

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Associations between anthropometric indicators and refraction and ocular biometrics in a cross-sectional study of Chinese schoolchildren

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027212
Article Type:	Research
Date Submitted by the Author:	11-Oct-2018
Complete List of Authors:	Ye, Sheng; School of Public Health, Tianjin Medical University Liu, Shengxin; School of Public Health, Tianjin Medical University Li, Wenlei; School of Public Health, Tianjin Medical University Wang, Qifan; School of Public Health, Tianjin Medical University Xi, Wei; School of Public Health, Tianjin Medical University Zhang, Xin; School of Public Health, Tianjin Medical University
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, Paediatric ophthalmology < OPHTHALMOLOGY

Page 1 of 30

1

2		
3 4 5	1	Associations between anthropometric indicators and refraction and
6 7 8	2	ocular biometrics in a cross-sectional study of Chinese schoolchildren
9 10 11	3	
11 12 13	4	Sheng Ye, Shengxin Liu, Wenlei Li, Qifan Wang, Wei Xi, and Xin Zhang
14 15 16	5	Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin
17 18 19	6	Medical University, Tianjin, China.
20 21	7	SY and SL contributed equally to the work presented here and should therefore be regarded
22 23 24	8	as equivalent authors.
25 26 27	9	
28 29	10	Correspondence to
30 31 32	11	Prof. Xin Zhang, Department of Maternal, Child and Adolescent Health, School of Public
33 34 35	12	Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China;
36 37 38	13	zhangxin@tmu.edu.cn.
39 40	14	
41 42 43	15	Synopsis
44 45 46	16	Development of refraction may be related to physical development during early adolescent
47 48	17	growth. Future studies in endocrine traits, such as the sex hormones, could further provide
49 50 51	18	new insights for the association between height and refraction.
52 53 54	19	
55 56	20	
57 58		1
59		For poor rouiou only http://bmiopon.http://sta/shout/suidelines.http/
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

21	
22	ABSTRACT
23	Objective To identify associations between anthropometric indicators, including height,
24	weight, and body mass index (BMI), and refraction and ocular biometrics in Chinese
25	schoolchildren in Tianjin, China.
26	Design Cross-sectional study.
27	Participants A total of 482 (86.1%) students (6 to 15 years old) were enrolled using a
28	stratified, clustered, random sampling method in this study, with no recorded history of eye
29	or systemic pathologies.
30	Methodology Height and weight were measured using standardized protocols. Ocular
31	biometrics, such as axial length (AL), vitreous chamber depth (VCD), and corneal
32	curvature (CC), were measured by a low-coherence optical reflectometry device. The
33	AL/CC ratio was calculated. Cycloplegic refraction was measured using autorefraction.
34	Results The overall prevalence of myopia was 71.16%. The mean refraction, height,
35	weight and BMI were -1.48 \pm 1.82 D, 140.79 \pm 13.95 cm, 38.29 \pm 10.86 kg, and 19.04 \pm
36	3.18 kg/m ² , respectively. Taller persons tended to have eyes with longer ALs (+0.14 mm
37	for each 10 cm difference in height, P<0.05), deeper VCDs (+0.13 mm, P<0.05), higher
38	AL/CC ratios (+0.02, P<0.05), and more negative refractions (-0.21 D, P<0.05) after
39	controlling for age, gender, parental myopia, family income, reading and writing distance,
40	and time spent outdoors. However, although weight was correlated with AL, central $^{\ 2}$
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

41 corneal thickness and VCD, students with different weights or BMIs showed similar
42 refraction.
43 Conclusions Height remained independently related to refraction and various ocular

biometrics after adequately controlling covariates, which could support the idea that the

development of refraction is related to physical development. Future work should focus on
the effects of sex hormones on the association between height and refraction during early

47 adolescent growth.

48 Keywords: anthropometric indicators, refraction, ocular biometrics, schoolchildren

49

44

50 Strengths and limitations of this study

• A stratified, clustered, random sampling strategy was applied to recruit participants,

- 52 which could avoid the potential selection bias present in previous studies performed in
- 53 specific population groups.
- Ocular biometrics were measured comprehensively and the covariates were controlled

adequately, which allowed us to achieve a more detailed analysis.

- This study was cross-sectional design and could not allow an evaluation of causality.
- Puberty parameters were not available in our study, limiting the further research to
- 58 explore the potential shared mechanism underlies both physical development during
 - early adolescent growth and refractive status.

59

60

61 Introduction

62	Myopia has reached almost epidemic proportions in the world, especially in certain areas
63	of East and Southeast Asia.1 This condition is commonly viewed as etiologically
64	heterogeneous. Genetic and environmental risk factors have been shown to be involved in
65	its progression. The genetic basis of myopia has been supported by evidence indicating
66	high heritability values in twin studies ² and a higher prevalence of myopia in children with
67	myopic parents. ³ Excessive near work activities, ^{4 5} limited time spent outdoors, ^{6 7} and
68	intensive educational pressure ⁸ ⁹ all have been reported to promote the development of
69	myopia. In our effort to consider other factors, we noted that anthropometric indicators,
70	such as height, are thought to be associated with refraction, although no consensus has been
71	achieved regarding this issue. ^{10 11}
72	Refractive status is determined by the balance of refractive power of the cornea and lens,
73	and the axial length (AL) of the eye (representing the combination of anterior chamber
74	depth (ACD), lens thickness (LT), and vitreous chamber depth (VCD)). ¹² Myopia usually
75	arises in an eye that has become too long, particularly via the elongation of the vitreous
76	chamber. Several epidemiological studies have demonstrated that the changes in ocular
77	dimensions that occur in early life progress concomitant with physical development in
78	children, ^{13 14} and the ages of cessation are also similar for increases in height and axial

⁷⁹ elongation.¹³ Furthermore, genetic studies have confirmed that a common genetic pathway

80 underlies both height and AL,^{15 16} although no specific genetic variants have yet been

Page 5 of 30

81	identified. All of these clues suggest the existence of a shared mechanism that regulates
82	the coordinated growth of body and eye size. It has been suggested that there may be a
83	relationship between body stature and refraction. However, in contrast to the consensus
84	regarding the significant associations between body stature and AL, the relationship
85	between body stature and refraction remains controversial. Whereas many studies have
86	reported that taller ¹⁰ ¹⁷⁻²⁰ and heavier persons ²¹ ²² have an increased likelihood of having
87	myopia, other studies have found no such association. ²³⁻²⁸ The discrepancies among these
88	findings may be due to differences in sample sizes, concept definitions or other
89	methodological variations (e.g., height and weight obtained via self-reporting).
90	In China, few studies have comprehensively measured ocular biometrics or further
91	explored their associations with body stature. Wang et al.14 confirmed that there is a
92	positive association between height and AL in 7- to 15-year-old schoolchildren based on
93	longitudinal data obtained in Guangzhou, China. However, detailed information about the
94	associations between body stature and refraction and other ocular biometrics was not
95	available in that study. Additionally, myopia most commonly starts in young
96	schoolchildren and progresses in early adolescence. ²¹ It is most appropriate to study the
97	effect of body growth on refractive development in young, growing students. Therefore, in
98	the current survey, we explored the associations between anthropometric indicators,
99	including height, weight, and body mass index (BMI), and both refraction and ocular
100	biometrics in schoolchildren aged 6 to 15 years old in Tianjin, China.

101	
102	METHODS
103	Participants were initially recruited using a stratified, clustered, random sampling method.
104	Two districts were randomly chosen from the 6 main urban districts in Tianjin in November
105	2016. Next, one school was randomly selected from each selected district. One class was
106	then randomly chosen from each grade level within the two selected schools. All students
107	in these selected classes were invited, but participation in this study was voluntary. After
108	the purposes and procedures of the study were explained to each student and their parents
109	in depth, written informed consent was collected. Students without parental consent and
110	students who had amblyopia, heterotropia, or any eye or systemic pathologies were
111	excluded. Finally, the study consisted of 482 (86.1% response rate) 6- to 15-year-old
112	students (264 boys, 218 girls) out of a total of 560 students who were initially invited.
113	Individuals who were included in the study were older $(9.42 \pm 2.09 \text{ vs } 7.60 \pm 2.38 \text{ years})$
114	old, $P < 0.01$) than those who were excluded (data not shown). There were no significant
115	differences in gender, parental myopia, monthly family income, reading and writing
116	distance, and time spent outdoors between the included and excluded individuals.
117	The study protocol was approved by the Ethics Committee of Tianjin Medical University
118	and performed in accordance with the tenets of the Declaration of Helsinki.
119	Ocular examinations
120	All included participants underwent a comprehensive eye examination, including 6
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 30

BMJ Open

measurements of intraocular pressure, a slit-lamp examination of the anterior and posterior
segments, cycloplegic autorefraction and ocular biometrics. The purpose of intraocular
pressure measurement and the slit lamp examination was to exclude contraindications for
mydriasis.

Ocular biometrics, such as AL, central corneal thickness (CCT), ACD, LT, VCD, and corneal curvature (CC), were measured with a low-coherence optical reflectometry device (Lenstar LS900; Haag-Streit AG, 3098 Koeniz, Switzerland) in both eyes before pupil dilation. The AL/CC ratio, also commonly known as the axial length/corneal radius (AL/CR) ratio, was additionally calculated. Cycloplegia was then induced by administering two drops containing 0.5% tropicamide and 0.5% phenylephrine in a mixed eye agent to each eye at 0 and 5 minutes. At 25 minutes after the second instillation, participants with full cycloplegia underwent autorefraction using an auto-kerato-refractor (Canon Autorefractor RK-F1, Tokyo, Japan), and 3 consecutive measurements were taken in both eves. The mean value of 3 valid measurements was calculated for statistical analysis. All of the above instruments were calibrated before the ocular examination.

The spherical equivalent refraction (SER) of each eye was then calculated as the spherical refraction + 1/2 of the cylindrical refraction using data obtained using the autorefractor. Myopia was defined as an SER of \leq -0.5 diopters (D).

- 139 Anthropometric measurements
- 140 Height and weight were obtained following specific standardized protocols. Height was

determined with the subject standing barefoot on the floor of the height meter and recorded
in centimeters (cm). Weight was measured without shoes and heavy coats on a calibrated
electronic weighing scale and recorded in kilograms (kg). BMI was derived as
weight/height² and recorded in kilograms per square meter (kg/m²).

Questionnaire

The parents of participants were asked to complete a questionnaire developed to collect information on social-demographic characteristics and potential risk factors for school myopia. Moreover, parents whose children were excluded from the study were also required to finish the same questionnaire.

The basic characteristics of the participants included age (calculated as the date of investigation minus the birth date of the child), gender (boy or girl), the monthly income of the family (less than 4000 RMB, 4000-8000 RMB, 8000-10,000 RMB, 10,000-15,000 RMB, or more than 15,000 RMB), and the number of myopic parents (none, one parent, or both parents). Near work related behaviors were ascertained with the question "What is the distance between your child's eyes and a book when reading or writing?", with answers categorized as follows: <10 cm, 10-19 cm, 20-29 cm, and ≥ 30 cm. Time spent outdoors was estimated by asking how many hours per day the child spent in outdoor activities during weekdays and weekends separately. The average time spent outdoors was calculated by the following formula: $[T_{weekday}$ (hours spent on weekday) \times 5 + $T_{weekend}$ (hours spent on weekend) $\times 2$] $\div 7$.

Statistical analysis

1 2 3	
4 5 6 7	
8 9 10 11	
11 12 13 14 15 16 17	
18	
19 20 21 22 23 24	
23 24 25 26	
24 25 26 27 28 29	
30 31 32 33	
34 35 36 37	
38 39 40	
41 42 43 44	
45 46 47 48	
49 50 51	
52 53 54 55	
56 57 58 59	
60	

-	
162	Because refraction and ocular biometrics were highly correlated between the left and right
163	eyes (the Pearson correlation coefficients (r) for refraction and AL were 0.90, P <0.01, and
164	0.96, <i>P</i> < 0.01 , respectively), the data obtained from the right eye were chosen for analyses.
165	Ocular biometrics were all normally distributed, as determined by P-P plots.
166	T-tests were performed for quantitative variables and chi-square tests were performed
167	for categorical variables to analyze the differences in basic characteristics between persons
168	with and without myopia. Univariate associations between anthropometric indicators and
169	refraction and ocular biometrics were identified. Simple linear regression models were
170	constructed to assess the effects of height, weight, and BMI (as independent variables) on
171	refraction and individual ocular biometrics (as dependent variables). Tests for linear trends
172	were performed by entering the median value of each category of the anthropometric
173	indicator based on quartiles as a continuous variable into the models. Multiple linear
174	regression models were then fitted after adjusting, in turn, for age, gender, parental myopia,
175	family income, reading and writing distance, and time spent outdoors. Collinearity
176	diagnostics and a residual analysis were performed for all multiple linear regression models.
177	We found that multicollinearity was absent among the independent variables used in each
178	model, and the points in each residual plot were nearly homogenously distributed on the
179	two sides of the zero horizontal line, suggesting that these fitted models were appropriate.
180	Statistical analyses were performed using commercial statistical software (SPSS for
	9

	BMJ Open
181	Windows, version 20.0; IBM-SPSS, Chicago, Illinois, USA), and P values <0.05 were
182	considered statistically significant.
183	Patient and public involvement
184	Patients and the public were not involved in developing the research questionnaire,
185	outcome measures and overall design of this study protocol.
186	
187	RESULTS
188	Characteristics of participants
189	Among the 482 included schoolchildren, the prevalence of myopia was 71.16% (343 of
190	482; 95% CI, 67.01% to 75.10%). The mean SER, height, weight and BMI of all
191	participants was -1.48 \pm 1.82 D, 140.79 \pm 13.95 cm, 38.29 \pm 10.86 kg, and 19.04 \pm 3.18
192	kg/m ² , respectively (Table 1). Participants with myopia were older (P <0.01), taller
193	(P <0.01), heavier (P <0.01); were more likely to have myopic parents (P <0.01), a higher
194	monthly family income ($P < 0.05$), a closer reading and writing distance ($P < 0.05$), and to
195	spent less time outdoors (P <0.05); and had eyes with longer ALs (P <0.01), deep ACDs
196	and VCDs (P<0.01), thinner LTs (P<0.01), and larger AL/CC ratios (P<0.01).
197	Bivariate correlations between variables
198	Height was positively correlated with AL (r=0.50, P<0.01), CCT (r=0.17, P<0.01), ACD
199	(r= 0.29, P<0.01), VCD (r= 0.49, P<0.01) and the AL/CC ratio (r= 0.49, P<0.01) and
200	negatively correlated with SER (r = -0.45, P <0.01) and LT (r = -0.24, P <0.01), although 10
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

2
3
4
4
5
6
7
8
9
10
11
12
12
13 14 15
14
15
16 17 18
17
10
10
19
20
21
22
22
23 24 25 26 27 28
24
25
26
20
27
28
29
30
31
32
33
34
34 35
22
36 37
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

201	these correlations were of low to moderate strength. However, there was no correlation
202	between height and CC (Table 2). The correlation analysis of weight with refraction and
203	individual ocular biometrics also produced similar results except that there was a positive
204	correlation between weight and CC. BMI was positively correlated with AL, CCT, VCD
205	and the AL/CC ratio and negatively correlated with SER but was not correlated with ACD,
206	LT or CC.
207	Linear trends in refraction and ocular biometrics changes by quartiles of body stature
208	Taller and heavier persons tended to have eyes with longer ALs (<i>P</i> for trend, <0.01), thicker
209	CCTs (P for trend, <0.05), deeper ACDs (P for trend, <0.01), thinner LTs (P for trend,
210	<0.01), deeper VCDs (P for trend, <0.01), higher AL/CC ratios (P for trend, <0.01), and
211	more myopic refractions (P for trend, <0.01) (Table 3). In addition to ACD and LT, the
212	above tendencies were also observed among more obese schoolchildren (students with
213	higher BMIs).
214	Linear regression analysis of the associations between anthropometric indicators and
215	refraction and ocular biometrics
216	In model 1, we used the association between height and refraction as an example and found
217	that for each 10 cm increase in height, the SER was expected to decrease by $0.59 \text{ D} (P < 0.01)$
218	without controlling for any covariates (Table 4). In the next two models, we controlled, in
219	turn, for age and gender or for age, gender, parental myopia, family income, reading and
220	writing distance and time spent outdoors, and found that the difference in SER declined by 11

)

0.26 D (P < 0.01) and 0.21 D (P < 0.05) in each of these models, respectively. In general, taller persons tended to have eves with longer ALs (+0.14 mm, P < 0.05), deeper VCDs (+0.13 mm, P<0.05), greater AL/CC ratios (+0.02, P<0.05), and more negative refractions (-0.21 D, P<0.05). However, after we controlled for the same confounders described above, height was no longer related to CCT, ACD, or LT. Although weight was correlated with AL, CCT, and VCD in model 3, it was not associated with ACD, LT, the AL/CC ratio or refraction. For each 10 kg increase in weight, AL was 0.15 mm longer (P < 0.01), CCT 4.44 μ m thicker (P < 0.05), and VCD 0.15 mm deeper (P<0.01). Nonetheless, BMI was not correlated with refraction or any individual ocular biometric in multiple linear regression models. 7.67

DISCUSSION

In this paper, we comprehensively measured ocular biometrics and then explored the associations between anthropometric indicators and refraction and ocular biometrics after adequately controlling covariates. We were therefore able to achieve a more detailed analysis than has been presented in previous studies. A stratified, clustered, random sampling strategy was applied to recruit participants, and this allowed us to avoid the potential selection bias present in previous studies performed in specific population groups, such as male conscripts.^{27 29} The current results are in almost complete agreement with those of Saw et al.,¹⁷ who

Page 13 of 30

241	showed that among 1449 Singaporean Chinese children aged 7-9 years old, taller persons
242	were more likely to have eyes with longer ALs (+0.46 mm, P <0.01), deeper VCDs (+0.46
243	mm, P<0.01), flatter corneas (+0.10 mm, P<0.01), greater AL/CC ratios (+0.02, P=0.03),
244	and refractions that tended toward myopia (-0.47 D, P <0.01) after controlling for age,
245	gender, parental myopia, and the number of books read per week. A birth cohort performed
246	in Britain to examine the relationship between height growth trajectories and the
247	development of myopia presented similar results. ¹⁰ For each SD increase in height during
248	the period the children aged from 2.5 to 10 years old, SER had become more negative by -
249	0.075 D (95% CI, -0.112 to -0.039; P<0.01) and -0.081 D (95% CI, -0.129 to -0.034;
250	P < 0.01) when the children reached 11 and 15 years old, respectively. However, Huang et
251	al. ²⁸ reported that there was no statistically significant correlation between myopia shift
252	and height changes among schoolchildren aged 7 to 9 years old in Taiwan, China.
253	Although the association remains unclear, these results will help us to further explore
254	the intricate relationship between the development of physical characteristics and
255	refraction. A commonly proposed explanation for a potential association is that both higher
256	height and myopia are independent consequences of better socioeconomic status, and there
257	may therefore be no causal relationship between height and myopia. ^{17 23} However, in this
258	study, after we controlled for socioeconomic characteristics and myopia-related risk factors,
259	height remained independently related to refraction and various ocular biometrics. Myopia
260	most commonly develops during the period extending from childhood to early adolescence 13
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
4	
5 6	
7	
8	
9 10	
11	
12	
13	
14	
14 15 16	
17	
18 19	
20	
21	
22	
23 24	
24 25 26	
26	
27 28	
29	
30	
31 32	
33	
34 35 36	
35	
37	
38	
39 40	
40	
42	
43 44	
44 45	
46	
47	
48 49	
50	
51	
52 53	
54	
55	
56 57	
58	
59	
60	

261	(from approximately 8 to 14 years old), ³⁰ and this is also the period during which growth
262	spurts occur; ³¹ we therefore inferred that the development of refraction could be related to
263	physical development during the early period of adolescent growth. The findings of the
264	Singapore Cohort Study of Risk Factors for Myopia (SCORM) support this hypothesis. ¹⁹
265	The SCORM reported that boys and girls who experienced earlier peak height velocity also
266	achieved earlier peak SER velocity (at a mean age of 10.1 vs 10.6 years old for boys,
267	P=0.01, and 10.0 vs 10.6 years old for girls, $P=0.01$) and had an earlier age of onset of
268	myopia (9.9 vs 10.4 years old for boys, $P=0.03$, and 9.7 vs 10.1 years old for girls, $P=0.04$).
269	This could be a consequence of the sex hormone surge that occurs during early adolescence,
270	especially during growth spurts. Moreover, sex hormone receptors are present in multiple
271	regions of the human eye, including the iris, lens, and retina, and these receptors have been
272	found to play roles in the development of various ocular diseases. ³² Therefore, sex
273	hormones may be a significant mediator of the association between height and refraction
274	observed in our study. This hypothesis, if valid, suggests that the endocrine traits observed
275	during childhood and adolescence could provide important clues for mechanistic studies
276	aimed at exploring refractive development.
277	The relationships weight and BMI share with refraction are not as extensively studied as
278	those with height, but also presented the inconclusive conclusions. Heavier and more obese
279	Chinese children and adults in Singapore have been shown to have refractions that tend
280	toward hyperopia. ^{17 23} Heavier adults in rural Myanmar were also reported to have more

Page 15 of 30

281	positive refractions. ²⁵ However, a twin study performed in Australia found that compared
282	to females in the lowest quartile weight group, those in the highest weight quartile had a
283	higher risk of myopia (OR: 1.79, P=0.01). ²² Consistent with the results of a cross-sectional
284	study performed in 19-year-old male conscripts in South Korea, ²⁷ in our study, we found
285	that weight and BMI had no effect on refraction. Inconsistencies in data regarding the
286	relationships weight and height share with refraction (i.e., refractions were myopic only in
287	taller children and not in heavier or more obese children) have been more difficult to
288	explain. Some uncontrolled confounders, such as nutritional status, could lead to these
289	differences. Nutritional status not only affects physical development but also influences
290	the development of myopia. ^{33 34} Therefore, in the future, a comprehensive dietary survey
291	will be needed to determine whether nutritional status itself has any effect on the
292	correlation between physical development and refractive development.
293	This study has several limitations that warrant consideration. First, information on
294	putative myopia risk factors obtained from our questionnaire (e.g., the distance between
295	the child's eyes and a book when reading or writing) was subjectively estimated by the
296	parents. Although this method has been widely applied in previous studies, it can lead to
297	recall bias. Differences between non-respondents and respondents may also have resulted
298	in non-respondent bias given that a difference in age was identified between the individuals
299	who were included in and excluded from this study. Second, all of the data collected in this
300	study were cross-sectional and did not allow an evaluation of causality. Therefore, it 15

301	remains uncertain whether the conclusions drawn from this study are applicable to
302	longitudinal relationships. Furthermore, we could not analyze data regarding puberty
303	parameters, such as the onset of pubic hair and voice break in boys and breast development
304	and age at menarche in girls. A later age at menarche (older than 14 years old) has been
305	found to be associated with a decreased risk of moderate and high myopia. ³⁵ To determine
306	whether physical development during early adolescent growth affects refractive status,
307	these puberty parameters must be considered in future studies.
308	In conclusion, we found that taller children tended to have eyes with longer ALs, deeper
309	VCDs, higher AL/CC ratios and more myopic refractions after controlling for age, gender,
310	parental myopia, family income, reading and writing distance, and time spent outdoors.
311	The results of this study support the idea that the development of refraction is related to
312	physical development during early adolescent growth. Further research is required to
313	determine whether sex hormones during growth spurts could affects the association
314	between height and refraction.
315	
316	Acknowledgments The authors thank all families who participated in our study, Tianjin
317	Eye Hospital for their help with ocular examinations, and all team members in the

318 Department of Maternal, Child and Adolescent Health at the School of Public Health of

319 Tianjin Medical University.

Contributors Design of the study: SL and XZ. Collection and management of the data:

1 2		
2 3 4	321	SY, SL, WL and QW. Analysis and interpretation of the data: SY. Review and approval of
5 6	521	51, 52, WE and Q W. Miningsis and interpretation of the data. 51. Review and approval of
7 8	322	the manuscript: SY, SL, WL, QW, WX and XZ.
9 10 11	323	Funding This study was supported by grants from the Key Scientific Project of Tianjin
12 13	324	Science and Technology Commission of China (15ZCZDSY01050) and the National
14 15 16	325	Natural Science Foundation of China (No. 81773459).
17 18 19	326	Competing interests None declared.
20 21	327	Patient consent Obtained.
22 23 24	328	Ethics approval Ethics Committee of Tianjin Medical University, China.
25 26 27	329	Provenance and peer review Not commissioned; externally peer reviewed.
28 29	330	Data sharing statement No additional data are available.
30 31 32	331	
33 34 35	332	REFERENCES
36 37 38	333	1. Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and
39 40	334	prevention. Prog Retin Eye Res 2018;62:134-49.
41 42 43	335	2. Kim MH, Zhao D, Kim W, et al. Heritability of myopia and ocular biometrics in Koreans:
44 45 46	336	the healthy twin study. Investigative ophthalmology & visual science
47 48 49	337	2013; 54 (5):3644-9.
50 51	338	3. Ma Y, Zou H, Lin S, et al. Cohort study with 4-year follow-up of myopia and refractive
52 53 54	339	parameters in primary schoolchildren in Baoshan District, Shanghai. Clin Exp
55 56	340	Ophthalmol 2018.
57 58		17
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	341	4. Huang HM, Chang DS, Wu PC. The Association between Near Work Activities and
6 7 8	342	Myopia in Children-A Systematic Review and Meta-Analysis. PloS one
9 10	343	2015; 10 (10):e0140419.
11 12 13	344	5. Wu LJ, Wang YX, You QS, et al. Risk Factors of Myopic Shift among Primary School
14 15 16	345	Children in Beijing, China: A Prospective Study. International journal of medical
17 18 19	346	<i>sciences</i> 2015; 12 (8):633-8.
20 21	347	6. He M, Xiang F, Zeng Y, et al. Effect of Time Spent Outdoors at School on the
22 23 24	348	Development of Myopia Among Children in China: A Randomized Clinical Trial.
25 26 27	349	Jama 2015; 314 (11):1142-8.
28 29	350	7. Xiong S, Sankaridurg P, Naduvilath T, et al. Time spent in outdoor activities in relation
30 31 32	351	to myopia prevention and control: a meta-analysis and systematic review. Acta
33 34 35	352	ophthalmologica 2017; 95 (6):551-66.
36 37 38	353	8. Mirshahi A, Ponto K, Hoehn R, et al. Myopia and level of education: results from the
39 40	354	Gutenberg Health Study. <i>Ophthalmology</i> 2014; 121 (10):2047-52.
41 42 43	355	9. Williams KM, Bertelsen G, Cumberland P, et al. Increasing Prevalence of Myopia in
44 45 46	356	Europe and the Impact of Education. <i>Ophthalmology</i> 2015; 122 (7):1489-97.
47 48 49	357	10. Northstone K, Guggenheim JA, Howe LD, et al. Body stature growth trajectories
50 51	358	during childhood and the development of myopia. Ophthalmology
52 53 54	359	2013; 120 (5):1064-73.
55 56 57 58	360	11. Lee DC, Lee SY, Kim YC. An epidemiological study of the risk factors associated with 18
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	361	myopia in young adult men in Korea. Scientific reports 2018;8(1):511.
6 7 8	362	12. Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. Lancet 2012;379(9827):1739-48.
9 10	363	13. Goss DA, Cox VD, Herrin-Lawson GA, et al. Refractive error, axial length, and height
11 12 13	364	as a function of age in young myopes. Optometry and vision science : official
14 15 16	365	publication of the American Academy of Optometry 1990;67(5):332-8.
17 18 19	366	14. Wang D, Ding X, Liu B, et al. Longitudinal changes of axial length and height are
20 21	367	associated and concomitant in children. Investigative ophthalmology & visual
22 23 24	368	science 2011; 52 (11):7949-53.
25 26 27	369	15. Prashar A, Hocking PM, Erichsen JT, et al. Common determinants of body size and
28 29	370	eye size in chickens from an advanced intercross line. Experimental eye research
30 31 32	371	2009; 89 (1):42-8.
33 34 35	372	16. Zhang J, Hur YM, Huang W, et al. Shared genetic determinants of axial length and
36 37 38	373	height in children: the Guangzhou twin eye study. Archives of ophthalmology
39 40	374	(Chicago, Ill. : 1960) 2011; 129 (1):63-8.
41 42 43	375	17. Saw SM, Chua WH, Hong CY, et al. Height and its relationship to refraction and
44 45 46	376	biometry parameters in Singapore Chinese children. Investigative ophthalmology
47 48 49	377	& visual science 2002;43(5):1408-13.
50 51	378	18. Rahi JS, Cumberland PM, Peckham CS. Myopia over the lifecourse: prevalence and
52 53 54	379	early life influences in the 1958 British birth cohort. Ophthalmology
55 56 57	380	2011; 118 (5):797-804.
58 59		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
3	
Δ	
5	
5	
0	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34 \end{array}$	
24	
25	
26	
27	
28	
29	
30	
31 32 33 34 35 36 37	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
42 43	
44	
44 45	
45 46	
47 ₄∘	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

381	19. Yip VC, Pan CW, Lin XY, et al. The relationship between growth spurts and myopia
382	in Singapore children. Investigative ophthalmology & visual science
383	2012; 53 (13):7961-6.
384	20. Rim TH, Kim SH, Lim KH, et al. Body Stature as an Age-Dependent Risk Factor for
385	Myopia in a South Korean Population. Seminars in ophthalmology 2017;32(3):326-
386	36.
387	21. Gardiner PA. Physical growth and the progress of myopia. Lancet
388	1955; 269 (6897):952-3.
389	22. Dirani M, Islam A, Baird PN. Body stature and myopia-The Genes in Myopia (GEM)
390	twin study. <i>Ophthalmic epidemiology</i> 2008; 15 (3):135-9.
391	23. Wong TY, Foster PJ, Johnson GJ, et al. The relationship between ocular dimensions
392	and refraction with adult stature: the Tanjong Pagar Survey. Investigative
393	ophthalmology & visual science 2001; 42 (6):1237-42.
394	24. Ojaimi E, Morgan IG, Robaei D, et al. Effect of stature and other anthropometric
395	parameters on eye size and refraction in a population-based study of Australian
396	children. Investigative ophthalmology & visual science 2005;46(12):4424-9.
397	25. Wu HM, Gupta A, Newland HS, et al. Association between stature, ocular biometry
398	and refraction in an adult population in rural Myanmar: the Meiktila eye study. Clin
399	Exp Ophthalmol 2007; 35 (9):834-39.
400	26. Sharma A, Congdon N, Gao Y, <i>et al.</i> Height, stunting, and refractive error among rural 20

Page 21 of 30

1 2		
3 4 5	401	Chinese schoolchildren: the See Well to Learn Well project. American journal of
6 7 8	402	ophthalmology 2010; 149 (2):347-53.
9 10	403	27. Jung SK, Lee JH, Kakizaki H, et al. Prevalence of myopia and its association with body
11 12 13	404	stature and educational level in 19-year-old male conscripts in seoul, South Korea.
14 15 16	405	Investigative ophthalmology & visual science 2012;53(9):5579-83.
17 18 19	406	28. Huang CY, Hou CH, Lin KK, et al. Relationship of lifestyle and body stature growth
20 21	407	with the development of myopia and axial length elongation in Taiwanese
22 23 24	408	elementary school children. Indian journal of ophthalmology 2014;62(8):865-9.
25 26 27	409	29. Rosner M, Laor A, Belkin M. Myopia and stature: findings in a population of 106,926
28 29 30	410	males. European journal of ophthalmology 1995;5(1):1-6.
31 32	411	30. Baird P, Schäche M, Dirani M. The GEnes in Myopia (GEM) study in understanding
33 34 35	412	the aetiology of refractive errors. <i>Prog Retin Eye Res</i> 2010; 29 (6):520-42.
36 37 38	413	31. Limony Y, Koziel S, Friger M. Age of onset of a normally timed pubertal growth spurt
39 40	414	affects the final height of children. Pediatr Res 2015;78(3):351-5.
41 42 43	415	32. Ogueta SB, Schwartz SD, Yamashita CK, et al. Estrogen receptor in the human eye:
44 45 46	416	influence of gender and age on gene expression. Investigative ophthalmology &
47 48 49	417	visual science 1999;40(9):1906-11.
49 50 51	418	33. Lim LS, Gazzard G, Low Y-L, et al. Dietary Factors, Myopia, and Axial Dimensions
52 53 54	419	in Children. Ophthalmology 2010;117(5):993-U195.
55 56 57 58	420	34. You QS, Wu LJ, Duan JL, <i>et al.</i> Factors associated with myopia in school children in 21
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4 5	421	China: the Beijing childhood eye study. <i>PloS one</i> 2012;7(12):e52668.
6 7 8	422	35. Lyu IJ, Kim MH, Baek SY, et al. The Association Between Menarche and Myopia:
9 10	423	Findings From the Korean National Health and Nutrition Examination, 2008-2012.
11 12 13	424	Investigative ophthalmology & visual science 2015;56(8):4712-8.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	425	
56 57 58		22
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 23 of 30

BMJ Open

	Total	Myopia	Nonmyopia	P Valu
Age (years)	9.42 ± 2.09	9.88 ± 2.14	8.30 ± 1.45	< 0.01
Male	264 (54.77)	187 (54.52)	77 (55.40)	0.86
Parental myopia*				< 0.01
None	129 (28.48)	74 (23.13)	55 (41.35)	
One parent	188 (41.50)	134 (41.88)	54 (40.60)	
Both parents	136 (30.02)	112 (35.00)	24 (18.05)	
Monthly family income*				< 0.05
<4000 RMB	41 (8.78)	27 (8.16)	14 (10.29)	
4000-8000 RMB	136 (29.12)	89 (26.89)	47 (34.56)	
8000-10,000 RMB	133 (28.48)	89 (26.89)	44 (32.35)	
10,000-15,000 RMB	91 (19.49)	73 (22.05)	18 (13.24)	
≥15,000 RMB	66 (14.13)	53 (16.01)	13 (9.56)	
Reading and writing distance*				< 0.05
<10 cm	45 (9.62)	36 (10.81)	9 (6.67)	
10-20 cm	200 (42.74)	148 (44.44)	52 (38.52)	
20-30 cm	166 (35.47)	117 (35.14)	49 (36.30)	
≥30 cm	57 (12.18)	32 (9.61)	25 (18.52)	
Time spent outdoors (hours)	1.20 ± 0.70	1.16 ± 0.70	1.31 ± 0.69	< 0.05
Height (cm)	140.79 ± 13.95	143.85 ± 14.17	133.22 ± 10.01	< 0.01
Weight (kg)	38.29 ± 10.86	40.06 ± 11.05	33.92 ± 9.01	< 0.01
BMI (kg/m ²)	19.04 ± 3.18	19.10 ± 3.14	18.89 ± 3.28	0.52
SER (D)	-1.48 ± 1.82	-2.20 ± 1.66	0.30 ± 0.54	< 0.01
AL (mm)	23.81 ± 1.12	24.16 ± 1.07	22.95 ± 0.72	< 0.01
CCT (µm)	547.65 ± 32.44	548.88 ± 33.32	544.63 ± 30.05	0.19

ACD (mm)	3.08 ± 0.26	3.14 ± 0.25	2.94 ± 0.23	< 0.01
LT (mm)	3.47 ± 0.20	3.43 ± 0.20	3.55 ± 0.19	< 0.01
VCD (mm)	17.27 ± 1.09	17.60 ± 1.05	16.46 ± 0.71	< 0.01
CC (mm)	7.78 ± 0.26	7.78 ± 0.25	7.79 ± 0.26	0.84
AL/CC ratio	3.06 ± 0.13	3.11 ± 0.13	2.95 ± 0.07	< 0.01

Data presented as means with standard deviation (SD) or as n (%).

*Numbers of individuals vary due to missing data.

 Table 2 Bivariate correlations of body stature with refraction and ocular biometrics.

	Height (cm)	Weight (kg)	BMI (kg/m ²)
SER (D)	-0.45**	-0.39**	-0.11*
AL (mm)	0.50**	0.45**	0.15*
CCT (µm)	0.17**	0.19**	0.09*
ACD (mm)	0.29**	0.22**	0.03
LT (mm)	-0.24**	-0.19**	-0.04
VCD (mm)	0.49**	0.44**	0.16**
CC (mm)	0.07	0.10*	0.08
AL/CC ratio	0.49**	0.40**	0.10*

Data are the Pearson correlation coefficients.

*: *P*<0.05.

**: *P*<0.01.

	Range	n	SER (D)	AL (mm)	CCT (µm)	ACD (mm)
Height (cm)						
1st quartile	100.0~130.0	127	-0.48 ± 1.13 †	23.09 ± 0.78	542.11 ± 30.93	2.97 ± 0.24
2nd quartile	130.1~140.0	136	-1.08 ± 1.46	23.58 ± 0.98	544.96 ± 32.69	3.05 ± 0.28
3rd quartile	140.1~150.7	99	-1.86 ± 1.80	24.15 ± 1.01	550.04 ± 32.31	3.16 ± 0.23
4th quartile	150.8~182.5	120	-2.68 ± 2.06	24.56 ± 1.14	554.58 ± 32.76	3.18 ± 0.22
<i>P</i> for trend‡			<i>P</i> <0.01	<i>P</i> <0.01	<i>P</i> <0.05	<i>P</i> <0.01
Weight (kg)						
1st quartile	20.0~30.0	129	-0.59 ± 1.19	23.19 ± 0.80	541.27 ± 32.75	3.02 ± 0.26
2nd quartile	30.1~36.1	112	-1.12 ± 1.30	23.58 ± 1.00	547.64 ± 31.34	3.04 ± 0.26
3rd quartile	36.2~45.0	128	-1.75 ± 1.92	24.02 ± 1.12	544.17 ± 31.56	3.12 ± 0.24
4th quartile	45.1~82.3	113	-2.54 ± 2.14	24.52 ± 1.12	558.92 ± 31.65	3.16 ± 0.24
<i>P</i> for trend			<i>P</i> <0.01	<i>P</i> <0.01	<i>P</i> <0.01	<i>P</i> <0.01
BMI (kg/m²)						
1st quartile	14.0~16.5	121	-1.19 ± 1.62	23.55 ± 1.05	543.79 ± 31.55	3.09 ± 0.25
2nd quartile	16.6~18.4	120	-1.39 ± 1.69	23.80 ± 1.14	545.79 ± 32.26	3.05 ± 0.28
3rd quartile	18.5~20.8	120	-1.59 ± 1.88	23.90 ± 1.12	547.12 ± 32.16	3.09 ± 0.25

.. 1 DM **T 11 2 1**1 1. . • 1 1. 1.1 C1 · 14 · 1 / C C

 BMJ Open

4th quartile	20.9~30.6	121	-1.74 ± 2.05	24.00 ± 1.16	533.90 ± 33.26	3.11 ± 0.25
1	20.9-50.0	121				
<i>P</i> for trend			<i>P</i> <0.05	<i>P</i> <0.01	P<0.05	<i>P</i> =0.32
	Range	n	LT (mm)	VCD (mm)	CC (mm)	AL/CC rati
Height (cm)						
1st quartile	100.0~130.0	127	3.55 ± 0.19	16.57 ± 0.74	7.75 ± 0.25	2.98 ± 0.09
2nd quartile	130.1~140.0	136	3.48 ± 0.23	17.07 ± 0.96	7.79 ± 0.27	3.03 ± 0.11
3rd quartile	140.1~150.7	99	3.42 ± 0.18	17.58 ± 0.99	7.81 ± 0.26	3.09 ± 0.13
4th quartile	150.8~182.5	120	3.41 ± 0.19	17.97 ± 1.12	7.78 ± 0.25	3.16 ± 0.14
P for trend			P<0.01	<i>P</i> <0.01	<i>P</i> =0.36	<i>P</i> <0.01
Weight (kg)						
1st quartile	20.0~30.0	129	3.51 ± 0.20	16.64 ± 0.77	7.75 ± 0.25	2.99 ± 0.10
2nd quartile	30.1~36.1	112	3.49 ± 0.21	17.07 ± 0.97	7.78 ± 0.28	3.03 ± 0.11
3rd quartile	36.2~45.0	128	3.45 ± 0.21	17.46 ± 1.10	7.80 ± 0.24	3.08 ± 0.13
4th quartile	45.1~82.3	113	3.40 ± 0.19	17.95 ± 1.08	7.81 ± 0.25	3.14 ± 0.15
P for trend			<i>P</i> <0.01	<i>P</i> <0.01	P=0.08	<i>P</i> <0.01
BMI (kg/m ²)						
1st quartile	14.0~16.5	121	3.45 ± 0.18	17.01 ± 1.05	7.73 ± 0.26	3.05 ± 0.12
2nd quartile	16.6~18.4	120	3.51 ± 0.23	17.23 ± 1.04	7.81 ± 0.26	3.05 ± 0.13

3rd quartile	18.5~20.8	120	3.46 ± 0.20	17.38 ± 1.11	7.81 ± 0.26	3.06 ± 0.14
4th quartile	20.9~30.6	121	3.44 ± 0.20	17.46 ± 1.13	7.79 ± 0.24	3.08 ± 0.14
<i>P</i> for trend			<i>P</i> =0.37	<i>P</i> <0.01	<i>P</i> =0.19	<i>P</i> <0.05

†Data are expressed as means \pm SD.

 Tests for linear trend is performed by entering the median value of each category of the anthropometric indicator as a continuous variable in the models.

Table 4 Multiple linear regression models of refraction and ocular biometry by height, weight, and BMI.

	Model 1	P Value	Model 2	P Value	Model 3	<i>P</i> Value
Height (per 10cm)			101			
SER (D)	-0.59 (-0.70, -0.49)†	< 0.01	-0.26 (-0.45, -0.08)	< 0.01	-0.21 (-0.40, -0.01)	< 0.05
AL (mm)	0.40 (0.34, 0.47)	< 0.01	0.18 (0.07, 0.29)	< 0.01	0.14 (0.03, 0.26)	< 0.05
CCT (µm)	4.03 (1.97, 6.08)	< 0.01	2.43 (-1.29, 6.16)	0.20	3.41 (-0.76, 7.58)	0.11
ACD (mm)	0.05 (0.04, 0.07)	< 0.01	0.02 (-0.01, 0.05)	0.17	0.02 (-0.02, 0.05)	0.34
LT (mm)	-0.04 (-0.05, -0.02)	< 0.01	-0.01 (-0.03, 0.02)	0.57	-0.01 (-0.03, 0.02)	0.75
VCD (mm)	0.38 (0.32, 0.44)	< 0.01	0.17 (0.06, 0.27)	< 0.01	0.13 (0.02, 0.25)	< 0.05
CC (mm)	0.01 (-0.01, 0.03)	0.13	0.01 (-0.02, 0.04)	0.41	0.01 (-0.03, 0.04)	0.81

BMJ Open

AL/CC ratio	0.05 (0.04, 0.06)	<0.01	0.02 (0.01, 0.03)	< 0.01	0.02 (0.01, 0.03)	< 0.05
Weight (per 10kg)						
SER (D)	-0.65 (-0.79, -0.51)	< 0.01	-0.21 (-0.39, -0.03)	< 0.05	-0.18 (-0.36, 0.01)	0.07
AL (mm)	0.46 (0.38, 0.55)	< 0.01	0.16 (0.05, 0.26)	< 0.01	0.15 (0.04, 0.26)	< 0.01
CCT (µm)	5.56 (2.93, 8.20)	< 0.01	3.68 (0.06, 7.29)	< 0.05	4.44 (0.42, 8.47)	< 0.05
ACD (mm)	0.05 (0.03, 0.07)	< 0.01	-0.01 (-0.03, 0.02)	0.90	-0.01 (-0.03, 0.03)	0.87
LT (mm)	-0.04 (-0.05, -0.02)	< 0.01	0.01 (-0.02, 0.02)	0.95	0.01 (-0.02, 0.03)	0.96
VCD (mm)	0.44 (0.36, 0.53)	<0.01	0.16 (0.06, 0.27)	< 0.01	0.15 (0.04, 0.26)	< 0.01
CC (mm)	0.03 (0.01, 0.05)	<0.05	0.02 (-0.01, 0.05)	0.11	0.02 (-0.01, 0.05)	0.14
AL/CC ratio	0.05 (0.04, 0.06)	< 0.01	0.01 (-0.01, 0.02)	0.10	0.01 (-0.01, 0.02)	0.16
BMI (per 10kg/m ²)						
SER (D)	-0.64 (-1.15, -0.13)	< 0.05	-0.26 (-0.73, 0.20)	0.26	-0.27 (-0.74, 0.20)	0.25
AL (mm)	0.53 (0.21, 0.84)	< 0.01	0.20 (-0.07, 0.47)	0.15	0.23 (-0.05, 0.50)	0.10
CCT (µm)	9.50 (0.35, 18.65)	< 0.05	6.37 (-2.79, 15.53)	0.17	7.19 (-2.87, 17.25)	0.16
ACD (mm)	0.03 (-0.05, 0.10)	0.50	-0.03 (-0.10, 0.04)	0.46	-0.02 (-0.10, 0.05)	0.52
LT (mm)	-0.02 (-0.08, 0.03)	0.42	0.01 (-0.05, 0.07)	0.79	0.01 (-0.06, 0.07)	0.86
VCD (mm)	0.55 (0.24, 0.85)	< 0.01	0.23 (-0.03, 0.50)	0.09	0.25 (-0.03, 0.52)	0.08
CC (mm)	0.06 (-0.01, 0.14)	0.09	0.04 (-0.03, 0.11)	0.25	0.06 (-0.02, 0.14)	0.13

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

AL/CC ratio 0.04 (0.01, 0.08) <0.05 0.01 (-0.02, 0.04) 0.58 0.01 (-0.03, 0.04) 0.67

†Each value represents a separate regression model, with height, weight, or BMI used as the independent variable, the refraction or individual ocular biometrics used as the dependent variable, either alone or with various confounders. Data in parentheses represents the 95% confidence interval.

Model 1 constructs based on crude data. In the next two models, we controlled, in turn, for age and gender or for age, gender, parental myopia, family income, reading and writing distance, and time spent outdoors.

BMJ Open

Associations between anthropometric indicators and both refraction and ocular biometrics in a cross-sectional study of Chinese schoolchildren

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027212.R1
Article Type:	Research
Date Submitted by the Author:	04-Jan-2019
Complete List of Authors:	Ye, Sheng; School of Public Health, Tianjin Medical University Liu, Shengxin; School of Public Health, Tianjin Medical University Li, Wenlei; School of Public Health, Tianjin Medical University Wang, Qifan; School of Public Health, Tianjin Medical University Xi, Wei; School of Public Health, Tianjin Medical University Zhang, Xin; School of Public Health, Tianjin Medical University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Ophthalmology, Epidemiology
Keywords:	anthropometric indicators, refraction, ocular biometrics, schoolchildren

1	Associations between anthropometric indicators and both refraction
2	and ocular biometrics in a cross-sectional study of Chinese
3	schoolchildren
4	
5	Sheng Ye, Shengxin Liu, Wenlei Li, Qifan Wang, Wei Xi, and Xin Zhang
6	Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin
7	Medical University, Tianjin, China.
8	SY and SL contributed equally to the work presented here and should therefore be
9	regarded as equivalent authors.
10	
11	Correspondence to
12	Prof. Xin Zhang, Department of Maternal, Child and Adolescent Health, School of
13	Public Health, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070,
14	China; zhangxin@tmu.edu.cn.
15	
16	Synopsis
17	The development of refraction may be related to physical development during early
18	adolescent growth. The shared mechanism between body stature and refraction could
19	shed new light on the etiology of myopia.
20	
21	

22 ABSTRACT

Objective To identify associations between anthropometric indicators, including height,

24 weight, and body mass index (BMI), and both refraction and ocular biometrics in

25 Chinese schoolchildren in Tianjin, China.

Design Cross-sectional study.

27 Participants A total of 482 (86.07%) students (6 to 15 years old) with no recorded
28 history of ocular or systemic pathologies were enrolled in this study.

Methodology Height and weight were measured using standardized protocols. Ocular biometrics, such as axial length (AL), vitreous chamber depth (VCD), and corneal curvature (CC), were measured by a low-coherence optical reflectometry device. The AL/CC ratio was calculated. Cycloplegic refraction was measured using autorefraction, and spherical equivalent refraction (SER) was calculated. Myopia was defined as SER \leq -0.50 diopters (D). Multiple linear regression analysis was performed to explore the associations between anthropometric indicators and both refraction and ocular biometrics.

37 Results The overall prevalence of myopia was 71.16%. Overall, only height was 38 associated with AL, VCDs, AL/CC ratios, and refractions after controlling for age, 39 gender, parental myopia, family income, reading and writing distance, and time spent 40 outdoors. Furthermore, age-specific results demonstrated that both height and weight 41 were independently associated with refraction in only 6- to 8-year-old and 9- to 11-42 year-old participants. Especially from 9 to 11 years of age, higher heights in Page 3 of 35

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23 24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	
60	

43	schoolchildren were associated with longer ALs (regression coefficient b=+0.25 for
44	each 10 cm difference in height, P<0.01), deeper VCDs (b=+0.23, P<0.01), higher
45	AL/CC ratios (b=+0.04, P <0.01), and more negative refractions (b=-0.48, P <0.01) in
46	their eyes. The association pattern in weight was almost the same as that in height.
47	Conclusions Height and weight remained independently related to refraction and
48	various ocular biometrics during the early period of adolescent growth after adequately
49	controlling for covariates, which could support the idea that a shared mechanism may
50	regulate the coordinated growth of body and eye size in children.
51	Keywords: anthropometric indicators, refraction, ocular biometrics, schoolchildren
52	
53	Strengths and limitations of this study
54	• The study participants were schoolchildren ranging in age from 6 to 15 years old,
55	a period when myopia commonly develops, which could allow us to study the
55 56	a period when myopia commonly develops, which could allow us to study the association between body stature and refraction during development.
56	association between body stature and refraction during development.
56 57	 association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and
56 57 58	 association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and both refraction and ocular biometrics were calculated in this study to help better
56 57 58 59	 association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and both refraction and ocular biometrics were calculated in this study to help better clarify the coordinated growth of body and eye size.
56 57 58 59 60	 association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and both refraction and ocular biometrics were calculated in this study to help better clarify the coordinated growth of body and eye size. Ocular biometrics were measured comprehensively, and the covariates were
56 57 58 59 60 61	 association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and both refraction and ocular biometrics were calculated in this study to help better clarify the coordinated growth of body and eye size. Ocular biometrics were measured comprehensively, and the covariates were adequately controlled, which allowed us to achieve a more detailed analysis.

64	
65	Introduction
66	Myopia has reached almost epidemic proportions in the world, especially in certain
67	areas of East and Southeast Asia. ¹ This condition is commonly viewed as etiologically
68	heterogeneous. Genetic and environmental risk factors are involved in its progression.
69	The genetic basis of myopia has been supported by evidence indicating high heritability
70	values in twin studies ² and a higher prevalence of myopia in children with myopic
71	parents. ³ Excessive near work activities, ⁴⁵ limited time spent outdoors, ⁶⁷ and intensive
72	educational pressure ^{8 9} reportedly to promote the development of myopia. In our effort
73	to consider other factors, we noted that anthropometric indicators, such as height, are
74	thought to be associated with refraction, although no consensus has been achieved
75	regarding this issue. ^{10 11}
76	Refractive status is determined by the balance of the refractive power of the cornea
77	and lens, and the axial length (AL) of the eye (representing the combination of anterior
78	chamber depth (ACD), lens thickness (LT), and vitreous chamber depth (VCD)). ¹²
79	Myopia usually arises in an eye that has become too long, particularly via vitreous
80	chamber elongation. Several epidemiological studies have demonstrated that changes
81	in ocular dimensions that occur in early life progress concomitant with physical
82	development in children, ^{13 14} and the ages of cessation are also similar for increases in
83	height and axial elongation. ¹³ Furthermore, genetic studies have confirmed that a
84	common genetic pathway underlies both height and AL,15 16 although no specific

Page 5 of 35

BMJ Open

genetic variants have yet been identified. All of these clues suggest a shared mechanism that regulates the coordinated growth of body and eye size. It has been suggested that there may be a relationship between body stature and refraction. However, in contrast to the consensus regarding the significant associations between body stature and AL, the relationship between body stature and refraction remains controversial. Although many studies have reported that taller^{10 17-20} and heavier persons^{21 22} have an increased likelihood of having myopia, other studies have found no such association.²³⁻²⁸ The discrepancies among these studies may be due to differences in sample sizes, concept definitions or other methodological variations (e.g., height and weight obtained via self-reporting). In China, few studies have comprehensively measured ocular biometrics or further explored their associations with body stature. Additionally, myopia most commonly starts in young schoolchildren and progresses in early adolescence.²¹ Therefore, it is

98 most appropriate to study the effect of body growth on refractive development in young, 99 growing students. In the current survey, we explored the associations between 100 anthropometric indicators, including height, weight, and BMI, and both refraction and 101 ocular biometrics in schoolchildren aged 6 to 15 years old in Tianjin, China.

103 METHODS

Recruitment

105 Participants were recruited based on the following strategies. Two districts were

BMJ Open

randomly chosen from the 6 main urban districts in Tianjin in November 2016. Next, one primary school and one junior high school were randomly selected from each selected district. Then, one class was randomly chosen from each grade level within the two selected schools. All students in these selected classes were invited, but participation in this study was voluntary. After the purposes and procedures of the study were explained to each student and their parents in depth, written informed consent was collected. Students without parental consent and students who had amblyopia, heterotropia, or any ocular or systemic pathologies were excluded. The study protocol was approved by the Ethics Committee of Tianjin Medical University and performed in accordance with the tenets of the Declaration of Helsinki. **Ocular examinations** All participants underwent a comprehensive eye examination, including measurements of intraocular pressure, a slit-lamp examination of the anterior and posterior segments, cycloplegic autorefraction and ocular biometrics. The purpose of intraocular pressure measurement and slit-lamp examination was to exclude contraindications for mydriasis. Ocular biometrics, such as AL, central corneal thickness (CCT), ACD, LT, VCD, and corneal curvature (CC), were measured with a low-coherence optical reflectometry device (Lenstar LS900; Haag-Streit AG, 3098 Koeniz, Switzerland) in both eyes before pupil dilation. In addition, the AL/CC ratio, also commonly known as the axial length/corneal radius (AL/CR) ratio, was calculated. Then, cycloplegia was induced by

administering one drop containing 0.5% tropicamide and 0.5% phenylephrine in a

BMJ Open

mixed eye agent to each eye at 0 and 5 minutes. Twenty-five minutes after the second instillation, pupillary dilation and the pupillary light reflex were evaluated. Full cycloplegia was considered when the pupil diameter reached 6 mm or more and the light reflex disappeared. A third drop was administered if full cycloplegia was not achieved. Then, participants with full cycloplegia underwent autorefraction using an auto-kerato-refractor (Canon Autorefractor RK-F1, Tokyo, Japan), and 3 consecutive measurements were taken in both eyes. The mean value of 3 valid measurements was calculated for statistical analysis. All of the above instruments were calibrated before the ocular examination. All examinations were performed by board-certified ophthalmologists and certified optometrists.

Definitions

The SER of each eye was calculated as the spherical refraction + 1/2 of the cylindrical refraction using data obtained using the autorefractor. Myopia was defined as an SER of \leq -0.5 D.

141 Anthropometric measurements

Height and weight were obtained following specific standardized protocols²⁹ and measured by community doctors on the students' campus. Height was determined with the subject standing barefoot on the base of the height meter and recorded in centimeters (cm). Weight was measured without shoes and heavy coats on a calibrated electronic weighing scale and recorded in kilograms (kg). BMI was calculated as weight/height² and recorded in kilograms per square meter (kg/m²).

148 Questionnaire

The parents of participants and those excluded were all asked to complete a questionnaire developed to collect information on social-demographic characteristics and potential risk factors for school myopia (supplementary Table 1).

The basic characteristics of the participants included age, gender, the monthly income of the family, and the number of parents with myopia. Near-work-related behaviors were ascertained with the question "What is the distance between your child's eyes and a book when reading or writing?", with answers categorized as follows: <10 cm, 10-19 cm, 20-29 cm, and \geq 30 cm. Time spent outdoors was estimated by asking how many hours per day the child spent on outdoor activities during weekdays and weekends separately. The average time spent outdoors was calculated by the following formula: $[T_{weekday} (hours spent on weekdays) \times 5 + T_{weekend} (hours spent on weekends)$

 \times 2] ÷ 7.

161 Statistical analysis

Because refraction and ocular biometrics were highly correlated between two eyes (the Pearson correlation coefficients (r) for refraction and AL were 0.90, P<0.01 and 0.96, P<0.01, respectively), the data obtained from the right eye were chosen for analyses.

165 Ocular biometrics were all normally distributed, as determined by P-P plots.

166 T-tests were performed for quantitative variables, and chi-square tests were 167 performed for categorical variables to analyze the differences in basic characteristics 168 between individuals with and without myopia. Univariate associations between Page 9 of 35

BMJ Open

RESULTS

169	anthropometric indicators and both refraction and ocular biometrics were identified.
170	Simple linear regression models were constructed to assess the effects of height, weight,
171	and BMI (as independent variables) on refraction and individual ocular biometrics (as
172	dependent variables). Tests for linear trends were performed by entering the median
173	value of each category of the anthropometric indicator based on quartiles as a
174	continuous variable into the models. Multiple linear regression models were then fitted
175	after adjusting, in turn, for age and gender or for age, gender, parental myopia,
176	family income, reading and writing distance, and time spent outdoors. In addition, all
177	participants were divided into the following age groups: 6 to 8 years old, 9 to 11 years
178	old, and 12 to 15 years old. The results of age-specific associations of anthropometric
179	indicators with both refraction and ocular biometrics after controlling for the above
180	covariates were calculated. Collinearity diagnostics were performed, and
181	multicollinearity was absent among the independent variables used in each model.
182	Statistical analyses were performed using commercial statistical software (SPSS for
183	Windows, version 20.0; IBM-SPSS, Chicago, Illinois, USA), and <i>P</i> values <0.05 were
184	considered statistically significant.
185	Patient and public involvement
186	Patients and the public were not involved in developing the research questionnaire,
187	outcome measures or overall design of this study protocol.
188	

2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
10
10
19
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 3 14 5 16 7 8 9 10 11 12 3 14 5 16 7 10 10 11 12 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21
22
23
24
25
26
27
27
20
29
30
31
31 32 33 34 35 36 37 38
33
34
35
36
37
20
20
39
40
41
42
43
44
45
46
47
48
40
49 50
51
52
53
54
55
56
57
58
59
60
00

190 Participant characteristics

Among 560 students who were initially invited, a total of 482 participants ranging in 191 192 age from 6 to 15 years old were available for statistical analysis after excluding 70 193 students without parental consent, 5 students with heterotropia, and 3 students with 194 amblyopia. The response rate in this study was 86.07% (482 of 560). Individuals who 195 were included were older $(9.42 \pm 2.09 \text{ vs } 7.60 \pm 2.38 \text{ years old}, P < 0.01)$ than those who 196 were excluded. There were no significant differences in gender, parental myopia, 197 monthly family income, reading and writing distance, and time spent outdoors between 198 included and excluded individuals. 199 The overall prevalence of myopia was 71.16% (343 of 482; 95% CI, 67.01% to 75.10%). The mean SER, height, weight and BMI of all participants was -1.48 ± 1.82 200 201 D, 140.79 ± 13.95 cm, 38.29 ± 10.86 kg, and 19.04 ± 3.18 kg/m², respectively (Table 202 1). Participants with myopia were older, taller, and heavier. These individuals were 203 more likely to have myopic parents, a higher monthly family income, a closer reading 204 and writing distance and to spend less time outdoors. Moreover, these participants had 205 eyes with longer ALs, deep ACDs and VCDs, thinner LTs, and larger AL/CC ratios (all 206 *P* values were less than 0.05).

207 **Bivariate correlations between variables**

Bivariate correlations of body stature with both refraction and ocular biometrics are presented in Table 2, which was of low to moderate strength. For example, height was positively correlated with AL (r=0.50, P<0.01), CCT (r=0.17, P<0.01), ACD (r=0.29,

3 4	211	<i>P</i> <0.01), VCD (<i>r</i> =0.49, <i>P</i> <0.01) and the AL/CC ratio (<i>r</i> =0.49, <i>P</i> <0.01) and negatively
5 6		
7 8	212	correlated with SER (<i>r</i> =-0.45, <i>P</i> <0.01) and LT (<i>r</i> =-0.24, <i>P</i> <0.01).
9 10 11	213	Linear trends in refraction and ocular biometrics changes by body stature
12 13	214	quartiles
14 15 16	215	Taller and heavier individuals tended to have eyes with longer ALs, thicker CCTs,
17 18 19	216	deeper ACDs, thinner LTs, deeper VCDs, higher AL/CC ratios, and more myopic
20 21	217	refractions (all P values for trend were less than 0.05) (Table 3). In addition to ACD
22 23 24	218	and LT, the above tendencies were also observed among more obese schoolchildren
25 26 27	219	(students with higher BMIs).
28 29 30	220	Linear regression analysis of the associations between anthropometric indicators
31 32	221	and both refraction and ocular biometrics
33 34 35	222	In model 1, we used the association between height and refraction as an example and
36 37 38	223	found that for each 10 cm increase in height, the SER was expected to decrease by 0.59
39 40	224	D (P <0.01) without controlling for any covariates (Table 4). In the next two models,
41 42 43	225	we controlled, in turn, for age and gender or for age, gender, parental myopia, family
44 45 46	226	income, reading and writing distance and time spent outdoors. The difference in SER
47 48 49	227	declined by 0.26 D (P <0.01) and 0.21 D (P <0.05) in models 2 and 3, respectively. In
50 51	228	general, higher heights were associated with longer ALs (+0.14 mm, P <0.05), deeper
52 53 54	229	VCDs (+0.13 mm, P<0.05), greater AL/CC ratios (+0.02, P<0.05), and more negative
55 56 57	230	refractions (-0.21 D, P<0.05) among 6- to 15-year-old participants. Nonetheless, weight
58 59 60	231	and BMI were not correlated with refraction in our multiple linear regression models.

BMJ Open

232	Furthermore, the participants were categorized into the following age groups: 6 to 8
233	years old (n=170), 9 to 11 years old (n=158), and 12 to 15 years old (n=154). After
234	controlling for the above covariates, the age-specific associations were calculated
235	(Table 5). Both height and weight remained independently associated with refraction
236	in the age range from 6 to 8 years old and 9 to 11 years old. Particularly from 9 to 11
237	years old, higher heights in schoolchildren were associated with longer ALs (+0.25 mm,
238	<i>P</i> <0.01), deeper VCDs (+0.23 mm, <i>P</i> <0.01), higher AL/CC ratios (+0.04, <i>P</i> <0.01), and
239	more negative refractions (-0.48 D, P <0.01) in their eyes. Heavier weights were also
240	associated with longer ALs (+0.29 mm, P <0.01), deeper VCDs (+0.29 mm, P <0.01),
241	higher AL/CC ratios (+0.04, <i>P</i> <0.01), and more negative refractions (-0.48 D, <i>P</i> <0.01).
242	However, from 12 to 15 years of age, no association was detected between body stature
243	and refraction.

DISCUSSION

In this paper, we comprehensively measured ocular biometrics and then explored the
overall and age-specific associations between anthropometric indicators and both
refraction and ocular biometrics after adequately controlling for covariates among 6- to
15-year-old schoolchildren. In China, few studies such as this one have been conducted.
Wang et al.¹⁴ confirmed a positive association between height and AL in 7- to 15-yearold schoolchildren based on longitudinal data obtained in Guangzhou, China. However,
detailed information about the associations between body stature and refraction and

Page 13 of 35

BMJ Open

other ocular biometrics was not available in that study. Therefore, compared with
previous studies,^{14 28} the present study achieved a more detailed analysis.
The current results are in almost complete agreement with those of Saw et al.¹⁷ who

showed that among 1449 Singaporean Chinese children aged 7-9 years old, taller individuals were more likely to have eyes with longer ALs (+0.46 mm, P < 0.01), deeper VCDs (+0.46 mm, P < 0.01), flatter corneas (+0.10 mm, P < 0.01), greater AL/CC ratios (+0.02, P=0.03), and refractions that trended toward myopia (-0.47 D, P<0.01) after controlling for age, gender, parental myopia, and the number of books read per week. A birth cohort performed in Britain to examine the relationship between height growth trajectories and the development of myopia presented similar results.¹⁰ For each SD increase in height for children aged from 2.5 to 10 years old, SER became more negative by -0.075 D (95% CI, -0.112 to -0.039; P<0.01) and -0.081 D (95% CI, -0.129 to -0.034; P<0.01) when the children reached 11 and 15 years old, respectively. However, Huang et al.²⁸ reported that no significant correlation between myopia shift and height changes among schoolchildren aged 7 to 9 years old in Taiwan, China.

Although the association remains unclear, these results will help us to further explore the intricate relationship between the development of physical characteristics and refraction. A commonly proposed explanation for this potential association is that both higher height and myopia are independent consequences of better socioeconomic status; therefore, there may be no causal relationship between height and myopia.¹⁷²³ However, in this study, after we controlled for socioeconomic characteristics and myopia-related

BMJ Open

1 2	
3	
4 5	
6	
7 8	
9	
10 11	
12	
13 14	
15	
16	
17 18	
19	
20 21	
22	
23 24	
25	
26 27	
28	
29 30	
31	
32 33	
34	
35 36	
37	
38 39	
40	
41 42	
42 43	
44 45	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

1

274	risk factors, height remained independently related to refraction and various ocular
275	biometrics. Myopia most commonly develops during the period from childhood to early
276	adolescence (from approximately 8 to 14 years old), ³⁰ and growth spurts also occur in
277	this period. ³¹ Therefore, we inferred that the development of refraction could be related
278	to physical development during the early period of adolescent growth. The findings of
279	the Singapore Cohort Study of Risk Factors for Myopia (SCORM) support this
280	hypothesis. ¹⁹ SCORM reported that boys and girls who experienced earlier peak height
281	velocity also achieved earlier peak SER velocity (at a mean age of 10.1 vs 10.6 years
282	old for boys, $P=0.01$, and 10.0 vs 10.6 years old for girls, $P=0.01$) and had an earlier
283	age of onset of myopia (9.9 vs 10.4 years old for boys, P=0.03, and 9.7 vs 10.1 years
284	old for girls, $P=0.04$). The exact biologic pathways underlying these associations are
285	currently unknown. Some major systemic hormones, such as growth hormone, thymic
286	hormone and insulin-like growth factors (IGFs), reportedly could regulate longitudinal
287	bone growth during childhood, which are also involved in the development of
288	experimental myopia. ^{32 33} In addition, epidemiological studies reported that children
289	with growth hormone deficiency have shorter body stature and ALs than usual. ³⁴
290	Growth hormone supplementation in these children could partially bring the stature and
291	ALs back within the normal range. ³⁵ Sex hormones may be another significant mediator
292	during puberty, ³⁶ but our age-specific results (no association was detected in 12- to 15-
293	year-old participants) may not support this idea. Although these hormones were not
294	determined in this cross-sectional study, we believe that the shared mechanism between

Page 15 of 35

BMJ Open

height and refraction may shed new light on the etiology of myopia and the efforts to
explore the effect of endocrine traits observed during childhood and adolescence on
body and eye size in the future studies.

The relationships weight and BMI share with refraction are not as extensively studied as those with height, but the findings regarding these relationships are also inconclusive. Heavier and more obese Chinese children and adults in Singapore have refractions that trend toward hyperopia.¹⁷²³ Moreover, heavier adults in rural Myanmar reportedly have more positive refractions.²⁵ However, a cross-sectional study performed in 19-year-old male conscripts in South Korea found that weight and BMI had no effect on refraction.²⁷ Consistent with the results of a twin study performed in Australia,²² in our study, heavier weights were associated with more negative refractions among participants aged 6 to 8 and 9 to 11 years old.

This study has several limitations that warrant consideration. First, information on putative myopia risk factors obtained from our questionnaire (e.g., the distance between the child's eyes and a book when reading or writing) was subjectively estimated by the parents. Although this method has been widely applied in previous studies,^{17 28} it can lead to recall bias. Second, the representativeness of the participants in this study may be affected to some extent because the participants were volunteers. Although there were no significant differences in nearly all basic characteristics between participants and those excluded, individuals who were included were older, which may have resulted in overestimation of the prevalence of myopia in our study. Third, all of the

BMJ Open

> data collected in this study were cross-sectional in nature and do not allow an evaluation of causality. Therefore, whether the conclusions drawn from this study are applicable to longitudinal relationships remains uncertain. Despite these limitations, we believe that our study provides a valuable reference regarding the associations between anthropometric indicators and both refraction and ocular biometrics in Chinese schoolchildren aged 6 to 15 years old.

> In conclusion, both higher heights and heavier weights were associated with longer ALs, deeper VCDs, higher AL/CC ratios and more myopic refractions during the early period of adolescent growth after controlling for age, gender, parental myopia, family income, reading and writing distance, and time spent outdoors. The results of this study support the idea that a shared mechanism may regulate the coordinated growth of body and eye size in children.

Acknowledgments The authors thank all families who participated in our study,
Tianjin Eye Hospital for their help with ocular examinations, and all team members in
the Department of Maternal, Child and Adolescent Health at the School of Public
Health of Tianjin Medical University.

Contributors Design of the study: SL and XZ. Collection and management of the data:

334 SY, SL, WL and QW. Analysis and interpretation of the data: SY. Review and approval

of the manuscript: SY, SL, WL, QW, WX and XZ.

Funding This study was supported by grants from the Key Scientific Project of Tianjin

BMJ Open

337	Science and Technology Commission of China (15ZCZDSY01050) and the National
338	Natural Science Foundation of China (No. 81773459).
339	Competing interests None declared.
340	Patient consent Obtained.
341	Ethics approval Ethics Committee of Tianjin Medical University, China.
342	Provenance and peer review Not commissioned; externally peer reviewed.
343	Data sharing statement No additional data are available.
344	
345	REFERENCES
346	1. Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and
347	prevention. Prog Retin Eye Res 2018;62:134-49.
348	2. Kim MH, Zhao D, Kim W, et al. Heritability of myopia and ocular biometrics in
349	Koreans: the healthy twin study. Investigative ophthalmology & visual science
350	2013;54(5):3644-9.
351	3. Ma Y, Zou H, Lin S, et al. Cohort study with 4-year follow-up of myopia and
352	refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin
353	Exp Ophthalmol 2018
354	4. Huang HM, Chang DS, Wu PC. The Association between Near Work Activities and
355	Myopia in Children-A Systematic Review and Meta-Analysis. PloS one
356	2015;10(10):e0140419.
357	5. Wu LJ, Wang YX, You QS, et al. Risk Factors of Myopic Shift among Primary
	 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
12 13 14 15 16 17	
15	
16	
17	
10	
18 19	
19	
21	
22	
23	
24	
25	
26	
20 27	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
36	
37	
38	
39	
40	
41	
42	
42 43	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

School Children in Beijing, China: A Prospective Study. *International journal of medical sciences* 2015;12(8):633-8.

360 6. He M, Xiang F, Zeng Y, et al. Effect of Time Spent Outdoors at School on the
361 Development of Myopia Among Children in China: A Randomized Clinical Trial.
362 Jama 2015;314(11):1142-8.

- 363 7. Xiong S, Sankaridurg P, Naduvilath T, et al. Time spent in outdoor activities in
 364 relation to myopia prevention and control: a meta-analysis and systematic review. *Acta*365 *ophthalmologica* 2017;95(6):551-66.
- 8. Mirshahi A, Ponto K, Hoehn R, et al. Myopia and level of education: results from
 the Gutenberg Health Study. *Ophthalmology* 2014;121(10):2047-52.
- 368 9. Williams KM, Bertelsen G, Cumberland P, et al. Increasing Prevalence of Myopia
 369 in Europe and the Impact of Education. *Ophthalmology* 2015;122(7):1489-97.
- 370 10. Northstone K, Guggenheim JA, Howe LD, et al. Body stature growth trajectories
- 371 during childhood and the development of myopia. *Ophthalmology* 2013;120(5):1064-

372

73.

- 373 11. Lee DC, Lee SY, Kim YC. An epidemiological study of the risk factors associated
- 374 with myopia in young adult men in Korea. *Scientific reports* 2018;8(1):511.
- 375 12. Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. *The Lancet* 2012;379(9827):1739376 48.
- 377 13. Goss DA, Cox VD, Herrin-Lawson GA, et al. Refractive error, axial length, and
- 378 height as a function of age in young myopes. Optometry and vision science : official

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
42 43	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

379 publication of the American Academy of Optometry 1990;67(5):332-8.

14. Wang D, Ding X, Liu B, et al. Longitudinal changes of axial length and height are
associated and concomitant in children. *Investigative ophthalmology & visual science*2011;52(11):7949-53.

383 15. Prashar A, Hocking PM, Erichsen JT, et al. Common determinants of body size and
384 eye size in chickens from an advanced intercross line. *Experimental eye research*385 2009;89(1):42-8.

386 16. Zhang J, Hur YM, Huang W, et al. Shared genetic determinants of axial length and
387 height in children: the Guangzhou twin eye study. *Archives of ophthalmology (Chicago,*388 *Ill*: 1960) 2011;129(1):63-8.

389 17. Saw SM, Chua WH, Hong CY, et al. Height and its relationship to refraction and
390 biometry parameters in Singapore Chinese children. *Investigative ophthalmology &*391 *visual science* 2002;43(5):1408-13.

392 18. Rahi JS, Cumberland PM, Peckham CS. Myopia over the lifecourse: prevalence
393 and early life influences in the 1958 British birth cohort. *Ophthalmology*394 2011;118(5):797-804.

395 19. Yip VC, Pan CW, Lin XY, et al. The relationship between growth spurts and
396 myopia in Singapore children. *Investigative ophthalmology & visual science*397 2012;53(13):7961-6.

398 20. Rim TH, Kim SH, Lim KH, et al. Body Stature as an Age-Dependent Risk Factor

399 for Myopia in a South Korean Population. *Seminars in ophthalmology* 2017;32(3):326-

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
55 54	
55	
56	
57	
58	
59	
60	

400	36.
401	21. Gardiner PA. Physical growth and the progress of myopia. Lancet
402	1955;269(6897):952-3.
403	22. Dirani M, Islam A, Baird PN. Body stature and myopia-The Genes in Myopia
404	(GEM) twin study. Ophthalmic epidemiology 2008;15(3):135-9.
405	23. Wong TY, Foster PJ, Johnson GJ, et al. The relationship between ocular dimensions
406	and refraction with adult stature: the Tanjong Pagar Survey. Investigative
407	ophthalmology & visual science 2001;42(6):1237-42.
408	24. Ojaimi E, Morgan IG, Robaei D, et al. Effect of stature and other anthropometric
409	parameters on eye size and refraction in a population-based study of Australian children.
410	Investigative ophthalmology & visual science 2005;46(12):4424-9.
411	25. Wu HM, Gupta A, Newland HS, et al. Association between stature, ocular biometry
412	and refraction in an adult population in rural Myanmar: the Meiktila eye study. Clin
413	Exp Ophthalmol 2007;35(9):834-39.
414	26. Sharma A, Congdon N, Gao Y, et al. Height, stunting, and refractive error among
415	rural Chinese schoolchildren: the See Well to Learn Well project. American journal of
416	ophthalmology 2010;149(2):347-53.
417	27. Jung SK, Lee JH, Kakizaki H, et al. Prevalence of myopia and its association with
418	body stature and educational level in 19-year-old male conscripts in seoul, South Korea.
419	Investigative ophthalmology & visual science 2012;53(9):5579-83.
420	28. Huang CY, Hou CH, Lin KK, et al. Relationship of lifestyle and body stature growth

BMJ Open

1 2	
3 4 5	42
6 7 8	42
9 10	42
11 12 13	42
14 15 16	42
17 18 19	42
20 21	42
22 23 24	42
25 26 27	42
28 29 30	43
31 32	43
33 34 35	43
36 37 38	43
39 40	43
41 42 43	43
44 45 46	43
47 48 49	43
50 51	43
52 53 54	43
55 56 57	44
58 59	44
60	

421	with the development of myopia and axial length elongation in Taiwanese elementary
422	school children. Indian journal of ophthalmology 2014;62(8):865-9.
423	29. National Student Physique and Health Research Group. The instruction manual of
424	national survey in Physique and health of Chinese schoolchildren (2014) [M]. Beijing:
425	Higher Education Press, 2014: 41-45.
426	30. Baird P, Schäche M, Dirani M. The GEnes in Myopia (GEM) study in
427	understanding the aetiology of refractive errors. Prog Retin Eye Res 2010;29(6):520-
428	42.
429	31. Limony Y, Koziel S, Friger M. Age of onset of a normally timed pubertal growth
430	spurt affects the final height of children. Pediatr Res 2015;78(3):351-5.
431	32. Rada JA, Wiechmann AF. Ocular expression of avian thymic hormone: changes
432	during the recovery from induced myopia. <i>Molecular vision</i> 2009;15:778-92.
433	33. Kusakari T, Sato T, Tokoro T. Visual deprivation stimulates the exchange of the
434	fibrous sclera into the cartilaginous sclera in chicks. Experimental eye research
435	2001;73(4):533-46.
436	34. Parentin F, Tonini G, Perissutti P. Refractive evaluation in children with growth
437	defect. Current eye research 2004;28(1):11-5.
438	35. Parentin F, Perissutti P. Congenital growth hormone deficiency and eye refraction:
439	a longitudinal study. Ophthalmologica 2005;219(4):226-31.
440	36. Ogueta SB, Schwartz SD, Yamashita CK, et al. Estrogen receptor in the human eye:
441	influence of gender and age on gene expression. Investigative ophthalmology & visual

2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
12 13 14 15 16 17	
14	
15	
16	
17	
18	
19	
20	
20	
- 21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

science 1999;40(9):1906-11.

to peer teries only

Page 23 of 35

	Total	Myopia	Nonmyopia	<i>P</i> Valu
Age (years)	9.42 ± 2.09	9.88 ± 2.14	8.30 ± 1.45	< 0.01
Male	264 (54.77)	187 (54.52)	77 (55.40)	0.86
Female	218 (45.23)	156 (45.48)	62 (44.60)	0.86
Parental myopia*				< 0.01
None	129 (28.48)	74 (23.13)	55 (41.35)	
One parent	188 (41.50)	134 (41.88)	54 (40.60)	
Both parents	136 (30.02)	112 (35.00)	24 (18.05)	
Monthly family income*				< 0.05
<4000 RMB	41 (8.78)	27 (8.16)	14 (10.29)	
4000-8000 RMB	136 (29.12)	89 (26.89)	47 (34.56)	
8000-10,000 RMB	133 (28.48)	89 (26.89)	44 (32.35)	
10,000-15,000 RMB	91 (19.49)	73 (22.05)	18 (13.24)	
≥15,000 RMB	66 (14.13)	53 (16.01)	13 (9.56)	
Reading and writing distance*				< 0.05
<10 cm	45 (9.62)	36 (10.81)	9 (6.67)	
10-20 cm	200 (42.74)	148 (44.44)	52 (38.52)	
20-30 cm	166 (35.47)	117 (35.14)	49 (36.30)	
≥30 cm	57 (12.18)	32 (9.61)	25 (18.52)	
Time spent outdoors (hours)	1.20 ± 0.70	1.16 ± 0.70	1.31 ± 0.69	< 0.05
Height (cm)	140.79 ± 13.95	143.85 ± 14.17	133.22 ± 10.01	< 0.01
Weight (kg)	38.29 ± 10.86	40.06 ± 11.05	33.92 ± 9.01	< 0.01
BMI (kg/m ²)	19.04 ± 3.18	19.10 ± 3.14	18.89 ± 3.28	0.52
SER (D)	-1.48 ± 1.82	-2.20 ± 1.66	0.30 ± 0.54	< 0.01
AL (mm)	23.81 ± 1.12	24.16 ± 1.07	22.95 ± 0.72	< 0.01
CCT (µm)	547.65 ± 32.44	548.88 ± 33.32	544.63 ± 30.05	0.19
ACD (mm)	3.08 ± 0.26	3.14 ± 0.25	2.94 ± 0.23	< 0.01

LT (mm)	3.47 ± 0.20	3.43 ± 0.20	3.55 ± 0.19	< 0.01
VCD (mm)	17.27 ± 1.09	17.60 ± 1.05	16.46 ± 0.71	< 0.01
CC (mm)	7.78 ± 0.26	7.78 ± 0.25	7.79 ± 0.26	0.84
AL/CC ratio	3.06 ± 0.13	3.11 ± 0.13	2.95 ± 0.07	< 0.01

Data are presented as the means with standard deviation (SD) or as n (%).

*Numbers of individuals vary due to missing data.

Table 2 Bivariate correlations of body stature with refraction and ocular biometrics.

	Height (cm)	Weight (kg)	BMI (kg/m ²)
SER (D)	-0.45**	-0.39**	-0.11*
AL (mm)	0.50**	0.45**	0.15*
CCT (µm)	0.17**	0.19**	0.09*
ACD (mm)	0.29**	0.22**	0.03
LT (mm)	-0.24**	-0.19**	-0.04
VCD (mm)	0.49**	0.44**	0.16**
CC (mm)	0.07	0.10*	0.08
AL/CC ratio	0.49**	0.40**	0.10*

Data are the Pearson correlation coefficients.

*: P<0.05.

**: *P*<0.01.

 BMJ Open

	Range	n	SER (D)	AL (mm)	CCT (µm)	ACD (mm)
Height (cm)						
1st quartile	100.0~130.0	127	-0.48 ± 1.13 †	23.09 ± 0.78	542.11 ± 30.93	2.97 ± 0.24
2nd quartile	130.1~140.0	136	-1.08 ± 1.46	23.58 ± 0.98	544.96 ± 32.69	3.05 ± 0.28
3rd quartile	140.1~150.7	99	-1.86 ± 1.80	24.15 ± 1.01	550.04 ± 32.31	3.16 ± 0.23
4th quartile	150.8~182.5	120	-2.68 ± 2.06	24.56 ± 1.14	554.58 ± 32.76	3.18 ± 0.22
<i>P</i> for trend‡			<i>P</i> <0.01	<i>P</i> <0.01	<i>P</i> <0.05	<i>P</i> <0.01
Weight (kg)						
1st quartile	20.0~30.0	129	-0.59 ± 1.19	23.19 ± 0.80	541.27 ± 32.75	3.02 ± 0.26
2nd quartile	30.1~36.1	112	-1.12 ± 1.30	23.58 ± 1.00	547.64 ± 31.34	3.04 ± 0.26
3rd quartile	36.2~45.0	128	-1.75 ± 1.92	24.02 ± 1.12	544.17 ± 31.56	3.12 ± 0.24
4th quartile	45.1~82.3	113	-2.54 ± 2.14	24.52 ± 1.12	558.92 ± 31.65	3.16 ± 0.24
<i>P</i> for trend			<i>P</i> <0.01	<i>P</i> <0.01	P<0.01	<i>P</i> <0.01
BMI (kg/m²)						
1st quartile	14.0~16.5	121	-1.19 ± 1.62	23.55 ± 1.05	543.79 ± 31.55	3.09 ± 0.25
2nd quartile	16.6~18.4	120	-1.39 ± 1.69	23.80 ± 1.14	545.79 ± 32.26	3.05 ± 0.28

BMJ	Open
-----	------

Page	26	of	25
гауе	20	UI.	55

1	
2 3 4 5 6 7 8	
4	
6	
7 8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
20 21	
22 23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	

3rd quartile	18.5~20.8	120	-1.59 ± 1.88	23.90 ± 1.12	547.12 ± 32.16	3.09 ± 0.25
4th quartile	20.9~30.6	121	-1.74 ± 2.05	24.00 ± 1.16	533.90 ± 33.26	3.11 ± 0.25
<i>P</i> for trend			<i>P</i> <0.05	<i>P</i> <0.01	<i>P</i> <0.05	<i>P</i> =0.32
	Range	n	LT (mm)	VCD (mm)	CC (mm)	AL/CC ratio
Height (cm)		O h				
1st quartile	100.0~130.0	127	3.55 ± 0.19	16.57 ± 0.74	7.75 ± 0.25	2.98 ± 0.09
2nd quartile	130.1~140.0	136	3.48 ± 0.23	17.07 ± 0.96	7.79 ± 0.27	3.03 ± 0.11
3rd quartile	140.1~150.7	99	3.42 ± 0.18	17.58 ± 0.99	7.81 ± 0.26	3.09 ± 0.13
4th quartile	150.8~182.5	120	3.41 ± 0.19	17.97 ± 1.12	7.78 ± 0.25	3.16 ± 0.14
<i>P</i> for trend			P<0.01	<i>P</i> <0.01	<i>P</i> =0.36	<i>P</i> <0.01
Weight (kg)						
1st quartile	20.0~30.0	129	3.51 ± 0.20	16.64 ± 0.77	7.75 ± 0.25	2.99 ± 0.10
2nd quartile	30.1~36.1	112	3.49 ± 0.21	17.07 ± 0.97	7.78 ± 0.28	3.03 ± 0.11
3rd quartile	36.2~45.0	128	3.45 ± 0.21	17.46 ± 1.10	7.80 ± 0.24	3.08 ± 0.13
4th quartile	45.1~82.3	113	3.40 ± 0.19	17.95 ± 1.08	7.81 ± 0.25	3.14 ± 0.15
<i>P</i> for trend			<i>P</i> <0.01	<i>P</i> <0.01	<i>P</i> =0.08	<i>P</i> <0.01
BMI (kg/m ²)						

 BMJ Open

1st quartile	14.0~16.5	121	3.45 ± 0.18	17.01 ± 1.05	7.73 ± 0.26	3.05 ± 0.12
2nd quartile	16.6~18.4	120	3.51 ± 0.23	17.23 ± 1.04	7.81 ± 0.26	3.05 ± 0.13
3rd quartile	18.5~20.8	120	3.46 ± 0.20	17.38 ± 1.11	7.81 ± 0.26	3.06 ± 0.14
4th quartile	20.9~30.6	121	3.44 ± 0.20	17.46 ± 1.13	7.79 ± 0.24	3.08 ± 0.14
<i>P</i> for trend			<i>P</i> =0.37	<i>P</i> <0.01	<i>P</i> =0.19	<i>P</i> <0.05

†Data are expressed as means \pm SD.

Tests for linear trend is performed by entering the median value of each category of the anthropometric indicator as a continuous variable in the models.

Table 4 Multiple linear regression models of refraction and ocular biometry by height, weight, and BMI.

	Model 1	P Value	Model 2	P Value	Model 3	P Value
Height (per 10 cm)				-77	<u>^</u>	
SER (D)	-0.59 (-0.70, -0.49)†	< 0.01	-0.26 (-0.45, -0.08)	<0.01	-0.21 (-0.40, -0.01)	< 0.05
AL (mm)	0.40 (0.34, 0.47)	< 0.01	0.18 (0.07, 0.29)	< 0.01	0.14 (0.03, 0.26)	< 0.05
CCT (µm)	4.03 (1.97, 6.08)	< 0.01	2.43 (-1.29, 6.16)	0.20	3.41 (-0.76, 7.58)	0.11
ACD (mm)	0.05 (0.04, 0.07)	< 0.01	0.02 (-0.01, 0.05)	0.17	0.02 (-0.02, 0.05)	0.34

-0.04 (-0.05, -0.02)	< 0.01	-0.01 (-0.03, 0.02)	0.57	-0.01 (-0.03, 0.02)	0.75
0.38 (0.32, 0.44)	< 0.01	0.17 (0.06, 0.27)	< 0.01	0.13 (0.02, 0.25)	< 0.05
0.01 (-0.01, 0.03)	0.13	0.01 (-0.02, 0.04)	0.41	0.01 (-0.03, 0.04)	0.81
0.05 (0.04, 0.06)	< 0.01	0.02 (0.01, 0.03)	< 0.01	0.02 (0.01, 0.03)	< 0.05
-0.65 (-0.79, -0.51)	< 0.01	-0.21 (-0.39, -0.03)	< 0.05	-0.18 (-0.36, 0.01)	0.07
0.46 (0.38, 0.55)	< 0.01	0.16 (0.05, 0.26)	< 0.01	0.15 (0.04, 0.26)	< 0.01
5.56 (2.93, 8.20)	< 0.01	3.68 (0.06, 7.29)	< 0.05	4.44 (0.42, 8.47)	< 0.05
0.05 (0.03, 0.07)	< 0.01	-0.01 (-0.03, 0.02)	0.90	-0.01 (-0.03, 0.03)	0.87
-0.04 (-0.05, -0.02)	< 0.01	0.01 (-0.02, 0.02)	0.95	0.01 (-0.02, 0.03)	0.96
0.44 (0.36, 0.53)	< 0.01	0.16 (0.06, 0.27)	< 0.01	0.15 (0.04, 0.26)	< 0.01
0.03 (0.01, 0.05)	< 0.05	0.02 (-0.01, 0.05)	0.11	0.02 (-0.01, 0.05)	0.14
0.05 (0.04, 0.06)	< 0.01	0.01 (-0.01, 0.02)	0.10	0.01 (-0.01, 0.02)	0.16
-0.64 (-1.15, -0.13)	< 0.05	-0.26 (-0.73, 0.20)	0.26	-0.27 (-0.74, 0.20)	0.25
0.53 (0.21, 0.84)	< 0.01	0.20 (-0.07, 0.47)	0.15	0.23 (-0.05, 0.50)	0.10
9.50 (0.35, 18.65)	< 0.05	6.37 (-2.79, 15.53)	0.17	7.19 (-2.87, 17.25)	0.16
	$\begin{array}{c} 0.38 \ (0.32, 0.44) \\ 0.01 \ (-0.01, 0.03) \\ 0.05 \ (0.04, 0.06) \end{array}$ $\begin{array}{c} -0.65 \ (-0.79, -0.51) \\ 0.46 \ (0.38, 0.55) \\ 5.56 \ (2.93, 8.20) \\ 0.05 \ (0.03, 0.07) \\ -0.04 \ (-0.05, -0.02) \\ 0.44 \ (0.36, 0.53) \\ 0.03 \ (0.01, 0.05) \\ 0.05 \ (0.04, 0.06) \end{array}$ $\begin{array}{c} -0.64 \ (-1.15, -0.13) \\ 0.53 \ (0.21, 0.84) \end{array}$	0.38 (0.32, 0.44)<0.01 $0.01 (-0.01, 0.03)$ 0.13 $0.05 (0.04, 0.06)$ <0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

BMJ Open

ACD (mm)	0.03 (-0.05, 0.10)	0.50	-0.03 (-0.10, 0.04)	0.46	-0.02 (-0.10, 0.05)	0.52
LT (mm)	-0.02 (-0.08, 0.03)	0.42	0.01 (-0.05, 0.07)	0.79	0.01 (-0.06, 0.07)	0.86
VCD (mm)	0.55 (0.24, 0.85)	< 0.01	0.23 (-0.03, 0.50)	0.09	0.25 (-0.03, 0.52)	0.08
CC (mm)	0.06 (-0.01, 0.14)	0.09	0.04 (-0.03, 0.11)	0.25	0.06 (-0.02, 0.14)	0.13
AL/CC ratio	0.04 (0.01, 0.08)	< 0.05	0.01 (-0.02, 0.04)	0.58	0.01 (-0.03, 0.04)	0.67

[†]Each value represents a separate regression model, with height, weight, or BMI used as the independent variable, the refraction or individual ocular biometrics used as the dependent variable, either alone or with various confounders. Data in parentheses represents the 95% confidence interval.

Model 1 constructs based on crude data. In the next two models, we controlled, in turn, for age and gender or for age, gender, parental myopia, family income, reading and writing distance, and time spent outdoors.

Table 5 Age-specific results of the associations of anthropometric indicators with both refraction and ocular biometrics.

6-8 years old (n=170)	9-11 years old (n=158)	12-15 years old (n=154)	
<i>b</i>	b	b	
-0.31 (-0.59, -0.03)*	-0.48 (-0.71, -0.24)**	0.35 (-0.52, 1.22)	
,	29		
-	<i>b</i> -0.31 (-0.59, -0.03)*	<i>b b</i>	

AL (mm)	0.17 (-0.02, 0.35)	0.25 (0.11, 0.38)**	-0.25 (-0.69, 0.18)
CCT (µm)	2.01 (-5.59, 9.60)	0.77 (-3.82, 5.36)	10.49 (-5.41, 26.39)
ACD (mm)	0.04 (-0.02, 0.10)	0.03 (-0.01, 0.06)	-0.09 (-0.17, -0.01)
LT (mm)	-0.03 (-0.08, 0.02)	-0.01 (-0.04, 0.01)	0.07 (-0.02, 0.15)
VCD (mm)	0.18 (-0.004, 0.36)	0.23 (0.09, 0.36)**	-0.23 (-0.69, 0.23)
CC (mm)	-0.01 (-0.07, 0.05)	-0.01 (-0.05, 0.03)	0.01 (-0.09, 0.12)
AL/CC	$0.03 \ (0.003, \ 0.05)^*$	$0.04 (0.02, 0.05)^{**}$	-0.04 (-0.09, 0.02)
Weight (per 10 kg)			
SER (D)	-0.37 (-0.67, -0.07)*	-0.48 (-0.74, -0.23)**	0.39 (-0.23, 1.01)
AL (mm)	0.13 (-0.08, 0.33)	0.29 (0.15, 0.44)**	-0.09 (-0.41, 0.22)
CCT (µm)	1.43 (-6.93, 9.79)	3.00 (-1.99, 7.99)	10.83 (-0.38, 22.04)
ACD (mm)	-0.002 (-0.06, 0.06)	0.03 (-0.01, 0.07)	-0.06 (-0.11, 0.002)
LT (mm)	0.02 (-0.03, 0.08)	-0.03 (-0.06, 0.001)	0.02 (-0.05, 0.08)
VCD (mm)	0.11 (-0.09, 0.31)	0.29 (0.14, 0.44)**	-0.06 (-0.39, 0.28)
CC (mm)	0.02 (-0.05, 0.08)	0.003 (-0.04, 0.04)	0.04 (-0.04, 0.11)
AL/CC	0.01 (-0.01, 0.04)	0.04 (0.02, 0.06)**	-0.03 (-0.07, 0.01)

BMI (per 10 kg/m²)

 BMJ Open

SER (D)	-0.46 (-1.10, 0.17)	-0.63 (-1.38, 0.13)	0.96 (-1.02, 2.93)
AL (mm)	0.06 (-0.36, 0.48)	$0.47~(0.05, 0.90)^{*}$	0.03 (-0.98, 1.03)
CCT (µm)	0.84 (-16.31, 17.99)	9.14 (-5.10, 23.37)	28.47 (-7.47, 64.41
ACD (mm)	-0.07 (-0.19, 0.06)	0.04 (-0.07, 0.15)	-0.10 (-0.28, 0.09)
LT (mm)	0.10 (-0.01, 0.21)	-0.07 (-0.16, 0.01)	-0.03 (-0.23, 0.17)
VCD (mm)	0.01 (-0.40, 0.43)	0.51 (0.08, 0.93)*	0.15 (-0.91, 1.21)
CC (mm)	0.05 (-0.09, 0.19)	0.03 (-0.08, 0.14)	0.13 (-0.11, 0.37)
AL/CC	-0.01 (-0.06, 0.04)	0.05 (-0.003, 0.11)	-0.05 (-0.17, 0.08)

P*<0.05; *P*<0.01.

Each value represents a separate regression model with height, weight, or BMI used as the independent variable and the refraction or individual ocular biometrics used as the dependent variable. We controlled for gender, parental myopia, family income, reading and writing distance, and only time spent outdoors. Data in parentheses represents the 95% confidence interval.

For peer teriew only

1	
1 2	
2	
3 4	
4 5	
5	
0 7	
8	
o 9	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
46 47	
47 48	
48 49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Supplementary Table 1 Specific classification of some items in the questionnaire.

What day is your child's birthday?	(yy/mm/dd)
What's your child's gender?	A. Male B. Female
	A. Less than 4000 RMB
What is the average monthly income of	B. 4000-8000 RMB
your family?	C. 8000-10,000 RMB
	D. 10,000-15,000 RMB
	E. More than 15,000 RMB
Does the child's mother wear glasses for	A. Yes B. No
myopia?	
Does the child's father wear glasses for	A. Yes B. No
myopia?	
What is the distance between your	A. <10 cm B. 10-19 cm
child's eyes and a book when reading or	C. 20-29 cm D. ≥30 cm
writing?	
How many hours per day dose the child	4.
spend on outdoor activities during	hoursminutes
weekdays?	1
How many hours per day dose the child	
spend on outdoor activities during	hoursminutes
weekends?	

BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods			
Study design	4	Present key elements of study design early in the paper	Page 6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 7-8
Bias	9	Describe any efforts to address potential sources of bias	Page 6-9
Study size	10	Explain how the study size was arrived at	Page 10
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 8-9
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 8-9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	Page 10
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Page 10
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	Page 10
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	Page 10
Outcome data	15*	Report numbers of outcome events or summary measures	Page 10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	Page 10-12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Page 9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 13-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	Page 16
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Associations between anthropometric indicators and both refraction and ocular biometrics in a cross-sectional study of Chinese schoolchildren

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-027212.R2
Article Type:	Research
Date Submitted by the Author:	26-Mar-2019
Complete List of Authors:	Ye, Sheng; School of Public Health, Tianjin Medical University Liu, Shengxin; School of Public Health, Tianjin Medical University Li, Wenlei; School of Public Health, Tianjin Medical University Wang, Qifan; School of Public Health, Tianjin Medical University Xi, Wei; School of Public Health, Tianjin Medical University Zhang, Xin; School of Public Health, Tianjin Medical University
Primary Subject Heading :	Public health
Secondary Subject Heading:	Ophthalmology, Epidemiology
Keywords:	anthropometric indicators, refraction, ocular biometrics, schoolchildren

2		
3		
4	1	Associations between anthropometric indicators and both refraction
5		1
6		
7	2	and ocular biometrics in a cross-sectional study of Chinese
8		
9	3	schoolchildren
10	5	schoolchhulth
11		
12	4	
13		
14	_	
15	5	Sheng Ye ¹ , Shengxin Liu ¹ , Wenlei Li ¹ , Qifan Wang ¹ , Wei Xi ¹ , and Xin Zhang ¹
16		
17	6	
18	0	
19		
20	7	Author affiliation
21		
22	0	
23	8	1. Department of Maternal, Child and Adolescent Health, School of Public Health,
24		
25 26	9	Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China.
20		Thanjin Wealcar Oniversity, 10. 22 Qixiangtar Road, Thanjin 500070, China.
28		
29	10	SY and SL contributed equally to the work presented here and should therefore be
30		
31	11	
32	11	regarded as equivalent authors.
33		
34	12	
35		
36		
37	13	Correspondence to
38		
39	14	Prof. Xin Zhang; zhangxin@tmu.edu.cn.
40	14	
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51 52		
52 53		
55 54		
55		
56		
57		
58		
59		
60		

15 ABSTRACT

Objective To identify associations between anthropometric indicators (height, weight,

17 and body mass index (BMI)) and both refraction and ocular biometrics in Chinese

18 schoolchildren in Tianjin, China.

Design Cross-sectional study.

20 Participants A total of 482 (86.07%) students (6 to 15 years old) with no history of
21 ocular or systemic pathologies were enrolled in this study.

Methodology Height and weight were measured using standardized protocols. Ocular biometrics (axial length (AL), vitreous chamber depth (VCD), and corneal curvature (CC)) were measured by a low-coherence optical reflectometry device. Cycloplegic refraction was measured using autorefraction. The AL/CC ratio and spherical equivalent refraction (SER) were calculated. Myopia was defined as SER ≤ -0.50 diopters (D). Multiple linear regression analysis was performed to explore the associations between anthropometric indicators (height, weight and BMI) and both refraction and ocular biometrics.

Results The overall prevalence of myopia was 71.16%. Overall, only height was associated with ALs, VCDs, AL/CC ratios, and refractions after controlling for age, gender, parental myopia, family income, reading and writing distance, and time spent outdoors. Furthermore, age-specific results demonstrated that height and weight were independently associated with refraction in 6- to 8-year-old and 9- to 11-year-old participants. Higher heights in schoolchildren were associated with longer ALs Page 3 of 35

BMJ Open

1	
2	
3	
4	
5	
6 7	
/ 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23 24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
50 57	
57 58	
59	
60	

36	(regression coefficient $b=+0.25$ for each 10 cm difference in height, $P<0.01$), deeper
37	VCDs ($b=+0.23$, $P<0.01$), higher AL/CC ratios ($b=+0.04$, $P<0.01$), and more negative
38	refractions (b =-0.48, P <0.01). Heavier weights were also associated with longer ALs
39	(+0.29 mm, P<0.01), deeper VCDs (+0.29 mm, P<0.01), higher AL/CC ratios (+0.04,
40	P < 0.01), and more negative refractions (-0.48 D, $P < 0.01$).
41	Conclusions Height and weight remained independently related to refraction and
42	various ocular biometrics during the early adolescent growth period after adequately
43	controlling for covariates, which could support the idea that a shared mechanism may
44	regulate the coordinated growth of body and eye size in children.
45	Keywords: anthropometric indicators, refraction, ocular biometrics, schoolchildren
46	
46 47	Strengths and limitations of this study
	 Strengths and limitations of this study The study participants were schoolchildren ranging in age from 6 to 15 years old,
47	
47 48	• The study participants were schoolchildren ranging in age from 6 to 15 years old,
47 48 49	• The study participants were schoolchildren ranging in age from 6 to 15 years old, a period when myopia commonly develops, which could allow us to study the
47 48 49 50	• The study participants were schoolchildren ranging in age from 6 to 15 years old, a period when myopia commonly develops, which could allow us to study the association between body stature and refraction during development.
47 48 49 50 51	 The study participants were schoolchildren ranging in age from 6 to 15 years old, a period when myopia commonly develops, which could allow us to study the association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and
47 48 49 50 51 52	 The study participants were schoolchildren ranging in age from 6 to 15 years old, a period when myopia commonly develops, which could allow us to study the association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and both refraction and ocular biometrics were calculated in this study to help better
47 48 49 50 51 52 53	 The study participants were schoolchildren ranging in age from 6 to 15 years old, a period when myopia commonly develops, which could allow us to study the association between body stature and refraction during development. The overall and age-specific associations between anthropometric indicators and both refraction and ocular biometrics were calculated in this study to help better clarify the coordinated growth of body and eye size.

2
3
4
5
6 7
/ 8
9
10
11
12
13
14
15 16
10
18
19
20
21
22
23
24 25
25 26
27
28
29
30
31
32
33 24
34 35
36
37
38
39
40
41
42 43
45 44
45
46
47
48
49
50
51 52
52 53
55
55
56
57
58
59
60

57 design. 58 59 Introduction Myopia has reached almost epidemic proportions in the world, especially in certain 60 61 areas of East and Southeast Asia.¹ This condition is commonly viewed as etiologically 62 heterogeneous. Genetic and environmental risk factors are involved in its progression. 63 The genetic basis of myopia has been supported by evidence indicating high heritability values in twin studies² and a higher prevalence of myopia in children with myopic 64 parents.³ Excessive near work activities,⁴⁵ limited time spent outdoors,⁶⁷ and intensive 65 educational pressure⁸⁹ reportedly to promote the development of myopia. In our effort 66 67 to consider other factors, we noted that anthropometric indicators, such as height, are 68 thought to be associated with refraction, although no consensus has been achieved regarding this issue.¹⁰¹¹ 69

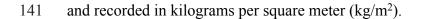
70 Refractive status is determined by the balance of the refractive power of the cornea 71 and lens, and the axial length (AL) of the eye (representing the combination of anterior 72 chamber depth (ACD), lens thickness (LT), and vitreous chamber depth (VCD)).¹² 73 Myopia usually arises in an eye that has become too long, particularly via vitreous 74 chamber elongation. Several epidemiological studies have demonstrated that changes 75 in ocular dimensions that occur in early life progress concomitant with physical development in children,¹³¹⁴ and the ages of cessation are also similar for increases in 76 height and axial elongation.¹³ Furthermore, genetic studies have confirmed that a 77

Page 5 of 35

BMJ Open

78	common genetic pathway underlies both height and AL,15 16 although no specific
79	genetic variants have yet been identified. All of these clues suggest a shared mechanism
80	that regulates the coordinated growth of body and eye size. It has been suggested that
81	there may be a relationship between body stature and refraction. However, in contrast
82	to the consensus regarding the significant associations between body stature and AL,
83	the relationship between body stature and refraction remains controversial. Although
84	many studies have reported that taller ^{10 17-20} and heavier persons ^{21 22} have an increased
85	likelihood of having myopia, other studies have found no such association. ²³⁻²⁸ The
86	discrepancies among these studies may be due to differences in sample sizes, concept
87	definitions or other methodological variations (e.g., height and weight obtained via self-
88	reporting).
89	In China, few studies have comprehensively measured ocular biometrics or further
90	explored their associations with body stature. Additionally, myopia most commonly
91	starts in young schoolchildren and progresses in early adolescence. ²¹ Therefore, it is
92	most appropriate to study the effect of body growth on refractive development in young,
93	growing students. In the current survey, we explored the associations between
94	anthropometric indicators, including height, weight, and BMI, and both refraction and
95	ocular biometrics in schoolchildren aged 6 to 15 years old in Tianjin, China.
96	

97 METHODS


98 Recruitment

1 2
3
4
5
6
7
8 9
9 10
11
12
13
14
15 16
16 17
18
19
20
21
22 23
23 24
24
26
27
28
29
30
31 32
33
34
35
36
37 38
38 39
39 40
41
42
43
44
45 46
40 47
48
49
50
51
52 53
53 54
55
56
57
58
59 60
60

99	Participants were recruited based on the following strategies. Two districts were
100	randomly chosen from the 6 main urban districts in Tianjin in November 2016. Next,
101	one primary school and one junior high school were randomly selected from each
102	selected district. Then, one class was randomly chosen from each grade level within the
103	two selected schools. All students in these selected classes were invited, but
104	participation in this study was voluntary. After the purposes and procedures of the study
105	were explained to each student and their parents in depth, written informed consent was
106	collected. Students without parental consent and students who had amblyopia,
107	heterotropia, or any ocular or systemic pathologies were excluded.
108	The study protocol was approved by the Ethics Committee of Tianjin Medical
109	University and performed in accordance with the tenets of the Declaration of Helsinki.
110	Ocular examinations
111	All participants underwent a comprehensive eye examination, including measurements
112	of intraocular pressure, a slit-lamp examination of the anterior and posterior segments,
113	cycloplegic autorefraction and ocular biometrics. The purpose of intraocular pressure
114	measurement and slit-lamp examination was to exclude contraindications for mydriasis.
115	Ocular biometrics, such as AL, central corneal thickness (CCT), ACD, LT, VCD,
116	and corneal curvature (CC), were measured with a low-coherence optical reflectometry
117	
	device (Lenstar LS900; Haag-Streit AG, 3098 Koeniz, Switzerland) in both eyes before
118	device (Lenstar LS900; Haag-Streit AG, 3098 Koeniz, Switzerland) in both eyes before pupil dilation. In addition, the AL/CC ratio, also commonly known as the axial

120	administering one drop containing 0.5% tropicamide and 0.5% phenylephrine in a
121	mixed eye agent to each eye at 0 and 5 minutes. Twenty-five minutes after the second
122	instillation, pupillary dilation and the pupillary light reflex were evaluated. Full
123	cycloplegia was considered when the pupil diameter reached 6 mm or more and the
124	light reflex disappeared. A third drop was administered if full cycloplegia was not
125	achieved. Then, participants with full cycloplegia underwent autorefraction using an
126	auto-kerato-refractor (Canon Autorefractor RK-F1, Tokyo, Japan), and 3 consecutive
127	measurements were taken in both eyes. The mean value of 3 valid measurements was
128	calculated for statistical analysis. All of the above instruments were calibrated before
129	the ocular examination. All examinations were performed by board-certified
130	ophthalmologists and certified optometrists.
131	Definitions
132	The SER of each eye was calculated as the spherical refraction $+ 1/2$ of the cylindrical
133	refraction using data obtained using the autorefractor. Myopia was defined as an SER
134	of≤-0.5 D.
135	Anthropometric measurements
136	Height and weight were obtained following specific standardized protocols ²⁹ and
137	measured by community doctors on the students' campus. Height was determined with
138	the subject standing barefoot on the base of the height meter and recorded in centimeters
139	(cm). Weight was measured without shoes and heavy coats on a calibrated electronic

140 weighing scale and recorded in kilograms (kg). BMI was calculated as weight/height²

Questionnaire

143 The parents of participants and those excluded were all asked to complete a 144 questionnaire developed to collect information on social-demographic characteristics 145 and potential risk factors for school myopia (supplementary Table 1).

The basic characteristics of the participants included age, gender, the monthly income of the family, and the number of parents with myopia. Near-work-related behaviors were ascertained with the question "What is the distance between your child's eyes and a book when reading or writing?", with answers categorized as follows: <10 cm, 10-19 cm, 20-29 cm, and \geq 30 cm. Time spent outdoors was estimated by asking how many hours per day the child spent on outdoor activities during weekdays and weekends separately. The average time spent outdoors was calculated by the following formula: $[T_{weekday} (hours spent on weekdays) \times 5 + T_{weekend} (hours spent on weekends)$ $\times 2] \div 7.$

155 Statistical analysis

Because refraction and ocular biometrics were highly correlated between two eyes (the
Pearson correlation coefficients (*r*) for refraction, AL, CCT, ACD, LT, VCD, CC and
AL/CC ratio were 0.90, 0.96, 0.89, 0.93, 0.93, 0.95, 0.97 and 0.95, respectively, and all *P* values were lower than 0.01), the data obtained from the right eye were chosen for
analyses. Ocular biometrics were all normally distributed, as determined by P-P plots.
T-tests were performed for quantitative variables, and chi-square tests were

Page 9 of 35

BMJ Open

performed for categorical variables to analyze the differences in basic characteristics between individuals with and without myopia. Univariate associations between anthropometric indicators and both refraction and ocular biometrics were identified. Simple linear regression models were constructed to assess the effects of height, weight, and BMI (as independent variables) on refraction and individual ocular biometrics (as dependent variables). Tests for linear trends were performed by entering the median value of each category of the anthropometric indicator based on quartiles as a continuous variable into the models. Multiple linear regression models were then fitted after adjusting, in turn, for age and gender or for age, gender, parental myopia, family income, reading and writing distance, and time spent outdoors. In addition, all participants were divided into the following age groups: 6 to 8 years old, 9 to 11 years old, and 12 to 15 years old. The results of age-specific associations of anthropometric indicators with both refraction and ocular biometrics after controlling for the above Collinearity covariates were calculated. diagnostics were performed, and multicollinearity was absent among the independent variables used in each model. Statistical analyses were performed using commercial statistical software (SPSS for Windows, version 20.0; IBM-SPSS, Chicago, Illinois, USA), and P values <0.05 were

- 179 considered statistically significant.
- **Patient and public involvement**

181 Patients and the public were not involved in developing the research questionnaire,

182 outcome measures or overall design of this study protocol.

183	
184	RESULTS
185	Participant characteristics
186	Among 560 students who were initially invited, a total of 482 participants ranging in
187	age from 6 to 15 years old were available for statistical analysis after excluding 70
188	students without parental consent, 5 students with heterotropia, and 3 students with
189	amblyopia. The response rate in this study was 86.07% (482 of 560). Individuals who
190	were included were older $(9.42 \pm 2.09 \text{ vs } 7.60 \pm 2.38 \text{ years old}, P < 0.01)$ than those who
191	were excluded. There were no significant differences in gender, parental myopia,
192	monthly family income, reading and writing distance, and time spent outdoors between
193	included and excluded individuals.
194	The overall prevalence of myopia was 71.16% (343 of 482; 95% CI, 67.01% to
195	75.10%). The mean SER, height, weight and BMI of all participants was -1.48 ± 1.82
196	D, 140.79 ± 13.95 cm, 38.29 ± 10.86 kg, and 19.04 ± 3.18 kg/m ² , respectively (Table
197	1). Participants with myopia were older, taller, and heavier. These individuals were
198	more likely to have myopic parents, a higher monthly family income, a closer reading
199	and writing distance and to spend less time outdoors. Moreover, these participants had
200	eyes with longer ALs, deep ACDs and VCDs, thinner LTs, and larger AL/CC ratios (all
201	<i>P</i> values were less than 0.05).
202	Bivariate correlations between variables
203	Bivariate correlations of body stature with both refraction and ocular biometrics are

- 203 Bivariate correlations of body stature with both refraction and ocular biometrics are

Page 11 of 35

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20 21	
21 22	
23	
24	
25	
26	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

204	presented in Table 2, which was of low to moderate strength. For example, height was
205	positively correlated with AL (r=0.50, P<0.01), CCT (r=0.17, P<0.01), ACD (r=0.29,
206	<i>P</i> <0.01), VCD (<i>r</i> =0.49, <i>P</i> <0.01) and the AL/CC ratio (<i>r</i> =0.49, <i>P</i> <0.01) and negatively
207	correlated with SER (<i>r</i> =-0.45, <i>P</i> <0.01) and LT (<i>r</i> =-0.24, <i>P</i> <0.01).
208	Linear trends in refraction and ocular biometrics changes by body stature
209	quartiles
210	Taller and heavier individuals tended to have eyes with longer ALs, thicker CCTs,
211	deeper ACDs, thinner LTs, deeper VCDs, higher AL/CC ratios, and more myopic
212	refractions (all P values for trend were less than 0.05) (Table 3). In addition to ACD
213	and LT, the above tendencies were also observed among more obese schoolchildren
214	(students with higher BMIs).
215	Linear regression analysis of the associations between anthropometric indicators
215 216	
	Linear regression analysis of the associations between anthropometric indicators
216	Linear regression analysis of the associations between anthropometric indicators and both refraction and ocular biometrics
216 217	Linear regression analysis of the associations between anthropometric indicators and both refraction and ocular biometrics In model 1, we used the association between height and refraction as an example and
216 217 218	Linear regression analysis of the associations between anthropometric indicators and both refraction and ocular biometrics In model 1, we used the association between height and refraction as an example and found that for each 10 cm increase in height, the SER was expected to decrease by 0.59
216217218219	Linear regression analysis of the associations between anthropometric indicators and both refraction and ocular biometrics In model 1, we used the association between height and refraction as an example and found that for each 10 cm increase in height, the SER was expected to decrease by 0.59 D (<i>P</i> <0.01) without controlling for any covariates (Table 4). In the next two models,
 216 217 218 219 220 	 Linear regression analysis of the associations between anthropometric indicators and both refraction and ocular biometrics In model 1, we used the association between height and refraction as an example and found that for each 10 cm increase in height, the SER was expected to decrease by 0.59 D (<i>P</i><0.01) without controlling for any covariates (Table 4). In the next two models, we controlled, in turn, for age and gender or for age, gender, parental myopia, family
 216 217 218 219 220 221 	Linear regression analysis of the associations between anthropometric indicators and both refraction and ocular biometrics In model 1, we used the association between height and refraction as an example and found that for each 10 cm increase in height, the SER was expected to decrease by 0.59 D (<i>P</i> <0.01) without controlling for any covariates (Table 4). In the next two models, we controlled, in turn, for age and gender or for age, gender, parental myopia, family income, reading and writing distance and time spent outdoors. The difference in SER

2	
3	
4	
5	
6	
7 8	
9	
10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
21	
22	
23 24	
24 25	
26	
27	
28	
29	
30 31	
31 32	
33	
34	
35	
36	
37	
38 39	
39 40	
41	
42	
43	
44	
45 46	
40 47	
48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

1

225	refractions (-0.21 D, P<0.05) among 6- to 15-year-old participants. Nonetheless, weight
226	and BMI were not correlated with refraction in our multiple linear regression models.
227	Furthermore, the participants were categorized into the following age groups: 6 to 8
228	years old (n=170), 9 to 11 years old (n=158), and 12 to 15 years old (n=154). After
229	controlling for the above covariates, the age-specific associations were calculated
230	(Table 5). Both height and weight remained independently associated with refraction
231	in the age range from 6 to 8 years old and 9 to 11 years old. Particularly from 9 to 11
232	years old, higher heights in schoolchildren were associated with longer ALs (+0.25 mm,
233	<i>P</i> <0.01), deeper VCDs (+0.23 mm, <i>P</i> <0.01), higher AL/CC ratios (+0.04, <i>P</i> <0.01), and
234	more negative refractions (-0.48 D, P <0.01) in their eyes. Heavier weights were also
235	associated with longer ALs (+0.29 mm, P <0.01), deeper VCDs (+0.29 mm, P <0.01),
236	higher AL/CC ratios (+0.04, <i>P</i> <0.01), and more negative refractions (-0.48 D, <i>P</i> <0.01).
237	However, from 12 to 15 years of age, no association was detected between body stature
238	and refraction.
239	DISCUSSION
240	DISCUSSION
241	In this paper, we comprehensively measured ocular biometrics and then explored the

overall and age-specific associations between anthropometric indicators and both
refraction and ocular biometrics after adequately controlling for covariates among 6- to
15-year-old schoolchildren. In China, few studies such as this one have been conducted.
Wang et al.¹⁴ confirmed a positive association between height and AL in 7- to 15-year-

Page 13 of 35

BMJ Open

old schoolchildren based on longitudinal data obtained in Guangzhou, China. However, detailed information about the associations between body stature and refraction and other ocular biometrics was not available in that study. Therefore, compared with previous studies,^{14 28} the present study achieved a more detailed analysis. The current results are in almost complete agreement with those of Saw et al.¹⁷ who showed that among 1449 Singaporean Chinese children aged 7-9 years old, taller individuals were more likely to have eyes with longer ALs (+0.46 mm, P < 0.01), deeper VCDs (+0.46 mm, P < 0.01), flatter corneas (+0.10 mm, P < 0.01), greater AL/CC ratios (+0.02, P=0.03), and refractions that trended toward myopia (-0.47 D, P<0.01) after controlling for age, gender, parental myopia, and the number of books read per week. A birth cohort performed in Britain to examine the relationship between height growth trajectories and the development of myopia presented similar results.¹⁰ For each SD increase in height for children aged from 2.5 to 10 years old, SER became more negative by -0.075 D (95% CI, -0.112 to -0.039; P<0.01) and -0.081 D (95% CI, -0.129) to -0.034; P<0.01) when the children reached 11 and 15 years old, respectively. However, Huang et al.²⁸ reported that no significant correlation between myopia shift and height changes among schoolchildren aged 7 to 9 years old in Taiwan, China. Although the association remains unclear, these results will help us to further explore the intricate relationship between the development of physical characteristics and refraction. A commonly proposed explanation for this potential association is that both higher height and myopia are independent consequences of better socioeconomic status;

267	therefore, there may be no causal relationship between height and myopia. ^{17 23} However,
268	in this study, after we controlled for socioeconomic characteristics and myopia-related
269	risk factors, height remained independently related to refraction and various ocular
270	biometrics. Myopia most commonly develops during the period from childhood to early
271	adolescence (from approximately 8 to 14 years old), ³⁰ and growth spurts also occur in
272	this period. ³¹ The early period of adolescence is mainly characterized by growth spurts
273	and the onset of sexual development, which lasts for approximately 2 or 3 years. ³² The
274	age range of early adolescence is approximately 8 to 11 years old. Therefore, we
275	inferred that the development of refraction could be related to physical development
276	during the early period of adolescent growth. The findings of the Singapore Cohort
277	Study of Risk Factors for Myopia (SCORM) support this hypothesis. ¹⁹ SCORM
278	reported that boys and girls who experienced earlier peak height velocity also achieved
279	earlier peak SER velocity (at a mean age of 10.1 vs 10.6 years old for boys, P=0.01,
280	and 10.0 vs 10.6 years old for girls, $P=0.01$) and had an earlier age of onset of myopia
281	(9.9 vs 10.4 years old for boys, $P=0.03$, and 9.7 vs 10.1 years old for girls, $P=0.04$).
282	The exact biologic pathways underlying these associations are currently unknown.
283	Some major systemic hormones, such as growth hormone, thymic hormone and insulin-
284	like growth factors (IGFs), reportedly could regulate longitudinal bone growth during
285	childhood, which are also involved in the development of experimental myopia. ^{33 34} In
286	addition, epidemiological studies reported that children with growth hormone
287	deficiency have shorter body stature and ALs than usual.35 Growth hormone

BMJ Open

supplementation in these children could partially bring the stature and ALs back within the normal range.³⁶ Sex hormones may be another significant mediator during puberty,³⁷ but our age-specific results (no association was detected in 12- to 15-year-old participants) may not support this idea. Although these hormones were not determined in this cross-sectional study, we believe that the shared mechanism between height and refraction may shed new light on the etiology of myopia and the efforts to explore the effect of endocrine traits observed during childhood and adolescence on body and eye size in the future studies. The relationships weight and BMI share with refraction are not as extensively studied as those with height, but the findings regarding these relationships are also inconclusive. Heavier and more obese Chinese children and adults in Singapore have refractions that trend toward hyperopia.¹⁷²³ Moreover, heavier adults in rural Myanmar reportedly have more positive refractions.²⁵ However, a cross-sectional study performed in 19-year-old male conscripts in South Korea found that weight and BMI had no effect on refraction.²⁷ Consistent with the results of a twin study performed in Australia,²² in our study, heavier weights were associated with more negative refractions among participants aged 6 to 8 and 9 to 11 years old.

This study has several limitations that warrant consideration. First, information on putative myopia risk factors obtained from our questionnaire (e.g., the distance between the child's eyes and a book when reading or writing) was subjectively estimated by the parents. Although this method has been widely applied in previous studies,^{17 28} it can

lead to recall bias. Second, the representativeness of the participants in this study may be affected to some extent because the participants were volunteers. Although there were no significant differences in nearly all basic characteristics between participants and those excluded, individuals who were included were older, which may have resulted in overestimation of the prevalence of myopia in our study. Third, all of the data collected in this study were cross-sectional in nature and do not allow an evaluation of causality. Therefore, whether the conclusions drawn from this study are applicable to longitudinal relationships remains uncertain. Additionally, the significant correlation observed in our study needs to be interpreted carefully because of the small sample size. It is important to avoid making strong conclusions about these associations, regardless of whether the results were positive. A larger sample size study is needed in the future to validate our conclusions. Despite these limitations, we believe that our study provides a valuable reference regarding the associations between anthropometric indicators and both refraction and ocular biometrics in Chinese schoolchildren aged 6 to 15 years old.

In conclusion, both higher heights and heavier weights were associated with longer ALs, deeper VCDs, higher AL/CC ratios and more myopic refractions during the early period of adolescent growth after controlling for age, gender, parental myopia, family income, reading and writing distance, and time spent outdoors. The results of this study support the idea that a shared mechanism may regulate the coordinated growth of body and eye size in children.

2		
3 4 5	330	
6 7 8	331	Acknowledgments: The authors thank all families who participated in our study,
9 10	332	Tianjin Eye Hospital for their help with ocular examinations, and all team members in
11 12 13	333	the Department of Maternal, Child and Adolescent Health at the School of Public
14 15 16	334	Health of Tianjin Medical University.
17 18	335	Contributors: Design of the study: SL and XZ. Collection and management of the data:
19 20 21	336	SY, SL, WL and QW. Analysis and interpretation of the data: SY. Review and approval
22 23 24	337	of the manuscript: SY, SL, WL, QW, WX and XZ.
25 26	338	Funding: This study was supported by grants from the Key Scientific Project of Tianjin
27 28 29	339	Science and Technology Commission of China (15ZCZDSY01050) and the National
30 31 32	340	Natural Science Foundation of China (No. 81773459).
33 34 35	341	Competing interests: None declared.
36 37	342	Patient consent: Obtained.
38 39 40	343	Ethics approval: Ethics Committee of Tianjin Medical University, China.
41 42 43	344	Provenance and peer review: Not commissioned; externally peer reviewed.
44 45	345	Data sharing statement: No additional data are available.
46 47 48	346	
49 50 51	347	REFERENCES
52 53 54	348	1. Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: Aetiology and
55 56	349	prevention. Prog Retin Eye Res 2018;62:134-49.
57 58 59	350	2. Kim MH, Zhao D, Kim W, et al. Heritability of myopia and ocular biometrics in

2	
3	
4	
5	
6	
5 4 5 6 7 8 9 10 11	
8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31 32 33 34 35 36 37 38	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54 55	
56	
57	
58	
59	
60	

351	Koreans: the healthy twin study. Investigative ophthalmology & visual science
352	2013;54(5):3644-9.
353	3. Ma Y, Zou H, Lin S, et al. Cohort study with 4-year follow-up of myopia and
354	refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin
355	Exp Ophthalmol 2018
356	4. Huang HM, Chang DS, Wu PC. The Association between Near Work Activities and
357	Myopia in Children-A Systematic Review and Meta-Analysis. PloS one
358	2015;10(10):e0140419.
359	5. Wu LJ, Wang YX, You QS, et al. Risk Factors of Myopic Shift among Primary
360	School Children in Beijing, China: A Prospective Study. International journal of
361	<i>medical sciences</i> 2015;12(8):633-8.
362	6. He M, Xiang F, Zeng Y, et al. Effect of Time Spent Outdoors at School on the
363	Development of Myopia Among Children in China: A Randomized Clinical Trial.
364	Jama 2015;314(11):1142-8.
365	7. Xiong S, Sankaridurg P, Naduvilath T, et al. Time spent in outdoor activities in
366	relation to myopia prevention and control: a meta-analysis and systematic review. Acta
367	ophthalmologica 2017;95(6):551-66.
368	8. Mirshahi A, Ponto K, Hoehn R, et al. Myopia and level of education: results from
369	the Gutenberg Health Study. Ophthalmology 2014;121(10):2047-52.
370	9. Williams KM, Bertelsen G, Cumberland P, et al. Increasing Prevalence of Myopia
371	in Europe and the Impact of Education. <i>Ophthalmology</i> 2015;122(7):1489-97.

BMJ Open

2	
3	
1	
4	
5	
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
32 33 34 35	
55	
36	
36 37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

372	10. Northstone K, Guggenheim JA, Howe LD, et al. Body stature growth trajectories
373	during childhood and the development of myopia. Ophthalmology 2013;120(5):1064-
374	73.
375	11. Lee DC, Lee SY, Kim YC. An epidemiological study of the risk factors associated
376	with myopia in young adult men in Korea. Scientific reports 2018;8(1):511.
377	12. Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. The Lancet 2012;379(9827):1739-
378	48.
379	13. Goss DA, Cox VD, Herrin-Lawson GA, et al. Refractive error, axial length, and
380	height as a function of age in young myopes. Optometry and vision science : official
381	publication of the American Academy of Optometry 1990;67(5):332-8.
382	14. Wang D, Ding X, Liu B, et al. Longitudinal changes of axial length and height are
383	associated and concomitant in children. Investigative ophthalmology & visual science
384	2011;52(11):7949-53.
385	15. Prashar A, Hocking PM, Erichsen JT, et al. Common determinants of body size and
386	eye size in chickens from an advanced intercross line. Experimental eye research
387	2009;89(1):42-8.
388	16. Zhang J, Hur YM, Huang W, et al. Shared genetic determinants of axial length and
389	height in children: the Guangzhou twin eye study. Archives of ophthalmology (Chicago,
390	<i>Ill : 1960)</i> 2011;129(1):63-8.
391	17. Saw SM, Chua WH, Hong CY, et al. Height and its relationship to refraction and
392	biometry parameters in Singapore Chinese children. Investigative ophthalmology &

3
4
5
5 6 7 8 9
7
, o
0
9
10
11
12
13
14
15
16
17
10
10
19
20
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
22
23
24
25
25
20
27
28
29
50
31
32
22
34 35
25
35
36
36 37 38
38
39
40
41
42
43
43 44
44 45
46
47
48
49
50
51
52
52 53
54
55
56
57
58
59
60

393 *visual science* 2002;43(5):1408-13.

18. Rahi JS, Cumberland PM, Peckham CS. Myopia over the lifecourse: prevalence
and early life influences in the 1958 British birth cohort. *Ophthalmology*2011;118(5):797-804.

397 19. Yip VC, Pan CW, Lin XY, et al. The relationship between growth spurts and
398 myopia in Singapore children. *Investigative ophthalmology & visual science*399 2012;53(13):7961-6.

20. Rim TH, Kim SH, Lim KH, et al. Body Stature as an Age-Dependent Risk Factor
for Myopia in a South Korean Population. *Seminars in ophthalmology* 2017;32(3):32636.

403 21. Gardiner PA. Physical growth and the progress of myopia. *Lancet* 404 1955;269(6897):952-3.

405 22. Dirani M, Islam A, Baird PN. Body stature and myopia-The Genes in Myopia
406 (GEM) twin study. *Ophthalmic epidemiology* 2008;15(3):135-9.

407 23. Wong TY, Foster PJ, Johnson GJ, et al. The relationship between ocular dimensions
408 and refraction with adult stature: the Tanjong Pagar Survey. *Investigative*409 *ophthalmology & visual science* 2001;42(6):1237-42.

- 411 parameters on eye size and refraction in a population-based study of Australian children.
- 412 *Investigative ophthalmology & visual science* 2005;46(12):4424-9.
- 413 25. Wu HM, Gupta A, Newland HS, et al. Association between stature, ocular biometry

^{410 24.} Ojaimi E, Morgan IG, Robaei D, et al. Effect of stature and other anthropometric

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50 57	
58	
59	
60	

414	and refraction in an adult population in rural Myanmar: the Meiktila eye study. Clin
415	Exp Ophthalmol 2007;35(9):834-39.
416	26. Sharma A, Congdon N, Gao Y, et al. Height, stunting, and refractive error among
417	rural Chinese schoolchildren: the See Well to Learn Well project. American journal of
418	ophthalmology 2010;149(2):347-53.
419	27. Jung SK, Lee JH, Kakizaki H, et al. Prevalence of myopia and its association with
420	body stature and educational level in 19-year-old male conscripts in seoul, South Korea.
421	Investigative ophthalmology & visual science 2012;53(9):5579-83.
422	28. Huang CY, Hou CH, Lin KK, et al. Relationship of lifestyle and body stature growth
423	with the development of myopia and axial length elongation in Taiwanese elementary
424	school children. Indian journal of ophthalmology 2014;62(8):865-9.
425	29. National Student Physique and Health Research Group. The instruction manual of
426	national survey in Physique and health of Chinese schoolchildren (2014) [M]. Beijing:
427	Higher Education Press, 2014: 41-45.
428	30. Baird P, Schäche M, Dirani M. The GEnes in Myopia (GEM) study in
429	understanding the aetiology of refractive errors. Prog Retin Eye Res 2010;29(6):520-
430	42.
431	31. Limony Y, Koziel S, Friger M. Age of onset of a normally timed pubertal growth
432	spurt affects the final height of children. Pediatr Res 2015;78(3):351-5.
433	32. Chengye J. Child and adolescent health[M]. Beijing: People's Medical Publishing
434	House, 2014: 51-51.

33. Rada JA, Wiechmann AF. Ocular expression of avian thymic hormone: changes during the recovery from induced myopia. Molecular vision 2009;15:778-92. 34. Kusakari T, Sato T, Tokoro T. Visual deprivation stimulates the exchange of the fibrous sclera into the cartilaginous sclera in chicks. Experimental eye research 2001;73(4):533-46. 35. Parentin F, Tonini G, Perissutti P. Refractive evaluation in children with growth defect. Current eye research 2004;28(1):11-5. 36. Parentin F, Perissutti P. Congenital growth hormone deficiency and eye refraction: a longitudinal study. Ophthalmologica Journal international d'ophtalmologie International journal ophthalmology Zeitschrift fur Augenheilkunde of 2005;219(4):226-31. 37. Ogueta SB, Schwartz SD, Yamashita CK, et al. Estrogen receptor in the human eye: influence of gender and age on gene expression. Investigative ophthalmology & visual science 1999;40(9):1906-11.

Page 23 of 35

	Total	Myopia	Nonmyopia	<i>P</i> Valu
Age (years)	9.42 ± 2.09	9.88 ± 2.14	8.30 ± 1.45	< 0.01
Male	264 (54.77)	187 (54.52)	77 (55.40)	0.86
Female	218 (45.23)	156 (45.48)	62 (44.60)	0.86
Parental myopia*				< 0.01
None	129 (28.48)	74 (23.13)	55 (41.35)	
One parent	188 (41.50)	134 (41.88)	54 (40.60)	
Both parents	136 (30.02)	112 (35.00)	24 (18.05)	
Monthly family income*				< 0.05
<4000 RMB	41 (8.78)	27 (8.16)	14 (10.29)	
4000-8000 RMB	136 (29.12)	89 (26.89)	47 (34.56)	
8000-10,000 RMB	133 (28.48)	89 (26.89)	44 (32.35)	
10,000-15,000 RMB	91 (19.49)	73 (22.05)	18 (13.24)	
≥15,000 RMB	66 (14.13)	53 (16.01)	13 (9.56)	
Reading and writing distance*				< 0.05
<10 cm	45 (9.62)	36 (10.81)	9 (6.67)	
10-20 cm	200 (42.74)	148 (44.44)	52 (38.52)	
20-30 cm	166 (35.47)	117 (35.14)	49 (36.30)	
≥30 cm	57 (12.18)	32 (9.61)	25 (18.52)	
Time spent outdoors (hours)	1.20 ± 0.70	1.16 ± 0.70	1.31 ± 0.69	< 0.05
Height (cm)	140.79 ± 13.95	143.85 ± 14.17	133.22 ± 10.01	< 0.01
Weight (kg)	38.29 ± 10.86	40.06 ± 11.05	33.92 ± 9.01	< 0.01
BMI (kg/m ²)	19.04 ± 3.18	19.10 ± 3.14	18.89 ± 3.28	0.52
SER (D)	-1.48 ± 1.82	-2.20 ± 1.66	0.30 ± 0.54	< 0.01
AL (mm)	23.81 ± 1.12	24.16 ± 1.07	22.95 ± 0.72	< 0.01
CCT (µm)	547.65 ± 32.44	548.88 ± 33.32	544.63 ± 30.05	0.19
ACD (mm)	3.08 ± 0.26	3.14 ± 0.25	2.94 ± 0.23	< 0.01

LT (mm)	3.47 ± 0.20	3.43 ± 0.20	3.55 ± 0.19	< 0.01
VCD (mm)	17.27 ± 1.09	17.60 ± 1.05	16.46 ± 0.71	< 0.01
CC (mm)	7.78 ± 0.26	7.78 ± 0.25	7.79 ± 0.26	0.84
AL/CC ratio	3.06 ± 0.13	3.11 ± 0.13	2.95 ± 0.07	< 0.01

Data are presented as the means with standard deviation (SD) or as n (%).

*Numbers of individuals vary due to missing data.

Table 2 Bivariate correlations of body stature with refraction and ocular biometrics.

	Height (cm)	Weight (kg)	BMI (kg/m ²)
SER (D)	-0.45**	-0.39**	-0.11*
AL (mm)	0.50**	0.45**	0.15*
CCT (µm)	0.17**	0.19**	0.09*
ACD (mm)	0.29**	0.22**	0.03
LT (mm)	-0.24**	-0.19**	-0.04
VCD (mm)	0.49**	0.44**	0.16**
CC (mm)	0.07	0.10*	0.08
AL/CC ratio	0.49**	0.40**	0.10*

Data are the Pearson correlation coefficients.

*: P<0.05.

**: *P*<0.01.

 BMJ Open

	Range	n	SER (D)	AL (mm)	CCT (µm)	ACD (mm)
Height (cm)						
1st quartile	100.0~130.0	127	-0.48 ± 1.13 †	23.09 ± 0.78	542.11 ± 30.93	2.97 ± 0.24
2nd quartile	130.1~140.0	136	-1.08 ± 1.46	23.58 ± 0.98	544.96 ± 32.69	3.05 ± 0.28
3rd quartile	140.1~150.7	99	-1.86 ± 1.80	24.15 ± 1.01	550.04 ± 32.31	3.16 ± 0.23
4th quartile	150.8~182.5	120	-2.68 ± 2.06	24.56 ± 1.14	554.58 ± 32.76	3.18 ± 0.22
<i>P</i> for trend‡			<i>P</i> <0.01	<i>P</i> <0.01	<i>P</i> <0.05	<i>P</i> <0.01
Weight (kg)						
1st quartile	20.0~30.0	129	-0.59 ± 1.19	23.19 ± 0.80	541.27 ± 32.75	3.02 ± 0.26
2nd quartile	30.1~36.1	112	-1.12 ± 1.30	23.58 ± 1.00	547.64 ± 31.34	3.04 ± 0.26
3rd quartile	36.2~45.0	128	-1.75 ± 1.92	24.02 ± 1.12	544.17 ± 31.56	3.12 ± 0.24
4th quartile	45.1~82.3	113	-2.54 ± 2.14	24.52 ± 1.12	558.92 ± 31.65	3.16 ± 0.24
P for trend			<i>P</i> <0.01	<i>P</i> <0.01	P<0.01	<i>P</i> <0.01
BMI (kg/m²)						
1st quartile	14.0~16.5	121	-1.19 ± 1.62	23.55 ± 1.05	543.79 ± 31.55	3.09 ± 0.25
2nd quartile	16.6~18.4	120	-1.39 ± 1.69	23.80 ± 1.14	545.79 ± 32.26	3.05 ± 0.28

BMJ	Open
-----	------

Page	26	of	25
гауе	20	UI.	55

1	
2 3 4 5 6 7 8	
4	
6	
7 8	
9	
10 11	
12	
13 14	
15	
16 17	
18	
19 20	
20 21	
22 23	
24 25	
26	
27 28	
29	
30 31	
32	
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	

3rd quartile	18.5~20.8	120	-1.59 ± 1.88	23.90 ± 1.12	547.12 ± 32.16	3.09 ± 0.25
4th quartile	20.9~30.6	121	-1.74 ± 2.05	24.00 ± 1.16	533.90 ± 33.26	3.11 ± 0.25
<i>P</i> for trend			<i>P</i> <0.05	<i>P</i> <0.01	<i>P</i> <0.05	<i>P</i> =0.32
	Range	n	LT (mm)	VCD (mm)	CC (mm)	AL/CC ratio
Height (cm)		O h				
1st quartile	100.0~130.0	127	3.55 ± 0.19	16.57 ± 0.74	7.75 ± 0.25	2.98 ± 0.09
2nd quartile	130.1~140.0	136	3.48 ± 0.23	17.07 ± 0.96	7.79 ± 0.27	3.03 ± 0.11
3rd quartile	140.1~150.7	99	3.42 ± 0.18	17.58 ± 0.99	7.81 ± 0.26	3.09 ± 0.13
4th quartile	150.8~182.5	120	3.41 ± 0.19	17.97 ± 1.12	7.78 ± 0.25	3.16 ± 0.14
<i>P</i> for trend			P<0.01	<i>P</i> <0.01	<i>P</i> =0.36	<i>P</i> <0.01
Weight (kg)						
1st quartile	20.0~30.0	129	3.51 ± 0.20	16.64 ± 0.77	7.75 ± 0.25	2.99 ± 0.10
2nd quartile	30.1~36.1	112	3.49 ± 0.21	17.07 ± 0.97	7.78 ± 0.28	3.03 ± 0.11
3rd quartile	36.2~45.0	128	3.45 ± 0.21	17.46 ± 1.10	7.80 ± 0.24	3.08 ± 0.13
4th quartile	45.1~82.3	113	3.40 ± 0.19	17.95 ± 1.08	7.81 ± 0.25	3.14 ± 0.15
<i>P</i> for trend			<i>P</i> <0.01	<i>P</i> <0.01	<i>P</i> =0.08	<i>P</i> <0.01
BMI (kg/m ²)						

 BMJ Open

1st quartile	14.0~16.5	121	3.45 ± 0.18	17.01 ± 1.05	7.73 ± 0.26	3.05 ± 0.12
2nd quartile	16.6~18.4	120	3.51 ± 0.23	17.23 ± 1.04	7.81 ± 0.26	3.05 ± 0.13
3rd quartile	18.5~20.8	120	3.46 ± 0.20	17.38 ± 1.11	7.81 ± 0.26	3.06 ± 0.14
4th quartile	20.9~30.6	121	3.44 ± 0.20	17.46 ± 1.13	7.79 ± 0.24	3.08 ± 0.14
<i>P</i> for trend			<i>P</i> =0.37	<i>P</i> <0.01	<i>P</i> =0.19	<i>P</i> <0.05

†Data are expressed as means \pm SD.

Tests for linear trend is performed by entering the median value of each category of the anthropometric indicator as a continuous variable in the models.

Table 4 Multiple linear regression models of refraction and ocular biometry by height, weight, and BMI.

	Model 1	P Value	Model 2	P Value	Model 3	P Value
Height (per 10 cm)				-77	<u>^</u>	
SER (D)	-0.59 (-0.70, -0.49)†	< 0.01	-0.26 (-0.45, -0.08)	<0.01	-0.21 (-0.40, -0.01)	< 0.05
AL (mm)	0.40 (0.34, 0.47)	< 0.01	0.18 (0.07, 0.29)	< 0.01	0.14 (0.03, 0.26)	< 0.05
CCT (µm)	4.03 (1.97, 6.08)	< 0.01	2.43 (-1.29, 6.16)	0.20	3.41 (-0.76, 7.58)	0.11
ACD (mm)	0.05 (0.04, 0.07)	< 0.01	0.02 (-0.01, 0.05)	0.17	0.02 (-0.02, 0.05)	0.34

-0.04 (-0.05, -0.02)	< 0.01	-0.01 (-0.03, 0.02)	0.57	-0.01 (-0.03, 0.02)	0.75
0.38 (0.32, 0.44)	< 0.01	0.17 (0.06, 0.27)	< 0.01	0.13 (0.02, 0.25)	< 0.05
0.01 (-0.01, 0.03)	0.13	0.01 (-0.02, 0.04)	0.41	0.01 (-0.03, 0.04)	0.81
0.05 (0.04, 0.06)	< 0.01	0.02 (0.01, 0.03)	< 0.01	0.02 (0.01, 0.03)	< 0.05
-0.65 (-0.79, -0.51)	< 0.01	-0.21 (-0.39, -0.03)	< 0.05	-0.18 (-0.36, 0.01)	0.07
0.46 (0.38, 0.55)	< 0.01	0.16 (0.05, 0.26)	< 0.01	0.15 (0.04, 0.26)	< 0.01
5.56 (2.93, 8.20)	< 0.01	3.68 (0.06, 7.29)	< 0.05	4.44 (0.42, 8.47)	< 0.05
0.05 (0.03, 0.07)	< 0.01	-0.01 (-0.03, 0.02)	0.90	-0.01 (-0.03, 0.03)	0.87
-0.04 (-0.05, -0.02)	< 0.01	0.01 (-0.02, 0.02)	0.95	0.01 (-0.02, 0.03)	0.96
0.44 (0.36, 0.53)	< 0.01	0.16 (0.06, 0.27)	< 0.01	0.15 (0.04, 0.26)	< 0.01
0.03 (0.01, 0.05)	< 0.05	0.02 (-0.01, 0.05)	0.11	0.02 (-0.01, 0.05)	0.14
0.05 (0.04, 0.06)	< 0.01	0.01 (-0.01, 0.02)	0.10	0.01 (-0.01, 0.02)	0.16
-0.64 (-1.15, -0.13)	< 0.05	-0.26 (-0.73, 0.20)	0.26	-0.27 (-0.74, 0.20)	0.25
0.53 (0.21, 0.84)	< 0.01	0.20 (-0.07, 0.47)	0.15	0.23 (-0.05, 0.50)	0.10
9.50 (0.35, 18.65)	< 0.05	6.37 (-2.79, 15.53)	0.17	7.19 (-2.87, 17.25)	0.16
	$\begin{array}{c} 0.38 \ (0.32, 0.44) \\ 0.01 \ (-0.01, 0.03) \\ 0.05 \ (0.04, 0.06) \end{array}$ $\begin{array}{c} -0.65 \ (-0.79, -0.51) \\ 0.46 \ (0.38, 0.55) \\ 5.56 \ (2.93, 8.20) \\ 0.05 \ (0.03, 0.07) \\ -0.04 \ (-0.05, -0.02) \\ 0.44 \ (0.36, 0.53) \\ 0.03 \ (0.01, 0.05) \\ 0.05 \ (0.04, 0.06) \end{array}$ $\begin{array}{c} -0.64 \ (-1.15, -0.13) \\ 0.53 \ (0.21, 0.84) \end{array}$	0.38 (0.32, 0.44)<0.01 $0.01 (-0.01, 0.03)$ 0.13 $0.05 (0.04, 0.06)$ <0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

BMJ Open

ACD (mm)	0.03 (-0.05, 0.10)	0.50	-0.03 (-0.10, 0.04)	0.46	-0.02 (-0.10, 0.05)	0.52
LT (mm)	-0.02 (-0.08, 0.03)	0.42	0.01 (-0.05, 0.07)	0.79	0.01 (-0.06, 0.07)	0.86
VCD (mm)	0.55 (0.24, 0.85)	< 0.01	0.23 (-0.03, 0.50)	0.09	0.25 (-0.03, 0.52)	0.08
CC (mm)	0.06 (-0.01, 0.14)	0.09	0.04 (-0.03, 0.11)	0.25	0.06 (-0.02, 0.14)	0.13
AL/CC ratio	0.04 (0.01, 0.08)	< 0.05	0.01 (-0.02, 0.04)	0.58	0.01 (-0.03, 0.04)	0.67

[†]Each value represents a separate regression model, with height, weight, or BMI used as the independent variable, the refraction or individual ocular biometrics used as the dependent variable, either alone or with various confounders. Data in parentheses represents the 95% confidence interval.

Model 1 constructs based on crude data. In the next two models, we controlled, in turn, for age and gender or for age, gender, parental myopia, family income, reading and writing distance, and time spent outdoors.

Table 5 Age-specific results of the associations of anthropometric indicators with both refraction and ocular biometrics.

6-8 years old (n=170)	9-11 years old (n=158)	12-15 years old (n=154)	
<i>b</i>	b	b	
-0.31 (-0.59, -0.03)*	-0.48 (-0.71, -0.24)**	0.35 (-0.52, 1.22)	
,	29		
-	<i>b</i> -0.31 (-0.59, -0.03)*	<i>b b</i>	

AL (mm)	0.17 (-0.02, 0.35)	0.25 (0.11, 0.38)**	-0.25 (-0.69, 0.18)
CCT (µm)	2.01 (-5.59, 9.60)	0.77 (-3.82, 5.36)	10.49 (-5.41, 26.39)
ACD (mm)	0.04 (-0.02, 0.10)	0.03 (-0.01, 0.06)	-0.09 (-0.17, -0.01)
LT (mm)	-0.03 (-0.08, 0.02)	-0.01 (-0.04, 0.01)	0.07 (-0.02, 0.15)
VCD (mm)	0.18 (-0.004, 0.36)	0.23 (0.09, 0.36)**	-0.23 (-0.69, 0.23)
CC (mm)	-0.01 (-0.07, 0.05)	-0.01 (-0.05, 0.03)	0.01 (-0.09, 0.12)
AL/CC	$0.03 \ (0.003, \ 0.05)^*$	$0.04 (0.02, 0.05)^{**}$	-0.04 (-0.09, 0.02)
Weight (per 10 kg)			
SER (D)	-0.37 (-0.67, -0.07)*	-0.48 (-0.74, -0.23)**	0.39 (-0.23, 1.01)
AL (mm)	0.13 (-0.08, 0.33)	0.29 (0.15, 0.44)**	-0.09 (-0.41, 0.22)
CCT (µm)	1.43 (-6.93, 9.79)	3.00 (-1.99, 7.99)	10.83 (-0.38, 22.04)
ACD (mm)	-0.002 (-0.06, 0.06)	0.03 (-0.01, 0.07)	-0.06 (-0.11, 0.002)
LT (mm)	0.02 (-0.03, 0.08)	-0.03 (-0.06, 0.001)	0.02 (-0.05, 0.08)
VCD (mm)	0.11 (-0.09, 0.31)	0.29 (0.14, 0.44)**	-0.06 (-0.39, 0.28)
CC (mm)	0.02 (-0.05, 0.08)	0.003 (-0.04, 0.04)	0.04 (-0.04, 0.11)
AL/CC	0.01 (-0.01, 0.04)	0.04 (0.02, 0.06)**	-0.03 (-0.07, 0.01)

BMI (per 10 kg/m²)

 BMJ Open

SER (D)	-0.46 (-1.10, 0.17)	-0.63 (-1.38, 0.13)	0.96 (-1.02, 2.93)
AL (mm)	0.06 (-0.36, 0.48)	$0.47~(0.05,~0.90)^{*}$	0.03 (-0.98, 1.03)
CCT (µm)	0.84 (-16.31, 17.99)	9.14 (-5.10, 23.37)	28.47 (-7.47, 64.41
ACD (mm)	-0.07 (-0.19, 0.06)	0.04 (-0.07, 0.15)	-0.10 (-0.28, 0.09)
LT (mm)	0.10 (-0.01, 0.21)	-0.07 (-0.16, 0.01)	-0.03 (-0.23, 0.17)
VCD (mm)	0.01 (-0.40, 0.43)	0.51 (0.08, 0.93)*	0.15 (-0.91, 1.21)
CC (mm)	0.05 (-0.09, 0.19)	0.03 (-0.08, 0.14)	0.13 (-0.11, 0.37)
AL/CC	-0.01 (-0.06, 0.04)	0.05 (-0.003, 0.11)	-0.05 (-0.17, 0.08)

P*<0.05; *P*<0.01.

Each value represents a separate regression model with height, weight, or BMI used as the independent variable and the refraction or individual ocular biometrics used as the dependent variable. We controlled for gender, parental myopia, family income, reading and writing distance, and only time spent outdoors. Data in parentheses represents the 95% confidence interval.

For peer teriew only

1	
1 2	
2	
3 4	
4 5	
5	
0 7	
8	
o 9	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
46 47	
47 48	
48 49	
49 50	
50 51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Supplementary Table 1 Specific classification of some items in the questionnaire.

What day is your child's birthday?	(yy/mm/dd)
What's your child's gender?	A. Male B. Female
	A. Less than 4000 RMB
What is the average monthly income of	B. 4000-8000 RMB
your family?	C. 8000-10,000 RMB
	D. 10,000-15,000 RMB
	E. More than 15,000 RMB
Does the child's mother wear glasses for	A. Yes B. No
myopia?	
Does the child's father wear glasses for	A. Yes B. No
myopia?	
What is the distance between your	A. <10 cm B. 10-19 cm
child's eyes and a book when reading or	C. 20-29 cm D. ≥30 cm
writing?	
How many hours per day dose the child	4.
spend on outdoor activities during	hoursminutes
weekdays?	1
How many hours per day dose the child	
spend on outdoor activities during	hoursminutes
weekends?	

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	Page 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2-3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	Page 4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	Page 5
Methods			
Study design	4	Present key elements of study design early in the paper	Page 6
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Page 6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Page 6
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Page 7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Page 7-8
Bias	9	Describe any efforts to address potential sources of bias	Page 6-9
Study size	10	Explain how the study size was arrived at	Page 10
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Page 8-9
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Page 8-9
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	Page 10
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	Page 10
		(c) Consider use of a flow diagram	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	Page 10
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	Page 10
Outcome data	15*	Report numbers of outcome events or summary measures	Page 10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	Page 10-12
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	Page 9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	Page 12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	Page 15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	Page 13-15
Generalisability	21	Discuss the generalisability (external validity) of the study results	Page 15
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	Page 16
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.