Supplementary Information

Symbiotic N fixation is sufficient to support net aboveground biomass accumulation in a humid tropical forest

E.N.J Brookshire¹, Nina Wurzburger², Bryce Currey¹, Duncan N.L. Menge³, Michael P. Oatham⁴, Carlton Roberts⁵

- 1 Dept of Land Resources and Environmental Sciences, Montana State University; jbrookshire@montana.edu and brycecurrey93@gmail.com
- 2 Odum School of Ecology, University of Georgia; ninawurz@uga.edu
- 3 Dept of Ecology, Evolution, and Environmental Biology, Columbia University; dm2972@columbia.edu
- 4 Dept of Life Sciences, University of the West Indies, St. Augustine;

Mike.oatham@sta.uwi.edu

5 Trinidad Ministry of Agriculture, Land and Fisheries, Forestry Division; Carlton.roberts@yahoo.com

Corresponding author: jbrookshire@montana.edu

Fig. S1. Linear regressions showing effect of annual AGB growth and mortality on net incremental AGB change across five 1-ha VMFR forest plots. Each point represents one plot-census interval for N-fixers (circles and red lines and confidence 95% intervals) and non-fixers (triangles and blue lines and confidence intervals). Net biomass change across plots and over time was positively associated with annual growth of non-fixers ($R^2 = 0.30$, P < 0.001) and negatively associated with mortality of N-fixers ($R^2 = 0.42$, $R^2 = 0.001$) and non-fixers ($R^2 = 0.33$, $R^2 = 0.0001$).

Fig. S2. Legume nodule mass and BNF versus soil inorganic N across individual stems in the 25 subplots within the VMFR. Insets show the relationship between nodule mass and BNF versus mean soil N at the subplot $(20 \times 20 \text{ m})$ scale. In all statistical analyses using linear mixed effects models and linear regression, we detected no significant (P > 0.2) effect of soil N on nodule mass or BNF.

Fig. S3. Scaling relationship between tree diameter measured above the stem buttress vs. diameter measured at breast height (DBH). We used this empirical model $D_c = 0.767*DBH + 1.115$ (linear regression; $R^2 = 0.85$, P < 0.001) to correct diameters of trees that buttress at DBH for allometric calculations of biomass. The dashed line is the 1:1 line.

Table S1. Census intervals (number of censuses in parentheses), year of selective harvest (OG= Oldgrowth, never cut), long-term mean percent of stems that are *Pentaclethra macroloba* (PEMA) and long-term mean N fixer and non-fixer tree AGB among five 1-ha plots in VMFR.

Plot	Interval	Harvest	PEMA	N-fixer AGB	Non-fixer AGB
			(%)	(Mg ha ⁻¹)	(Mg ha ⁻¹)
5	1983-2013 (10)	1981	21	56.7	236.4
18	1983-2013 (8)	2000	45	96.6	137.6
26	1983-2009 (8)	2005	26	68.2	111.4
30	1983-2002 (8)	2012	34	85.9	128.0
41	1984-2009 (8)	OG	14	46.6	265.6

Table S2. Summary table of Linear Mixed Effects model comparisons for AGB and stem demographics in our five 1-ha plots in the VMFR. Shown are $\Delta AICc$ values for each model tested with the best fit model shown in bold. Models for with $\Delta AICc < 2$ are shown in italics, indicating that they yielded equivalent fits as the lowest AICc model.

Response variable	Model	Δ AICc
AGB	Y ~ Type * Year, random =~1 Plot	140.80
	Y ~ Type * Year, random =~1 Plot/Type	0
	Y ~ Type * Year, random =~1 Time	151.66
	$Y \sim Type * Year, random = \sim 1 Time/Type$	154.05
Stem RGR	$Y \sim Type + Year, random = \sim 1 Plot$	2.37
	$Y \sim Type + Year$, random =~1 Plot/Type	0
	$Y \sim Type + Year$, random =~1 Time	12.59
	$Y \sim Type + Year$, random =~1 Time/Type	10.31
Stem Mortality	$Y \sim Type + Year, random = \sim 1 Plot$	4.59
	$Y \sim Type + Year$, random =~1 Plot/Type	6.96
	Y ~ Type + Year, random =~1 Time	0
	$Y \sim Type + Year$, random =~1 Time/Type	2.37
AGB Growth	$Y \sim Type + Year, random = \sim 1 Plot$	62.81
	$Y \sim Type + Year$, random =~1 Plot/Type	0
	$Y \sim Type + Year$, random =~1 Time	70.03
	$Y \sim Type + Year$, random =~1 Time/Type	55.56
AGB Mortality	$Y \sim Type + Year, random = \sim 1/Plot$	1.22
	$Y \sim Type + Year, random = \sim 1 Plot/Type$	3.36
	Y ~ Type + Year, random =~1 Time	0
	$Y \sim Type + Year$, random =~1 Time/Type	2.16
AGB Recruitment	$Y \sim Type + Year$, random =~1 Plot	2.21
	Y ~ Type + Year, random =~1 Plot/Type	0
	$Y \sim Type + Year, random = \sim 1 Time$	2.72
	$Y \sim Type + Year$, random =~1 Time/Type	2.37
Net AGB Change	$Y \sim Type + Year, random = \sim 1 Plot$	3.73
	$Y \sim Type + Year$, random =~1 Plot/Type	0
	$Y \sim Type + Year, random = \sim 1 Time$	4.61
	$Y \sim Type + Year$, random =~1 Time/Type	6.62

Table S3. Summary table of Linear Mixed Effects model comparisons for BNF across our 25 subplots in our five 1-ha plots in the VMFR. Shown are $\Delta AICc$ values for each model tested with the best fit model shown in bold. Models for with $\Delta AICc < 2$ are shown in italics, indicating that they yielded equivalent fits as the lowest AICc model.

Response variable	Response variable Model	
BNF	$Y \sim AGB_{tot}$, $random = \sim 1/Plot$	1.05
	$Y \sim AGB_{non}$, random =~1/Plot	1.30
	$Y \sim AGB_{fix}$, random =~1 Plot	6.15
	$Y \sim Growth_{tot}$, random =~1 Plot	5.97
	$Y \sim Growth_{non}$, random =~1 Plot	0
	$Y \sim Growth_{fix}$, random =~1 Plot	5.48
	$Y \sim Net_{tot}$, random =~1 Plot	6.14
	$Y \sim Net_{non}$, random =~1 Plot	3.56
	$Y \sim Net_{fix}$, random =~1 Plot	5.62
	$Y \sim DIN$, random =~1 Plot	5.43

Table S4. Parameter ranges and random sampling for Monte Carlo simulations of N demand.

Parameter/Variable	Units	Mean value	Random sampling
^a Fraction of AGB allocated to stems	Unitless	0.98	Uniform (0.97, 0.99)
^a Fraction of AGB allocated to leaves	Unitless	0.02	Uniform (0.01, 0.03)
^b C:N of N fixer stems	kg C kg N ⁻¹	167	Log-normal (85, 311)
^b C:N of non-fixer stems	kg C kg N ⁻¹	294	Log-normal (92, 1361)
^c C:N of live N fixer leaves	kg C kg N ⁻¹	15.2	Factorial (1.25)
^d C:N of live non-fixer leaves	kg C kg N ⁻¹	26.3	Factorial (1.25)

^aChave et al. 2008; ^bMartin et al. 2014; ^cTully et al. 2013; ^dEpihov et al. 2017