Supplement to: “AR(1) Latent Class Models for
Longitudinal Count Data”

A Transition Function

The transition function p(y;;|vij—1, Xi, 0:) = pi(yi;|yij—1;0.) can be expressed as the con-
volution of a beta-binomial distribution and a negative binomial distribution

min(y;;,y4,j—1)

Pi(Yijlyij-1:6c) = Z filyi; — k)gi(k). (1)

k=0

Above, f;(-) represents the probability mass function for a beta-binomial distribution with
parameters (yijv acnf,j—l/%a (1- QC)Mf,j—l/%>
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and g¢;(-) represents the probability mass function for a negative binomial distribution with

filk) = 1 @

mean (1 — a.) and variance pf;(1 — ac)(1 + )

_ D{E + (1 — ae)us;/ve} < Ye ><1ac>ﬂ%/%< Ye >’f )
C{Ek 4+ 1T{k + (1 — ac)pu§;/ved N1+ e L4/

By applying (1), the transition function can then be written as
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where /\sz = Qcy/ ijﬂf,jfl/%a ni; = ij/Vm and Mij—1= Mf,j—1/%-

B Unbiased Estimating Function

Using the notation of Section 3.2, let U(6.;y;) be the k' component of U;(0.). We can
then see that G(©, ) is an unbiased estimating function because the expectation of the

(k,c) component of V; is given by

E{Wi(@.m U0y | = b {M 2 kx| = mobn {UF 630} 0.
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and the expectation of the ¢ element of b; is given by

E{mc<@,ﬂ) — 7Tc} = WCE{p;C(;}:;)} — 7. = 0.

C Parameter Initialization

The parameter initialization procedure is detailed below

1. Choose K “cluster centers” for the regression coefficients (3, ..., 3). This is done
by randomly selecting K subject and fitting a separate Poisson regression for each

subject.

2. Assign each subject to one of the K classes through S; = argmin{D(y;; 3.)}. Here,

D(yi; 8.) = —2log L(B,|y;) is the usual deviance associated with a Poisson regression.

Namely, D(yi: B,) = 2 Y72, (1 — v log(115) + log(yi;1) )

3. Using this hard assignment of subjects to clusters, compute a new value of 3, by
fitting a Poisson regression for the subjects in the set S, = {i : S; = ¢}. Do this for

each cluster c=1,..., K.
4. Repeat steps (2)-(3) twice.

5. Compute the mixture proportions through 7, = % >, 1{S; = ¢}, and compute each
0. = (B, ac,7.) by solving > . ¢ Ui(0.) = 0, where Uy(-) is the estimating function

described in Section 3.1 and is also shown in (4) below.

XTA? ()R (o) A7 (1) (i — 1)

7

e (n;— c clR;1 Qe ¢
Ui8) = - el — (y; — p) T RE Oy — ) SNCY

3 vi = H)TAT P (R (o) AT () (i — ) —
D Estimation with Sampling Weights

Suppose v;, © = 1,...,m are sampling weights such that v; is proportional to the in-

verse probability that subject ¢ is included in the sample. We compute initial estimates
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(©© ) in the same way as the unweighted case. Given estimates (@®) (), we pro-

duce updated estimates (@*+D 7w+ in the (k+1)% step through the following process.

e Update 8. = (3., ac,7.) by solving
> oW (0%, xM)Ui(6,) =0, (5)
i=1

where U;(+) is the estimating function described in Section 3.1 and is also shown in
(4).

e Update 7, through

(k+1) Do vz‘VVic(G(k): 7))
¢ = S (6)

i=1 Ui

™

We determine convergence by stopping when the weighted estimating function )" | v;G;(©, )

is sufficiently close to zero.

E Simulation Parameter Values

In Scenarios I and IT of the INAR simulations, we define the mean curves through log(us;) =
B5 + B5ti;. The values of (5, 57) used for Scenarios I and II are given in Table S3.

The Poisson-Normal simulations use four simulation settings. One of these settings
(the setting with the largest class separation index) has eight time points with time points
tij =j/9 for j=1,...,8. The other three settings have five time points with ¢,; = j/6 for
j=1,...,5. Each setting utilizes the parameters (5§, 35, 0%, 0%, 7.) for c=1,...,4. The
values of these parameters for each simulation setting (as indexed by the value of the CSI)

are shown in table S4
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Figure S1: Expected empirical discrimination (EED) and Class Separation Indices (CSI)
for Scenarios I and II of the INAR(1)-NB model. Values of the EED are shown when the
parameters are estimated from simulations with m = 200, m = 500, m = 2,000 subjects.
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Figure S2: Sample overdispersion (weighted) obtained by using the estimated posterior
probabilities of class membership to randomly assign each subject to one of the four la-
tent classes. This random assignment procedure was repeated 1,000 times; the displayed
overdispersion values represent the average overdispersion values from these replications.
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Figure S3: Marginal residuals vs. marginal fitted values obtained from fitting the four-class
model to the CNLSY data. The marginal fitted values Y;; are defined as Yj; = chzl 55 D5
where pf is the estimated posterior probability that subject ¢ belongs to class c. The
marginal residuals 7;; are defined as r; = (Y;; — Yi;)/ @"(Yzj). Here, the estimated
marginal variance is defined as @"(Yij) =y, Geflf;Df + chzl{/ftfj — fij }2p¢, where the
term fi;; is defined as fi; = C~1 3¢, 5.
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Table S1: Class separation indices for each of the two central scenarios with several different
values of the autocorrelation and scale parameters. The class separation indices are com-
puted using both the all-pairwise c-statistic (APC¢) and the polytomous discrimination
index (PDI¢) as measures of classification performance.

Scenario I Scenario I1
¢ =1.25 ¢ =3.0 ¢ =1.25 o =30
a=01 a=04|a=01 a=04|a=01 a=04|a=01 a=04
APCq | 0.976 0.944 0.922 0.892 0.900 0.867 0.828 0.802
PDI- | 0.934 0.872 0.812 0.756 0.775 0.712 0.646 0.608




Table S2: Summary statistics from the CNLSY data. In total, these data contain 9,626
subjects each of which was surveyed biennially over the ages 4 to 16 (or 5 to 17). For the age
groups 4-5, 6-7, and 8-9, the counts are solely from the behavioral problems index (BPI).
For age groups 10-11 and 12-13, the counts represent the sum of the mother-reported BPI
and the child-reported number of delinquent acts. For age groups 14-15 and 16-17, the
counts are solely from the self-reported number of delinquent acts.

Child Ages Mean 10% 25% 50% 75% 90% Max

4-5 235 0 1 2 4 6 14
6-7 212 0 0 2 3 ) 14
8-9 215 0 0 2 3 ) 14
10-11 3.46 0 1 3 ) 3 19
12-13 3.1 0 1 3 ) 8 20
14-15 1.36 0 0 1 2 4 7
16-17 1.37 0 0 1 2 4 7
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Table S3: Values of the regression coefficients in Scenarios I and II.

Scenario I

Scenario 11

c=2 c¢=3 c=4

-0.7 0.65 0.0

1.4 0.0 1.2

-1.0 09 0.0




Table S4: Parameter values used for the Poisson-Normal simulations. The Class Sepa-
ration Index (CSI) shown for each simulation setting was computed with the all-pairwise

c-statistic.

CSI=0.983 CSI=0.934 CSI=0.896 CSI = 0.820
11 -0.90 -0.90 -0.90 -9.00
11035 -0.35 -0.35 -0.35
o2, | 0.30 0.40 0.85 1.50
o2, [ 0.125 0.20 0.50 0.70
T | 0.50 0.50 0.50 0.50
2 | 1.55 1.55 1.55 1.3
2 1210 -2.10 -2.10 -2.10
o2, | 0.08 0.15 0.35 1.00
o2, [ 0.05 0.075 0.25 0.50
T | 0.25 0.25 0.25 0.25
31 -0.40 -0.65 -0.65 0.7
3 11.90 2.00 2.00 1.75
02, | 0.10 0.20 0.60 1.25
o2, | 0.06 0.075 0.25 0.55
7 | 0.15 0.15 0.15 0.15
41 1.40 1.25 1.25 1.00
41.0.05 -0.05 -0.05 -0.05
o2, | 0.06 0.10 0.35 1.00
o2, | 0.04 0.04 0.30 0.45
71 | 0.10 0.10 0.10 0.10
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