
Reviewer #1 (Remarks to the Author):  

 

The authors describe a method to better understand variants associated to Multiple Sclerosis, by 

ascertaining GWAS data, predict the regulatory effect of MS SNPs and using this in conjunction with 

cell-type specific protein-protein interaction networks.  

 

I think I understand the approach, but unfortunately I found it a bit difficult to get an understanding 

how the methodology is implemented, due to the fact I found essential details lacking (see below). 

While I might have missed this, I believe it would be important to provide those details, in order to 

be ascertain the robustness of the reported associations.  

 

Major comments:  

 

1) The manuscript is very difficult to comprehend, and requires going back and forth to many 

different places in the manuscript in order to get a sense of the type of analyses conducted. This 

makes it hard for me to understand the strategy and to understand the novelty of the approach and 

the novelty of the findings with regards to multiple sclerosis. Essential details are missing, precluding 

me from making a fair judgment on the methodological aspects of this paper. A few of these missing 

details are described below:  

 

1) The authors use epigenetic data to predict regulatory elements (PRE). However, to me it is unclear 

how the epigenetic annotation data from ENCODE and the Epigenome Roadmap can be immediately 

assigned to individual genes. How did the authors do this? E.g. let's suppose a SNP maps in a place 

that has a predicted repressive role, is this repressive role on the closest mapping gene? The authors 

also use ImmVar eQTL data, that permits empirical linking SNPs to genes, but I do not know how this 

could be done for the epigenetic mark data unequivocally. Can the authors elaborate on this?  

 

2) The authors describe the 'weighted weights' (line number 406), and I do not really understand 

what it meant here.  

 

3) How did the authors account for LD? E.g. how was dealt with the HLA region that has strong and 

extensive LD. Did the authors explicitly account their analysis for LD? What is the consequence of not 

having corrected for LD for loci where multiple genes map that have the same biological function? 

Did the authors in the network analysis ensure that genes that map in the same locus and that are 

PPI are not counted?  

 

3) The authors ascertain significance by contrasting the significance score to scores obtained using 

10,000 randomly generated networks. The authors however do not describe how these randomly 

generated networks look like: Did the authors ensure that the permuted networks have the same 



degree distribution? Did the authors ensure that in for each of the 10,000 generated networks, each 

genes has the same number of protein-protein interactions as that particular gene has in the real 

network? We have observed that when these criteria are not met, many false-positive associations 

show an, and that the arorementioned conditions, imposed on the permuted networks, are essential 

in order to calibrate statistical methods that employ networks. The reason for this is that particularly 

with PPI networks, there are a lot of genes that do not have any established PPI, whereas a few 

genes have many PPIs. This number of PPIs per gene is correlated with other properties (e.g. mean 

gene expression levels) as well. Can the authors be explicit how these permuted networks have been 

generated and what kind of constraints have been used in order to make these permuted networks 

as similar as possible to the real networks?  

 

4) The authors do not describe how the cell-type specific protein-protein interaction networks are 

actually made. The authors state they start off with a 15,783 nodes and 455,321 edges, and 

subsequently use gene expression values from elsewhere to create cell-type specific sub-networks. I 

wonder however, how the authors did this.  

 

Did the authors consider using the Genets approach from the Lage lab? That methodology seems to 

resolve most of the issues described above. I would be curious to hear how the proposed method 

differs from the Genets method, and what the innovations of this new method are above the Genets 

approach.  

 

 

Reviewer #2 (Remarks to the Author):  

 

The manuscript from the IMSGC describes a novel systems biology approach to identify the cell-

specific target genes from gwas summary statistics. They used the latest GWAS on multiple sclerosis 

(MS) to test the method and then they ran individual and cell-specific level genetic risk scores to 

identify individuals at high risk grouped on four main clusters: genes acting via monocyte, b cell, T 

cell and CNS specific effects. I find this paper extremely relevant as it could address key questions 

such as: target genes, target cell-types, target pathways and personalized medicine. I honestly found 

it hard to read, and while I deeply value the relevance of the work, I feel the paper needs to be 

written in a way to make it easier to follow for the Nat comm audience. Providing more detailed 

results for individuals that have high risk score for the different cell-types would also be appealing. 

My specific comments below.  

 

Major:  

 

The authors need to decide if they are writing a paper on MS or a paper on a new method. 

Regardless of that, I feel there is too much technical detail on the Results section. Nat Comm is an 

online journal, there is no point in repeating methods on the results like: “This resulted in nearly half 

a million SNPs which were then used as input in an automated query into Regulomedb 



(http://regulome.stanford.edu) to retrieve all available regulatory information from the ENCODE and 

Roadmap Epigenomic Projects (Supplementary Table S1).  

 

It is not clear from the manuscript how the authors went from regulatory features to target gene. 

They only say there was a “master table”. Regulomedb does not have information linking regulatory 

regions to genes. This is a critical step that needs to be fully described. This master table should also 

be posted as supplementary information if someone wants to reproduce these results.  

 

Page 9, line 153. The authors refer to a human protein network. Checking the reference, it seems to 

me that this network is partially composed by human data plus data coming from yeast and other 

organisms. It’s unclear how much of that network was constructed with data coming from CNS 

tissue. This could have an impact on the observations described in line 164.  

 

Table 1. Add the pvalues of all correlation coefficients.  

 

Page 12, line 238. Add supplementary table with pvalues for the 200 snps as tested on this 2370 

patients and 412 controls. It’s very likely that the study is underpowered to cluster results. What is 

the pvalue of predicted expression of gene vs case status?  

 

Page 14. I feel there are too many figures and too little actual data to support the claims that cases 

have more interactions that controls. Instead of figures I’d like to see actual data in tables with 

proper statistics and distributions of number of nodes, interactions, topologies, etc.  

 

Page 15. I really enjoyed the idea of having cell-specific genetic risk scores, but I’d like to know how 

much that differs from that individual total genetic risk score. A histogram showing overlapping total 

genetic risk score and cell-specific genetic risk score would be helpful as well as descriptive statistics.  

 

Discussion: In their discussion, the authors speculate that these cell-specific risk scores could be 

useful for personalized approaches to therapy. They do not support this statement with the data 

shown. What is the current predictive power of these scores? Were the subjects of the validation 

dataset included on the main IMSGC meta-analysis?, that would overestimate the prediction ability. 

I would suggest to run these cell-specific scores on MS individuals who also have deep 

clinical/phenotypic information that could support the statement of personalized medicine.  

 

Can the authors put their results into perspective of the “omnigenic” model proposed by Jonathan 

Pritchard?  

 

 



 

 

Minor:  

 

Spell out GS, SR and NR.  

 

Supplementary tables have not clear sort. Table headers are not self-explanatory.  

 

Authors claim this method can be implemented for other traits/diseases. Not clear how much work 

that would imply, it seems to be there were huge computational resources involved, ie. Can they run 

it for all publicly available GWAS summary stats?  

 

 

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have undertaken a number of cell-specific pathway analyses using GWAS data from 

studies in MS. They take both population and individual approaches - of particular interest is that it 

may be possible to characterise individuals according to cell-specific gene scores to allow the best 

choice of therapeutic. I found the paper to be fascinating. It is very well written and easy to follow 

even though it is presenting complex information. There are a number of minor punctuation errors 

that should be attended to.  

 

Abstract  

1. Nicely written. The semi-colon at line 23 would be better as a comma.  

Introduction  

1. Page 4, line 68 – MS is both inflammatory and neurodegenerative.  

2. Very nice introduction  

Results  

1. Page 6. The next Supp Table mentioned after Supp Table 1 is Supp Table 5. It would make 

more sense for this to be Supp 2. (similarly the sequence following – next table is Supp Table 8)  



2. Line 127, page 7. “in the CNS and L” – what is ‘L’? I see that this is defined in the methods, 

but it may need to be defined in the results, since they come before the methods (also other 

abbreviations used in the methods)  

3. Page 10, line 193 – ‘genome-wide GW’ – are both needed?  

4. Sentence starting on line 290, page 15 does not make sense. 
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Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
Major comments: 
 

The manuscript is very difficult to comprehend, and requires going back and forth to many 
different places in the manuscript in order to get a sense of the type of analyses conducted. This 
makes it hard for me to understand the strategy and to understand the novelty of the approach 
and the novelty of the findings with regards to multiple sclerosis. Essential details are missing, 
precluding me from making a fair judgment on the methodological aspects of this paper.  

 
We thank this reviewer for his candid opinion and advice. We have taken every possible 
step to clarify the message of the manuscript and have re-written large portions of it to 
improve its legibility.  
 

1) The authors use epigenetic data to predict regulatory elements (PRE). However, to me it is 
unclear how the epigenetic annotation data from ENCODE and the Epigenome Roadmap can be 
immediately assigned to individual genes. How did the authors do this? E.g. let's suppose a SNP 
maps in a place that has a predicted repressive role, is this repressive role on the closest 
mapping gene? The authors also use ImmVar eQTL data, that permits empirical linking SNPs to 
genes, but I do not know how this could be done for the epigenetic mark data unequivocally. 
Can the authors elaborate on this? 

 
We acknowledge this aspect may have not been explained in sufficient detail. The regulatory 
annotations mapping to a given SNP are not assigned directly to a single gene. We recognize that 
while a single association (top significant SNP) per locus is usually reported in a GWAS, many 
other variants that are in linkage disequilibrium are also likely to have an influence on the 
expression of nearby genes. Therefore, we integrate the potential regulatory effect of all the 
variants in the vicinity of the reported SNP (at different levels of LD, hence the r2=0.8, r2=0.5 
and r2=0.1 thresholds throughout the paper).  Since different cell types have a different set of 
regulatory features, it is possible (and quite frequently observed here) that the same genomic 
association can have different effects on nearby genes in different cell types. With respect to the 
specific example this reviewer poses, the score assigned to nearby genes does not depend solely 
on the closest SNP, but it is a weighted sum of the effects of all SNPs in the association block 
under consideration. In a simple example, if only two genes (genes 1 and 2) map nearby an 
associated SNP (A), and there is only one additional variant (B) in close LD, then both genes 
would get a score composed of the weighted sum of the regulatory features annotated to each of 
these variants. If 10 independent experiments (reported in ENCODE or REP) describe that SNP-
A maps within the promoter of gene 1, and only one experiment describes that this same SNP 
actually sits in a repressor for the same gene (thus contradicting the previous evidence), we 
consider that the likelihood that this SNP influences transcription is much higher than the chance 
that influences repression, and assign a positive score (+9) to this SNP-gene relationship. We 
then proceed to score the other SNP-gene pairs and compute the aggregate (sum) score for each 
gene.  



 2 

Of course, in reality there are several SNPs in LD with the top association (depending on the LD 
threshold, up to ~100), and there are several genes that map to a given association (depending on 
the complexity of the genomic region, up to several dozen).  
We attempted to explain this process in Figure 1b, but have now added more details to the 
methods section.   
 

2) The authors describe the 'weighted weights' (line number 406), and I do not really understand 
what it meant here. 

 
The weighted weights concept refers to the procedure described just above and its name derives 
from the fact that the sum of the effects of neighboring SNP to a given gene is weighted twice. 
The first time we weight the number of experiments reported in ENCODE or REP for a given 
SNP-gene pair (in the example above, we assign more value to a relationship that has been 
reported in 10 independent experiments, to another that has been reported just once). The second 
time, we weight the evidence stemming from all SNPs nearby a gene (depending on the LD 
structure there could be ~100 SNP near a given gene). If the weighted sum of the 2 SNPs near 
gene 1 (following the example from above) is positive (both SNPs are predicted to influence 
transcription) then the final score is positive. In contrast, if annotations for SNP1 suggest 
activation of transcription (with a weighted score of 9), but annotations for SNP2 suggest 
repression (with a weighted score of 20), then the net weight for that gene is -11.  
 

3) How did the authors account for LD? E.g. how was dealt with the HLA region that has strong 
and extensive LD. Did the authors explicitly account their analysis for LD? What is the 
consequence of not having corrected for LD for loci where multiple genes map that have the 
same biological function? Did the authors in the network analysis ensure that genes that map in 
the same locus and that are PPI are not counted? 

 
LD was definitely accounted for. Since there is no established threshold to report LD, we chose 
three cut-off values (r2=0.8, r2=0.5, and r2=0.1), thus spanning a wide range of possibilities. 
Since the entire analysis was repeated at these three LD thresholds, the interested reader can 
focus on a particular cut-off or compare the results of all three.   
Given its complex LD structure and its extensive characterization, we specifically excluded the 
HLA region from this analysis.  
With respect to the last question, we searched for the possibility that genes mapping to the same 
locus would show more interactions than genes that mapped to different locations, and our 
results were reassuring. Specifically, we colored each node in the networks we report in Figure 3 
by its chromosomal position and observed no clustering of genes by locus (Figure a below). We 
are happy to include this figure as a supplementary information if this reviewer considers it 
would be an important addition to the paper.  
 

4) The authors ascertain significance by contrasting the significance score to scores obtained 
using 10,000 randomly generated networks. The authors however do not describe how these 
randomly generated networks look like: Did the authors ensure that the permuted networks have 
the same degree distribution? Did the authors ensure that in for each of the 10,000 generated 
networks, each genes has the same number of protein-protein interactions as that particular gene 
has in the real network? We have observed that when these criteria are not met, many false-
positive associations show an, and that the aforementioned conditions, imposed on the permuted 
networks, are essential in order to calibrate statistical methods that employ networks. The reason 
for this is that particularly with PPI networks, there are a lot of genes that do not have any 
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established PPI, whereas a few genes have many PPIs. This number of PPIs per gene is 
correlated with other properties (e.g. mean gene expression levels) as well. Can the authors be 
explicit how these permuted networks have been generated and what kind of constraints have 
been used in order to make these permuted networks as similar as possible to the real networks? 

 
We thank this reviewer for an insightful set of questions regarding the permuted networks. We 
wish to clarify that the “random networks” used as a background distribution were actually 
sampled from the exact same protein interactome as the reported networks. Thus, while nodes 
are selected at random, edges are preserved as they were in the original PPI therefore, if any 
discrepancy exists between the real and random nets is purely biological and not an artifact of the 
selection process. We agree that in the case of generating truly random networks (nodes and 
edges), care should be taken to ensure the properties of the random networks are not significantly 
different than that of the real nets. Our algorithm for the background distribution involves 
selecting a random set of nodes of equal size to that of the real network, and computing how 
many edges (real protein interactions) exist among them. Thus, while the nodes are selected at 
random, the edges are not. 
 
To illustrate this point further, we computed additional metrics for both random networks and 
real networks (e.g. degree, transitivity, closeness and betweenness) and tested whether they were 
significantly different. As shown in Table a below (please zoom in to see details), our results 
demonstrate that there is no significant difference in the degree of the real and random networks 
(column Y). However, a significant difference can be observed in the total number of edges, the 
size of the largest connected component (LCC), and the number of edges in the LCC, 
particularly for the networks generated from genome-wide (GW) significant associations. The 
difference in size of the LCC is revealing as it indicates that while nodes from random nets are 
dispersed throughout the network, those from the real net are connected to other genes in the 
neighborhood. This is more formally addressed by the observed significant closeness centrality 
(column AA). Other metrics such as transitivity and betweenness are not significant between 
random and real networks, highlighting that the comparisons are made across sets of similar 
networks. We conclude by stating that the resulting background distribution is a valid ensemble 
against which to compute enrichment of edges in a biologically plausible network. We have now 
clarified our approach in the Methods section. 
 
 
 

5) The authors do not describe how the cell-type specific protein-protein interaction networks 
are actually made. The authors state they start off with a15,783 nodes and 455,321 edges, and 
subsequently use gene expression values from elsewhere to create cell-type specific sub-
networks. I wonder however, how the authors did this. 

 
For this study, we used the interactome described in Genome research 21, 1109-21 (2011) which 
comprises 15,783 nodes and 455,321 edges. Naturally, these interactions were not described in a 
cell specific manner, but rather are the result of multiple experiments with different cell types, 
thus providing a general set of interactions. In order to create cell-specific networks, we 
restricted interactions among gene products known to be expressed in a specific cell type (as 
determined by RNAseq performed in multiple tissues/cell types and described in Sci Rep 6, 
35241 (2016)) This pruning resulted in somewhat overlapping, but distinct set of interactions for 
each of the cell types analyzed in this paper.  
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6) Did the authors consider using the Genets approach from the Lage lab? That methodology 
seems to resolve most of the issues described above. I would be curious to hear how the 
proposed method differs from the Genets method, and what the innovations of this new method 
are above the Genets approach. 

 
Genets is a valuable tool that performs some of the analyses reported in the second phase of our 
approach, featuring an attractive user interface. However, a fundamental difference between 
Genets and our approach is how putative genes are prioritized (aka, the SNP-to-gene problem), a 
strategy that is critical for our analysis. While Genets uses associations as defied by the GWAS 
authors (usually based on proximity to the lead SNP), we employ an elaborated pipeline that 
takes into account regulatory elements (from ENCODE and REP), ultimately resulting in data-
driven cell-specific pathways. In addition, our approach allows for prioritization of genes within 
an association block, thus affording comparisons of risk profiles in different cell types.   
 
 
Reviewer #2 (Remarks to the Author): 
 
Major: 
 

The authors need to decide if they are writing a paper on MS or a paper on a new method. 
Regardless of that, I feel there is too much technical detail on the Results section. Nat Comm is 
an online journal, there is no point in repeating methods on the results like: “This resulted in 
nearly half a million SNPs which were then used as input in an automated query into 
Regulomedb (http://regulome.stanford.edu) to retrieve all available regulatory information from 
the ENCODE and Roadmap Epigenomic Projects (Supplementary Table S1). 

 
We thank this reviewer for this comment and suggestion. We have now re-written large parts of 
the results to avoid repetition of what is included in Methods and to ensure a clear message is 
delivered. These changes resulted in an expanded online methods section, so the interested 
reader could find additional relevant information that may help interpret all our findings.   
 

It is not clear from the manuscript how the authors went from regulatory features to target gene. 
They only say there was a “master table”. Regulomedb does not have information linking 
regulatory regions to genes. This is a critical step that needs to be fully described. This master 
table should also be posted as supplementary information if someone wants to reproduce these 
results. 

 
We appreciate this comment, and acknowledge that our description of this part of the method 
may have been sub-optimal. To address this reviewer’s concern, we provide a detailed 
explanation below.  
The regulatory annotations mapping to a given SNP are not assigned directly to a single gene. 
We assume that, while a single associated (top significant) SNP is usually reported in a GWAS, 
many other variants that are in linkage disequilibrium will also have an influence on the 
expression of nearby genes. Therefore, we integrate the potential regulatory effect of all the 
variants in the vicinity of the reported SNP (at different levels of LD, hence the r2=0.8, r2=0.5 
and r2=0.1 thresholds throughout the paper).  Since different cell types have a different set of 
regulatory features, it is possible (and quite frequently observed here) that the same genomic 
association have different effects on nearby genes in different cell types. With respect to the 
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specific example this reviewer poses, the score assigned to nearby genes does not depend solely 
on the closest SNP, but it is a weighted sum of the effects of all SNPs in the LD block under 
consideration. In a simple example, if only two genes (genes 1 and 2) map nearby to an 
associated SNP (A), and there is only additional variant (B) in close LD, then both genes would 
get a score composed of the weighted sum of the regulatory features annotated to each variant. If 
10 independent experiments (reported in ENCODE or REP) describe that SNP-A maps within 
the promoter of gene 1, and only one experiment describes that this same SNP actually sits in a 
repressor for the same gene (thus contradicting the previous evidence), we consider that the 
likelihood that this SNP influences transcription is much higher than the chance that influences 
repression, and assign a positive score (+9) to this SNP-gene relationship. We then proceed to 
score the other SNP-gene pairs and compute the aggregate (sum) score for each gene.  
Of course, in reality there are several SNPs in LD with the top association (depending on the LD 
threshold, up to ~100), and there are several genes that map to a given association (depending on 
the complexity of the genomic region, up to several dozen).  
We attempted to explain this process in Figure 1b, but have now added more details to the 
methods section.   
The “master table” aggregates all regulatory features for all SNPs of all genes. This is a very 
large table containing thousands of columns and half a million rows, and we deemed would not 
be practical for most reader to download (a table this big cannot be visualized in a spreadsheet, 
but only via scripts). In any case, we now make this table available as a supplementary dataset 
for the interested reader.  
 

Page 9, line 153. The authors refer to a human protein network. Checking the reference, it seems 
to me that this network is partially composed by human data plus data coming from yeast and 
other organisms. It’s unclear how much of that network was constructed with data coming from 
CNS tissue. This could have an impact on the observations described in line 164. 

 
The study where HumanNet is derived from is based on 18,714 human Entrez genes with 
validated coding proteins (downloaded from NCBI). Authors used only annotations supported by 
experimental evidence: IDA (inferred from direct assay); IMP (inferred from mutant phenotype); 
IPI (inferred from protein interaction); IGI (inferred from genetic interaction); and TAS 
(traceable author statement). In the construction of HumanNet, authors incorporated diverse 
expression, protein interaction, genetic interaction, sequence, and literature. Comparative 
genomics data, including both data collected directly from human genes, as well as that from 
orthologous genes of yeast, worm, and fly was also used to increase confidence of interactions.  
This network includes interactions determined by using many different cell types, but the 
network itself is an aggregate of all results, not cell specific. In order to create cell-specific nets, 
we filtered interactions realized only by gene products expressed in a given cell type, by using 
RNAseq expression profiles from Kitsak et al. Sci Rep 6, 35241 (2016). Thus, for the T cell 
interactome, we only retrieved interactions between proteins known to be expressed by any T 
cell subset present in Kitsak et al. In the case of CNS, while gene expression data is sufficiently 
granular (profiles for different brain cell types and regions exist), epigenomic data for CNS 
cells/tissues in ENCODE or REP is very sparse, thus we decided to merge all data into a single 
CNS category. We recognize this is a shortcoming of this study and acknowledge this as a caveat 
in the discussion.   
 

Table 1. Add the p-values of all correlation coefficients. 
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Done 
 

Page 12, line 238. Add supplementary table with pvalues for the 200 snps as tested on this 2370 
patients and 412 controls. It’s very likely that the study is underpowered to cluster results. What 
is the pvalue of predicted expression of gene vs case status? 

 
As requested by this reviewer, we have conducted a GWAS of the UCSF dataset (2370 patients 
and 412 controls) (See Manhattan plot in Figure b below). As expected for the relatively small 
size of this cohort, not many significant associations were detected. However, the presence of a 
peak in Chromosome 6 is indicative of the known HLA association, and thus serves as validation 
of our analysis. Given the different platforms used for genotyping, not every SNP reported in the 
IMSGC GWAS was identified in this sub-analysis (specifically 148 of 200). We added this 
information in a new Supplementary Table (S30). Also, despite the significant correlation 
between PRE and gene expression, no significant clustering of patients and controls was 
produced when using the PREs over all genes. This is expected due to the modest (despite highly 
significant) correlations. 
 

Page 14. I feel there are too many figures and too little actual data to support the claims that 
cases have more interactions that controls. Instead of figures I’d like to see actual data in tables 
with proper statistics and distributions of number of nodes, interactions, topologies, etc. 

 
 
We have now added network properties corresponding to the high-level summary data presented 
in Supplementary Figures 1 and 2. This information is in Supplementary Table 29 and 31  

 
Page 15. I really enjoyed the idea of having cell-specific genetic risk scores, but I’d like to know 
how much that differs from that individual total genetic risk score. A histogram showing 
overlapping total genetic risk score and cell-specific genetic risk score would be helpful as well 
as descriptive statistics. 

 
We computed the polygenic risk score as previously reported (Gourraud, P.A. et al. Annals of 
neurology 69, 65-74 (2011)) and computed correlations with cell-specific PRE for all 2370 
UCSF patients. The total polygenic risk score (MSGB) is significantly correlated with cell-
specific genetic score (PRE) for all cells analyzed. This suggests that the PRE captures some of 
the global genetic risk but can differ across cell types. We have now added this analysis to 
Supplementary Figure S3.   
 

Discussion: In their discussion, the authors speculate that these cell-specific risk scores could be 
useful for personalized approaches to therapy. They do not support this statement with the data 
shown. What is the current predictive power of these scores? Were the subjects of the validation 
dataset included on the main IMSGC meta-analysis?, that would overestimate the prediction 
ability. I would suggest to run these cell-specific scores on MS individuals who also have deep 
clinical/phenotypic information that could support the statement of personalized medicine. 

 
Our statement was indeed speculative, but arguably posing a realistic scenario. One of the 
challenges of GWAS is that genotypes are easier to obtain that phenotypes, thus preventing the 
detailed analysis of endophenotypes. While we do have detailed clinical observations in 
hundreds of our patients, we are still severely underpowered to conduct any meaningful 
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association study. We have now clarified our statement and reads: “We speculate that in the near 
future this information could also be used as the basis to develop individualized risk scores, or to 
derive personalized approaches to therapy.” 
 

Can the authors put their results into perspective of the “omnigenic” model proposed by 
Jonathan Pritchard? 

 
Indeed, our data is in agreement with this model, which proposes that gene regulatory networks 
are sufficiently interconnected such that all genes expressed in disease-relevant cells are liable to 
affect the functions of core disease-related genes. In fact, authors of that paper mention that 
“Autoimmune GWAS hits affect shared and tissue-specific regulation of immune cells”, which 
we demonstrate in Figure 3. We now discuss this relevant study in the main text and provide the 
corresponding reference.  
 
Minor: 
 

Spell out GS, SR and NR. 
 
These are spelled out at the beginning of the Online Methods section. The paragraph reads: 
“Specifically, single nucleotide polymorphisms (SNP) corresponding to all non-MHC genome-
wide (GW) (n=200; Supplementary Table S2), statistically replicated effects (SR) (n=416; 
Supplementary Table S3) and non-replicated effects (NR) (n=3695; Supplementary Table S4) 
were extracted for analysis GW, SR and NR as defined previously).” 
 

Supplementary tables have not clear sort. Table headers are not self-explanatory.  
 

A key has been added below each Supplementary Table describing the meaning of each header. 
 

Authors claim this method can be implemented for other traits/diseases. Not clear how much 
work that would imply, it seems to be there were huge computational resources involved, ie. 
Can they run it for all publicly available GWAS summary stats? 

 
This reviewer is correct in that significant computational resources are required to conduct this 
analysis. We are currently working on a web-based solution to enable any interested investigator 
to paste summary-level GWAS data in a query box and submit the job, which would be 
computed in our cluster. The researcher can then download a set of files with the network results, 
statistics, and visualizations.  
 
Reviewer #3 (Remarks to the Author): 
 

Abstract 
 

Nicely written. The semi-colon at line 23 would be better as a comma. 
 
We have replaced the semi-colon by a comma.  
 

Introduction 
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Page 4, line 68 – MS is both inflammatory and neurodegenerative. 
 
We have now added the suggested language  
 

Very nice introduction 
 

Thank you! 
 
 

Results 
 

1. Page 6. The next Supp Table mentioned after Supp Table 1 is Supp Table 5. It would make 
more sense for this to be Supp 2. (similarly the sequence following – next table is Supp Table 8) 

 
We have corrected these discrepancies and all the supplementary tables are in logical order now. 
 

2. Line 127, page 7. “in the CNS and L” – what is ‘L’? I see that this is defined in the methods, 
but it may need to be defined in the results, since they come before the methods (also other 
abbreviations used in the methods) 

 
We have defined L (lung) upon first mention.  
 

3. Page 10, line 193 – ‘genome-wide GW’ – are both needed? 
 
Thank you for catching this error. We have now corrected it. 
 

4. Sentence starting on line 290, page 15 does not make sense. 
 
We have now re-written this sentence. It now reads: “Another interesting observation emerging 
from this analysis is that subjects at the extremes of the distribution of intra-individual 
interactions (a proxy for their overall risk) can be identified for each cell type.” 
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Appendix: 
 

 
 
 
  

 
Figure a. Genes in reported networks are not affected by linkage disequilibrium. Each gene is 
colored based on its chromosomal position (cytogenetic band). No clustering of genes with the same 
color can be observed indicating there is no enrichment of interactions due to chromosomal vicinity 
in these networks.    
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Figure b. Mahattan plot of GWAS of UCSF dataset (2370 patients and 412 controls).  
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Table a. Characteristics of real and random networks used as background distribution.  

 

Significance CellType r2gt Threshold_quartile Threshold Nodes Edges LCC_nodes LCC_edges Degree Transitivity Closeness Betweenness ndedges_rand nnodes_LCC_rand nedges_LCC_rand randDegree randTransitivity randCloseness randBetweenness nRandNets pval_ndedges pval_nnodes_LCC pval_nedges_LCC pval_Degree pval_Transitivity pval_Closeness pval_Betweenness
GW B 0.5 0.1 0.25 110 115 67 114 2.09 0.247 0.00015 62.3 65.7 37.9 57.2 9.55 0.402 9.3E-05 54.0 2255 4.39E-03 2.98E-03 5.22E-03 0.68 0.81 6.92E-06 0.41
GW B 0.5 0.25 0.89 106 111 65 111 2.09 0.251 0.00017 60.8 61.4 35.6 53.0 9.46 0.405 9.8E-05 51.5 2166 2.53E-03 2.34E-03 2.87E-03 0.68 0.80 3.08E-06 0.40
GW B 0.5 0.5 2.00 76 35 22 28 0.92 0.162 0.00020 6.7 31.3 18.2 23.8 10.35 0.420 1.6E-04 37.2 1791 0.3690 0.3150 0.377 0.70 0.91 0.1390 0.81
GW T 0.5 0.1 0.25 99 80 49 74 1.62 0.263 0.00015 50.7 43.8 22.3 32.5 5.42 0.400 1.0E-04 27.5 2632 6.37E-03 1.74E-03 7.95E-03 0.63 0.77 3.68E-04 0.17
GW T 0.5 0.25 0.89 95 75 48 70 1.58 0.233 0.00016 51.2 40.2 20.3 29.2 5.41 0.403 1.1E-04 25.7 2489 5.80E-03 7.36E-04 6.12E-03 0.63 0.82 1.12E-04 0.14
GW T 0.5 0.5 2.00 80 55 30 47 1.38 0.212 0.00019 10.9 28.5 14.4 19.4 5.58 0.403 1.4E-04 20.7 2366 6.49E-03 1.13E-02 1.12E-02 0.64 0.84 1.48E-02 0.67
GW M 0.5 0.1 0.25 70 45 23 36 1.29 0.463 0.00024 8.2 20.5 10.0 11.7 4.47 0.407 1.8E-04 17.1 2050 7.23E-04 6.98E-03 1.13E-03 0.66 0.40 2.02E-02 0.68
GW M 0.5 0.25 0.89 68 43 21 34 1.26 0.500 0.00025 6.8 19.3 9.5 10.9 4.52 0.403 1.9E-04 16.8 2014 6.77E-04 1.00E-02 9.72E-04 0.66 0.33 2.70E-02 0.70
SR B 0.5 0.1 0.25 208 206 103 193 1.98 0.264 0.00003 80.6 235.3 108.5 227.0 8.52 0.372 3.6E-05 116.1 2387 0.7390 0.6840 0.763 0.70 0.76 0.6950 0.83
SR B 0.5 0.25 0.89 193 182 96 170 1.89 0.245 0.00004 77.4 202.7 97.0 194.4 8.77 0.376 4.0E-05 105.9 2498 0.6930 0.5350 0.715 0.70 0.80 0.5610 0.77
SR B 0.5 0.5 2.00 117 62 39 48 1.06 0.211 0.00009 22.3 74.7 42.8 66.5 9.52 0.400 8.4E-05 58.0 1335 0.7340 0.6380 0.784 0.70 0.86 0.4750 0.84
SR T 0.5 0.1 0.25 167 113 67 103 1.35 0.300 0.00005 58.7 124.9 63.3 111.4 5.14 0.399 4.4E-05 65.0 3087 0.6520 0.3920 0.597 0.66 0.74 0.4330 0.58
SR T 0.5 0.25 0.89 156 104 64 95 1.33 0.288 0.00005 57.2 109.2 55.7 95.5 5.17 0.397 4.9E-05 58.0 3332 0.5750 0.2610 0.507 0.65 0.76 0.2920 0.51
SR T 0.5 0.5 2.00 109 63 36 47 1.16 0.175 0.00010 15.3 53.0 27.0 40.7 5.40 0.405 8.7E-05 31.7 3327 0.2730 0.1910 0.375 0.65 0.90 0.1430 0.74
SR M 0.5 0.1 0.25 181 181 99 176 2.00 0.335 0.00005 91.3 137.8 75.9 124.5 3.95 0.381 4.0E-05 83.6 4524 0.0649 0.0535 0.063 0.65 0.62 2.56E-02 0.40
SR M 0.5 0.25 0.89 165 165 88 159 2.00 0.359 0.00006 75.6 114.3 63.4 99.9 3.83 0.381 4.6E-05 70.7 3941 1.92E-02 4.60E-02 2.64E-02 0.64 0.56 1.53E-02 0.43
SR M 0.5 0.5 2.00 109 83 49 74 1.52 0.310 0.00011 32.2 50.0 25.5 34.7 4.11 0.394 8.7E-05 33.1 2913 9.42E-03 1.68E-02 1.51E-02 0.65 0.68 6.78E-03 0.52
NR B 0.5 0.1 0.25 176 127 87 117 1.44 0.144 0.00005 79.8 168.4 84.3 160.2 8.95 0.381 4.6E-05 94.4 1117 0.8750 0.4010 0.872 0.71 0.93 0.4280 0.65
NR B 0.5 0.25 0.89 157 103 69 88 1.31 0.124 0.00005 51.1 133.7 70.3 125.5 9.00 0.384 5.4E-05 82.3 1199 0.8420 0.5490 0.873 0.71 0.94 0.5170 0.80
NR T 0.5 0.1 0.25 128 61 40 46 0.95 0.134 0.00007 18.7 73.4 37.6 60.0 5.19 0.400 6.7E-05 41.3 2055 0.7220 0.4190 0.710 0.66 0.94 0.3660 0.80
NR T 0.5 0.25 0.89 115 57 37 43 0.99 0.153 0.00009 17.6 59.4 30.3 46.8 5.33 0.405 7.9E-05 34.4 2709 0.5530 0.2700 0.569 0.66 0.92 0.2160 0.75
NR C 0.5 0.1 0.25 81 31 22 25 0.77 0.161 0.00017 7.2 26.3 12.9 15.0 1.89 0.321 1.5E-04 13.7 3394 0.2960 0.0972 0.158 0.68 0.81 0.1020 0.67
NR M 0.5 0.1 0.25 142 77 56 71 1.08 0.202 0.00006 45.9 84.8 46.4 69.0 3.85 0.385 5.8E-05 53.5 2758 0.6520 0.2490 0.469 0.69 0.86 0.2790 0.61
NR M 0.5 0.25 0.89 122 53 33 41 0.87 0.273 0.00007 16.4 62.6 32.9 46.4 3.98 0.389 7.3E-05 40.7 2000 0.7220 0.4960 0.599 0.69 0.75 0.4440 0.82



Reviewer #1 (Remarks to the Author):  

 

The authors have addressed various of the methodological questions that I had raised.  

 

Although the clarity of the manuscript has improved, it remains a bit difficult to understand and 

appreciate the exact analytical strategy that the authors have applied.  

 

The only thing I can suggest to help resolve this is to include a very clear workflow figure as 

supplemental figure, and ideally to show some come comparisons with other pathway enrichment 

methods (e.g. FUMA / DEPICT / PASCAL) to show at least some consistency of this approach with 

previously and often used pathway enrichment methods.  

 

 

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors have answered all my queries to my satisfaction. 



REVIEWERS'	COMMENTS:	
	
Reviewer	#1	(Remarks	to	the	Author):	
	
The	authors	have	addressed	various	of	the	methodological	questions	that	I	had	
raised.	
	
Although	the	clarity	of	the	manuscript	has	improved,	it	remains	a	bit	difficult	to	
understand	and	appreciate	the	exact	analytical	strategy	that	the	authors	have	
applied.	The	only	thing	I	can	suggest	to	help	resolve	this	is	to	include	a	very	clear	
workflow	figure	as	supplemental	figure,	and	ideally	to	show	some	come	
comparisons	with	other	pathway	enrichment	methods	(e.g.	FUMA	/	DEPICT	/	
PASCAL)	to	show	at	least	some	consistency	of	this	approach	with	previously	and	
often	used	pathway	enrichment	methods.	
	
We	have	now	re-analyzed	our	data	with	each	of	the	suggested	methods.	Although	each	
method	is	unique	and	produces	a	different	output,	we	were	able	to	compare	the	one	feature	
that	all	have	in	common,	which	is	the	prioritization	of	genes	within	each	associated	locus.	
This	additional	analysis	resulted	in	2	new	Supplementary	Tables	where	we	compare	the	
features	of	each	method	(Supplementary	Table	1)	and	the	genes	prioritized	by	each	
(Supplementary	Table	2).	
	
In	addition,	we	created	Supplementary	Figure	5,	where	the	precise	overlap	in	gene	
prioritization	by	each	method	can	be	easily	observed.		
	
We	have	also	created	a	workflow	diagram	of	our	approach	(Supplementary	Figure	1)	
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