MRNM with GCCI and RCCI although the number of 

parameters increases exponentially.  

All models described above can be fitted using MTG27. 

 

Supplementary Note 2. Note for assumption violations 

Estimated genetic variance and SNP-heritability may be also biased if an assumption of the equal 

variance due to causal variants across different minor allele frequency (MAF) spectrums is 

violated1-3. However, it is reported that estimated genetic correlation is robust toward such 

violation as it is the ratio of the covariance over the variances, which can cancel out the bias2. 

We also observed that estimated random regression coefficients were somewhat robust to the 

violation of this assumption while the main genetic and residual variances were slightly biased 

(Supplementary Table 12). It was shown that overestimated residual variance from MVGREML 

(as also shown in Figure 5) was regardless of the assumption violation (Supplementary Table 12).    
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To investigate if spurious results could result from violations of normality assumptions, we 

performed a rank-based inverse normal transformation (INT) for the pre-adjusted phenotype of 

BMI (Supplementary Table 8) and for simulated non-normal distributed data (Supplementary 

Table 13 and Supplementary Figures 17 and 18). We found that the bias due to non-normality 

could be remedied by applying the rank-based INT (Supplementary Figure 18 and 

Supplementary Table 13), which was also considered in Robinson et al.8. Even with the rank-

based INT, the significance for the R-C effects (M11) and G-C effects (M12) was not 

substantially decreased (Table 1 vs. Supplementary Table 8). We also found that the significance 

for the null versus G-C model comparison (M10) or for the null versus R-C model comparison 

(M9) still remained for BMI-SMK and BMI-NEU (Table 1 vs. Supplementary Table 8). Taken 

together, these analyses suggest that our results from the real data analyses cannot be attributed 

to violation of assumptions of normality. 

 

Another caveat is the assumption about negligible correlation between two random effects (see 

section ‘RNM with multiple covariates’), which has been conventionally accepted10. When this 

assumption is violated (Supplementary Tables 14-18), the estimates of interaction and residual 

variances from RNM could be biased if there was significant correlation between two covariates 

(Supplementary Table 16). However, the bias was relatively modest considering the substantial 

correlation between the two random effects used in the simulation (correlation between α1 and 

α2 = 0.4 in Supplementary Table 16). In the real data analyses, there were no remarkable 

changes to estimated interaction variances between single and two covariate models (H1 of M6 

in Supplementary Data 6 vs. Supplementary Table 9), showing that there was little or no 

correlation between the random effects. When there was no correlation between random effects, 
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estimates were always unbiased (Supplementary Tables 14 and 15) and type I error rates were 

controlled (Supplementary Table 18). When covariate information is not available, overall 

interaction effects were not fully captured as expected (Supplementary Tables 14-16).  

 

 

Supplementary Note 3. Estimating the sampling error of the difference between estimated 

residual variance from GREML and RNM    

Assuming that the true underlying model is the RNM with yi = αi0 + αi1 ∙ ci + ei and ci = βi +

εi, the residual variance, σ𝑒𝑒2, can be unbiasedly estimated. However, standard GREML or LDSC 

may overestimate the residual variance because of confounding from the interaction that is not 

properly modeled in the GREML or LDSC model, i.e. yi = αi0 + ei∗ and ci = βi + εi, where 

ei∗ = αi1 ∙ ci + ei. 

We are interested in estimating the sampling variance of the difference between estimated 

residual variance from RNM, X = σ�e2, and that from GREML or LDSC, Y = σ�e∗2 . The sampling 

variance of the difference (σd2) can be expressed as      

σd2 = σX2 + σY2 − 2 ∙ cov(𝐗𝐗,𝐘𝐘)                                                                     (C1) 

where σX2  is the sampling variance of X and σY2  is the sampling variance of Y.  

 

From RNM, the estimated residual variance is X =  σ�e2 = E(�̂�𝑒2), assuming that the mean of 

estimated residual values is zero. From GREML, the estimated residual variance is Y = σ�e∗2 =

E[(𝛂𝛂�𝟏𝟏 ∙ 𝐜𝐜 + 𝐞𝐞�)2] = E(𝐞𝐞�𝟐𝟐) + E( 𝛂𝛂�𝟏𝟏 ∙ 𝐜𝐜2) + 2E(𝛂𝛂�𝟏𝟏 ∙ 𝐜𝐜 ∙ 𝐞𝐞�). Therefore, Y can be written as a linear 

function of X as Y = Xb + λ where b is a regression coefficient (b = 1) and λ = E( 𝛂𝛂�𝟏𝟏 ∙ 𝐜𝐜2) +
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2E(𝛂𝛂�𝟏𝟏 ∙ 𝐜𝐜 ∙ 𝐞𝐞�) = E�𝛂𝛂�𝟏𝟏𝟐𝟐  ∙ 𝐜𝐜𝟐𝟐� is a random variable. The regression coefficient is b = cov (X,Y) / 

var(X), therefore cov(X,Y) = var(X). Therefore, Eq. (C1) can be rewritten as  

σd2 = σY2 − σX2 .                                           (C2) 

 

When there is negligible interaction, the GREML model is yi = αi0 + ei∗ as above but with 

ei∗ ≈ ei. Because GREML and RNM are a model based on a (linear) stochastic system11, the 

values for σ�e2 can be similar, higher or lower than σ�e∗2  as shown in Supplementary Figures 19 - 21 

illustrating that the magnitude and direction of σ�e2 relative to σ�e∗2  are stochastic. 

 

If σ�e2 is the same as σ�e∗2  (i.e. ei = ei∗), there is no difference between X and Y, hence no sampling 

variance of the difference (σd2=0). We show that when the difference between X and Y decreases, 

the sampling variance of the difference decreases as well (Supplementary Figure 20).  

 

It is also possible that σX2  is higher than σY2  such that the estimated residual variance from RNM 

can be written as ei = 𝑓𝑓 + ei∗ where 𝑓𝑓 is a stochastic factor inflating σX2  in RNM. From RNM, 

X = σ�e2 = E ��𝐞𝐞�∗ + 𝐟𝐟 �
2
� = E(𝐞𝐞�∗𝟐𝟐) + E�𝐟𝐟𝟐𝟐 � − 2E(𝐞𝐞�∗ ∙ 𝐟𝐟 ). From GREML, Y = σ�e∗

2 . Now, X can 

be written as a linear function of Y as X = Yb + λ where b is a regression coefficient (b = 1) and 

λ = E(𝐟𝐟𝟐𝟐) − 2E(𝐞𝐞�∗ ∙ 𝐟𝐟 ) = E(𝐟𝐟𝟐𝟐 ) is a random variable. For this, the regression coefficient is b = 

cov (X,Y) / var(Y), therefore cov(X,Y) = var(Y). And, Eq. (C1) can be now rewritten as  

σd2 = σX2 − σY2 .                            (C3) 

With (C2) and (C3), it can be written in general 

σd2 = |σY2 − σX2|.                          
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This was empirically validated in a simulation study (Supplementary Figure 19).  

 

Supplementary Note 4. Meta-analysis approach and validation using UK Biobank data 

For very large datasets, our proposed approach may become computationally infeasible (see 

Supplementary Table 11 for computational requirements). A solution could be to divide the data 

in various subsets and undertake a meta-analysis. We show that a meta-analysis12 of GCCI and 

RCCI results across difference data subsets is useful and reliable (Supplementary Tables 19-20 , 

Supplementary Data 7-8, Supplementary Figures 14-15). We simulated phenotypes using 

UKBB1 genotype data and compared results from meta-analysis of multiple sub-samples with 

results from each individual sub-sample. 

 

As expected, the values of –log10(P) and likelihood ratio in the meta-analyses were larger than 

those in each single study (Supplementary Figure 14). The power increased further as the 

number of studies (and the total sample size) increased as shown in Supplementary Figure 14. 

The correlation between p-values from a meta-analysis based on two groups and p-values from 

data combining two groups approached to one when the sample size in each group increased to 

10K although the regression slope was less than one (Supplementary Figure 15). As expected, 

with the same sample size, the power of meta-analyses decreased with the number of groups 

increased (e.g. 10K x 2 vs. 4K x 5 in Supplementary Figure 15) although it was still higher than 

that from a single group (Supplementary Figure 14). This indicates that our approach combined 

with meta-analysis can be applied to any sample size, ensuring that the power keeps increasing 

with further additions to large-scale biobank data. The increased power in meta-analyses was 

also evident in real data analyses. We randomly divided the UKBB1 data set into two groups of 
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equal size (33,140 each for SMK, 27,179 each for NEU and PC1) and obtained meta-analysed p-

values (Supplementary Table 19) and estimates (Supplementary Data 7). In agreement with the 

simulation, the meta-analysed p-values greatly improved the power compared to using a single 

sub-group study (g1 or g2) (Supplementary Table 19). 

 

We further performed meta-analyses across the UKBB1 and the second release of UK Biobank 

data that excluded the overlapping and highly related samples from UKBB1 (denoted as UKBB2, 

see Methods). The UKBB2 was used as an independent validation data set (see Methods for 

more detail). From the meta-analyses, the significance of R-C interaction effects for BMI-SMK 

and BMI-NEU increased from p-value = 2.37E-37 to p-value = 1.22E-86 and from 2.36E-05 to 

1.60E-16, respectively (M11 in Supplementary Table 20). G-C interaction effects for BMI-NEU 

became more significant and the p-values decreased from 1.08E-03 to 5.70E-05 (M12 in 

Supplementary Table 20). The meta-analysed estimated variance components are shown in 

Supplementary Data 8. 

 

Supplementary Note 5. Note for large fixed effects  

(M)RNM allows non-zero fixed effects of covariates, for which the main phenotypes are pre-

adjusted using a linear model fitting covariates as fixed effects, as shown in the simulation study 

(Supplementary Data 9). Whether the covariate had a large fixed effect or not, the estimated 

interaction variances remained unbiased. Some other parameters were shown to be biased 

especially for estimated covariance terms, cov(τ0, ε) and cov(α0, β) even with adjusted 

phenotypes (Supplementary Data 9). However, the biases were not substantial unless the 

covariate had a large fixed effect, i.e. the proportion of the phenotypic variance explained by the 
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covariate (the coefficient of determination, r2) was more than 0.11 (Supplementary Data 9). Note 

that for the real data, the proportion of BMI phenotypic variance explained by SMK was r2 = 

0.01. When a fixed effect fitted as a random effect being an interacting covariate in MRNM by 

error, the estimated interaction variance component was still unbiased whether phenotypes were 

adjusted for the covariates or not (Supplementary Data 9).  

 

Supplementary Note 6. Confounders 

Alcohol intake (ALC) 

We summed average weekly alcohol intake (red wine, UK Biobank data field: 1568, champagne 

plus white wine, UK Biobank data field: 1578, beer plus cider, UK Biobank data field: 1588, 

spirits, UK Biobank data field: 1598, fortified, UK Biobank data field: 1608), and further 

combined it with alcohol intake frequency (UK Biobank data field: 1558) to generate ALC. The 

distribution of ALC is in Supplementary Figure 16.  

 

Townsend deprivation index at recruitment (TDI) 

The distribution of TDI (UK Biobank data field: 189) is in Supplementary Figure 16. TDI were 

calculated immediately after participant joining UK Biobank. Based on the preceding national 

census output areas, each participant is assigned a score corresponding to the output area in 

which their postcode is located. 

 

Age at interview (Age) 
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The data field of age at interview in UK Biobank is 21022. Age at interview is derived from date 

of birth and date of attending an initial assessment centre. It refers to the age of participant on the 

day they initially attended assessment centre.  
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