

## Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2019

# Experimental and Theoretical Approaches in the Study of Phenanthroline-Tetrahydroquinolines for Alzheimer's Disease

Yorley Duarte,\* Margarita Gutierrez, Rocío Álvarez, Jans H. Alzate-Morales, and Jorge Soto-Delgado©2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

### **Supporting Information**

#### Chemistry

FT-IR spectra were recorded in potassium bromide pellets using a Thermo Nicolet NEXUS 670 FT-IR spectrophotometer, with 0.125 cm<sup>-1</sup> spectral resolution. <sup>1</sup>H NMR (200 MHz) and <sup>13</sup>C NMR (101 MHz) spectra were recorded in CDCl<sub>3</sub> or DMSO-*d*<sub>6</sub>, with a Bruker AMX or a Bruker AM-400 spectrometers. High-resolution mass spectrometry ESI-MS and ESI-MS/MS analyses were conducted in a high-resolution hybrid quadrupole (Q) and orthogonal time-of-flight (TOF) mass spectrometer (Waters/Micromass Q-TOF micro, Manchester, UK) with a constant nebulizer temperature of 100 °C. The samples were directly infused into the ESI source, via a syringe pump, at flow rates of 5 µL/min, via the instrument's injection valve.

#### NMR, IR and Mass Spectra for products







**Molecule 4b** 













Molecule 4c





Molecule 4d







Molecule 4f





#### Molecule 4g







**Theoretical Study** 

#### **Computational study**



Scheme 1. Possible Mechanisms for the iDA Reaction, one-step and step-wise mechanism.

Energy aspects:



Scheme 2: iDA reaction between *N*-aryl imine and NVF using M06-2X/6-311G\*\* level of theory. The relative energies are in kcal mol<sup>-1</sup>.



**Figure 1**. Relative Energy profile ( $\Delta E$  in kcal mol<sup>-1</sup>) of the iDA reaction between N-aryl imine and NVF.

#### Reactivity index analysis:

**Table 1.** *Reactivity index analysis*: M06-2X/6-311G<sup>\*\*</sup> level of theory. Electronic chemical potential  $\mu$ , hardnesses  $\eta$ , global electrophilicity  $\omega$ , and global nucleophilicity

| Compounds | μ       | η      | ω    | Ν    | $\Delta \omega$ |
|-----------|---------|--------|------|------|-----------------|
| NVF       | -0.1545 | 0.3273 | 0.99 | 2.91 |                 |
| 1a        | -0.1802 | 0.1988 | 2.22 | 2.71 | 1.23            |
| 1b        | -0.1848 | 0.1822 | 2.55 | 2.65 | 1.59            |
| 1c        | -0.1891 | 0.2251 | 2.16 | 2.62 | 1.17            |

N indices, for the reagents and compounds involved in iDA reactions for phenanthroline-THQ.



**Figure 2.** M06-2X/6-311G\*\* 3D Maps of the ASD (Atomic Spin Densities) and electrophilic P+k Parr functions of 1a, 1b and 1c compounds.

**Table 2.** *Reactivity index analysis*: M06-2X/6-311G\*\* level of theory. Electronic chemical potential  $\mu$ , hardnesses  $\eta$ , global electrophilicity  $\omega$ , and global nucleophilicity N indices, for the intermediaries involved in iDA reactions for phenanthroline THQ.

| Compounds | μ       | η      | ω    | Ν    |
|-----------|---------|--------|------|------|
| INa       | -0.1797 | 0.1757 | 2.50 | 3.54 |
| INb       | -0.1814 | 0.1773 | 2.52 | 3.47 |
| INc       | -0.1808 | 0.1759 | 2.53 | 3.51 |



**Figure 3.** M06-2X/6-311G\*\* 3D Maps of the ASD (Atomic Spin Densities) and electrophilic P+k Parr functions of intermediaries 1a, 1b and 1c involved in iDA reaction.

This result suggests that the polarity of the process depends mostly on a high electrophilicity value at any of both fragments, thereby suggesting that during an electrophile–nucleophile interaction the effect of electrophilicity outweigh the effect of nucleophilicity.