Scrutinizing Metal-Ligand Covalency and Redox Non-Innocence Via Nitrogen K-edge X-ray Absorption Spectroscopy

Supporting Information

James T. Lukens, [‡] Ida M. DiMucci, [‡] Takashi Kurogi, [§] Daniel J. Mindiola, [§] and Kyle M. Lancaster^{‡,}*

[‡]Department of Chemistry and Chemical Biology Cornell University, Baker Laboratory, Ithaca, NY 14853, USA;

[§]Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104 USA

E-mail: kml236@cornell.edu

Table of Contents

Example Orca Input Files	S3
Input Coordinates for Orca Calculations	S4
Table S1. Elemental analysis results.	S13
Fig. S1. Cu L _{2,3} -edge XAS normalized spectra of [CuCl ₄] ²⁺	S13
Fig. S2. Fit Cu $L_{2,3}$ -edge XAS spectra of [CuCl ₄] ²⁺	S13
Fig. S3. Cu $L_{2,3}$ -edge XAS normalized spectra of $[Cu(en)_2]^{2+}$	S14
Fig. S4. Fit Cu $L_{2,3}$ -edge XAS spectra of $[Cu(en)_2]^{2+}$	S15
Fig. S5. Cu L _{2,3} -edge XAS normalized spectra of [Cu(NH ₃) ₄] ²⁺	S15
Fig. S6. Fit Cu $L_{2,3}$ -edge XAS spectra of $[Cu(NH_3)_4]^{2+}$	S16
Fig. S7. N K-edge XAS photodamage scans	S16
Fig. S8-S25. Experimental/Calculated Overlay Spectra and MO Diagrams	S17
Fig. S26. Overlay of exp/calc PNP N K-edge peak energies with applied global shift	S35
Fig. S27. Overlay/corr. of exp/calc PNP N K-edge peak energies with applied class shift	S35
Fig. S28. Overlay/corr. of exp/ROCIS PNP N K-edge peak energies with applied ind. shifts	S36
Fig. S29. Corr. of exp/TDDFT N K-edge peak energies with applied ind. shifts	S36
Fig. S30. PNPH experimental/TDDFT N K-edge XAS spectra with applied ind. shift	S37
Fig. S31. Fit N K-edge XAS spectra of (PNP)NiCl	S37
Fig. S32. Fit N K-edge XAS spectra of [(PNP)NiCl](OTf)	S38
Fig. S33. Ni K-edge XAS spectra of (PNP)NiCl and [(PNP)NiCl](OTf)	S38
Radial Overlap Analysis	S39
Fig. S34. Radial wavefunction overlap	S39
Python Fitting Procedure	S40
References	S43

EXAMPLE ORCA INPUT FILES

Single Point and TD-DFT XAS Calculation:

!B3LYP RIJCOSX ZORA-def2-TZVP(-f) def2/J ZORA CPCM UKS PAL4 !NormalPrint TightSCF Grid4 NoFinalGrid UNO UCO

%basis newgto *3d Metal Atom* "CP(PPP)" end

%tddft NRoots 100

MaxDim 1000 OrbWin[0] = *LowestEnergyDonorOrbital*, *HighestEnergyDonorOrbital*, -1, -1 OrbWin[1] = *LowestEnergyDonorOrbital*, *HighestEnergyDonorOrbital*, -1, -1 DoQuad true end

%method SpecialGridAtoms *Metal Atomic Number* SpecialGridIntAcc 7 end

%MaxCore 4000

%SCF MaxIter 500 end

* xyz *Charge SpinMultiplicity Coordinates* *

DFT-ROCIS XAS Calculation:

!B3LYP RIJCOSX ZORA-def2-TZVP(-f) def2/J ZORA CPCM ROKS PAL4 !NormalPrint TightSCF Grid4 NoFinalGrid UNO UCO MOREAD NOITER

%moinp "TD-DFT FILENAME.qro"

%basis newgto *3d Metal Atom* "CP(PPP)" end end

%rocis NRoots 100

MaxDim 500 SOC false DoRI true DoQuad true DoHigherMult false DoLowerMult false PrintLevel 3 Orbwin *LowestEnergyDonorOrbital*, *HighestEnergyDonorOrbital*,0,500 DoDFTCIS true DFTCIS_c = 0.21, 0.49, 0.29 end

%method SpecialGridAtoms *Metal Atomic Number* SpecialGridIntAcc 7 end

%MaxCore 4000

* xyz *Charge SpinMultiplicity Coordinates* *

INPUT COORDINATES FOR ORCA CALCULATIONS

[Co(NH3)5Cl]Cl2	A 6 1.1 11 1.		Co	0.00000	0.00000	0.00000
Char	ge = +2, Spin	Multiplicity	= 1	N	-1.96658	0.02337	0.05966
				Н	-2.27933	-0.78391	-0.14612
Co	0.00000	0.00000	0.00000	Н	-2.27323	0.61951	-0.52528
Cl	0.01293	0.02389	2.26445	Н	-2.23514	0.24687	0.87811
Ν	0.04647	1.96725	0.04135	Ν	-0.03694	0.03692	-1.97032
Н	-0.75554	2.27849	0.27200	Н	0.35210	-0.69822	-2.28770
Н	0.26367	2.27480	-0.76513	Н	0.40158	0.75452	-2.26214
Н	0.65193	2.23650	0.63494	Н	-0.88111	0.07050	-2.25125
Ν	-0.02360	-1.95468	0.03116	Ν	-0.01505	-1.96419	-0.05857
Η	-0.86328	-2.24115	0.09842	Н	0.06285	-2.28587	0.76615
Н	0.44500	-2.24535	0.73012	Н	0.66578	-2.25134	-0.55587
Н	0.33839	-2.26844	-0.71978	Н	-0.78063	-2.24377	-0.41539
Ν	-1.96335	0.06528	-0.03923	Ν	1.96808	-0.00053	-0.00047
Н	-2.23043	0.53587	-0.74568	Н	2.26480	-0.77069	0.33215
Н	-2.26210	0.45343	0.70469	Н	2.26466	0.67316	0.50041
Н	-2.28615	-0.76293	-0.09342	Н	2.26450	0.09712	-0.83374
Ν	0.01235	-0.06825	-1.94963	Ν	0.00000	1.96588	0.00000
Н	0.17443	0.74521	-2.27481	Н	0.05544	2.26235	0.83841
Н	-0.77917	-0.35018	-2.24078	Н	-0.75294	2.26253	-0.37095
Н	0.64673	-0.62899	-2.22306	Н	0.69758	2.26238	-0.46457
Ν	1.94876	0.00000	-0.00000	Ν	0.05125	-0.06894	1.96290
Н	2.24492	-0.32186	-0.77597	Н	0.05470	0.75982	2.28757
Н	2.24572	-0.51129	0.66610	Н	0.78841	-0.49329	2.22471
Н	2.24546	0.83279	0.11027	Н	-0.66537	-0.50311	2.26300

[Co(NH₃)₆]Cl₃

Charge = +3, Spin Multiplicity = 1

[Ni(NH₃)₆]Cl₂

Charge = +2, Spin Multiplicity = 3

Ni	0.00000	0.00000	0.00000	Н	-0.38429	3.32222	-1.45330	
Ν	0.03303	-1.52991	1.46279	Η	-1.45520	2.48714	-1.32990	
Η	-0.41323	-2.25753	1.14888	Η	-0.45733	2.39436	0.61302	
Η	-0.36932	-1.23075	2.22265	Η	0.79602	2.38254	0.14490	
Η	0.89481	-1.75610	1.64471	Η	2.44660	-0.72382	-0.35407	
Ν	0.01019	1.40675	1.59724	Η	2.56018	0.74675	0.11350	
Η	-0.60504	1.16038	2.22133	Η	3.25676	-0.36208	1.81345	
Н	-0.19574	2.23242	1.27606	Н	0.36038	-2.37779	-0.88831	
Н	0.83710	1.42624	1.97822	Н	2.31026	-1.53538	1.75081	
Ν	-2.11808	0.01420	0.03802	Н	1.68443	1.09433	2.34656	
Н	-2.42145	0.81476	-0.27166	Н	1.68046	-0.08892	3.39723	
Н	-2.40723	-0.10899	0.89109	Н	-0.43427	0.50546	2.46295	
Н	-2.43548	-0.65539	-0.48978	Н	-0.08592	-0.93290	2.42074	
Ν	0.02809	1.55606	-1.44671	Н	-1.77836	-2.19100	-1.32060	
Η	0.22756	1.20683	-2.26270	Н	-1.74230	-3.20405	-0.30622	
Η	0.65829	2.17151	-1.21735	Η	-2.29190	-1.64080	1.33194	
Η	-0.78931	1.95459	-1.47817	Η	-3.22409	-1.65411	0.21109	
Ν	-0.02098	-1.43000	-1.53527	Η	-2.45098	0.37115	0.63306	
Η	0.17308	-2.24878	-1.18966	Η	-2.47204	0.05898	-0.70138	
Η	0.60098	-1.21004	-2.16236	Η	-0.75953	0.08145	-2.40404	
Η	-0.84447	-1.45055	-1.91905	Ν	-0.16622	-2.08639	-0.21724	
Ν	2.15315	0.00000	0.00000	Ν	-2.11580	-0.11524	0.05188	
Η	2.45655	-0.78593	0.34527	Ν	0.00649	0.31484	-2.10103	
Η	2.45690	0.69179	0.50714	Ν	-0.00000	2.13035	-0.00000	
Η	2.45693	0.09247	-0.85295	Ν	2.12600	-0.14510	0.19043	
				Ν	0.11870	-0.06718	2.13408	

[Cu(NH₃)4](SO₄) Charge = +2, Spin Multiplicity = 2

Cu	0.00000	0.00000	-0.00000
Ν	0.00000	2.01192	-0.00000
Н	0.51025	2.41405	0.69170
Н	0.32965	2.30266	-0.80432
Н	-0.83502	2.40556	0.03744
Ν	1.99663	0.07670	-0.23536
Н	2.29217	0.51749	-1.02204
Н	2.35820	0.50902	0.48748
Н	2.42594	-0.74134	-0.22497
Ν	-0.00000	-2.01192	0.00000
Η	-0.51025	-2.41405	-0.69170
Н	-0.32965	-2.30266	0.80432
Н	0.83502	-2.40556	-0.03744
Ν	-1.99663	-0.07670	0.23536
Η	-2.29217	-0.51749	1.02204
Н	-2.35820	-0.50902	-0.48748
Н	-2.42594	0.74134	0.22497

[Ni(en)3]Cl2

Charge = $+2$, Spin	Multiplicity $= 3$
----------------------	--------------------

Ni	0.00000	0.00000	0.00000
С	-1.58679	-2.39170	-0.51854
С	-2.45153	-1.51868	0.32880
С	0.23550	1.74277	-2.34472
С	-0.49038	2.54097	-1.32109
С	2.41201	-0.59013	1.57841
С	1.50858	0.17720	2.51374
Н	0.07675	-2.48011	0.60102
Н	0.60191	-0.20302	-2.46965
Н	-0.00644	1.97277	-3.16179
Н	1.10114	1.91393	-2.34273

11	-1./+230	-3.20+03	-0.50			
Н	-2.29190	-1.64080	1.33			
Н	-3.22409	-1.65411	0.21			
Н	-2.45098	0.37115	0.63			
Н	-2.47204	0.05898	-0.70			
Н	-0.75953	0.08145	-2.40			
Ν	-0.16622	-2.08639	-0.21			
Ν	-2.11580	-0.11524	0.05			
Ν	0.00649	0.31484	-2.10			
Ν	-0.00000	2.13035	-0.00			
Ν	2.12600	-0.14510	0.19			
Ν	0.11870	-0.06718	2.134			
[Cu(en)2](OTf)2						
Charge = $+2$, Spin Multiplicity = 2						
Cu	0.00000	0.00000	0.00			

Cu	0.00000	0.00000	0.00000
Ν	1.57595	-0.18665	-1.24894
Н	1.36924	-0.01874	-2.02618
Н	2.27393	0.38050	-1.10018
С	2.02243	-1.60347	-1.22697
Η	2.59601	-1.75981	-0.46036
Н	2.52533	-1.80548	-2.03121
С	0.80415	-2.48341	-1.14617
Н	0.28971	-2.42104	-1.96604
Н	1.06563	-3.40822	-1.01619
Ν	-0.00000	-2.01163	0.00000
Н	0.35854	-2.36447	0.73466
Н	-0.80992	-2.52484	0.05017
Ν	-1.57595	0.18665	1.24894
Н	-1.36924	0.01874	2.02618
Н	-2.27393	-0.38050	1.10018
С	-2.02243	1.60347	1.22697
Н	-2.59601	1.75981	0.46036
Н	-2.52533	1.80548	2.03121
С	-0.80415	2.48341	1.14617
Н	-0.28971	2.42104	1.96604
Н	-1.06563	3.40822	1.01619
Ν	0.00000	2.01163	-0.00000
Η	-0.35854	2.36447	-0.73466
Η	0.80992	2.52484	-0.05017

[Zn(en)₃**]**Cl₂ Charge = +2, Spin Multiplicity = 1

Zn	0.00000	-0.00000	0.00000
Ν	-2.13195	0.34112	0.46594

N	0.46623	-0.23188	2.16535	Н	-2.92472	-0.10728	1.40014	
N	2.20379	-0.09917	-0.10370	C	-0.00942	-2,67582	1.56191	
C	-2.25253	1.74875	0.88942	Č	-0.05546	-4.03017	1.82423	
C	1 89441	-0.61351	2 30115	н	-0 23204	-4 34686	2 70317	
C	2 71408	0.15898	1 24082	C	0 15799	-4 92336	0 78848	
с н	-2 54659	-0 16603	1 10817	н	0.12240	-5 85013	0.76040	
	-2.34039	-0.10095	1.1901/	п	0.12240	-3.63913	0.93000	
	-2.72438	-0.03043	-0.55422	U U	0.42013	-4.43228	-0.4/449	
	-3.29708	1.94333	0.99371	П	0.37069	-3.03097	-1.19570	
H	-2.45552	1.99263	1.9646/	C	0.46062	-3.08891	-0.6/125	
H	-0.44454	-0.76356	2.21501	H	0.64390	-2.75616	-1.54194	
H	0.24063	0.47993	2.66808	С	-0.24554	-1.64457	2.61026	
Н	2.42197	-1.37127	2.86836	С	-0.43186	-1.96932	3.95502	
Н	2.62918	0.54894	-0.75878	Н	-0.38458	-2.87449	4.24176	
Н	2.42015	-0.86242	-0.42750	С	-0.68890	-0.95458	4.87020	
Н	2.67707	1.21451	1.04725	Н	-0.83140	-1.16273	5.78469	
Н	3.66031	-0.05689	1.03979	С	-0.73572	0.35415	4.44046	
N	0.00000	2.20877	-0.00000	Н	-0.90233	1.06311	5.05009	
N	-0.24807	-0.02905	-2.21303	С	-0.53165	0.60182	3.09656	
N	-0.31128	-2.16433	-0.30991	Н	-0.56544	1.49986	2.79498	
2	-1.41010	2.63188	-0.08896	С	2.37701	1.97770	0.19818	
Ŧ	0.44124	2.68499	-0.73804	Ē	3.65218	2.48145	0.42650	
Ŧ	0.63697	2 54731	0.81047	н	3 79959	3 41962	0.48544	
7	-0 17928	_1 43785	-2 67600	C	4 69036	1 60568	0.56426	
H	0 43213	0 778/1	_2 21230	н	5 56210	1 03808	0 73080	
л Т	_0 08025	0.77041	-2.21230	C	1 10661	0.25506	0.75909	
1. ~	-0.98023	2 22228	-2.30044	с u	5 21076	0.25390	0.43301	
Т	-0.89007	-2.33330	-1.03014	п	2.10122	-0.33403	0.33904	
1	-0.90340	-2.01303	0.38102	U U	3.19122	-0.19152	0.21302	
1 T	0.440/8	-2.55935	-0.19//6	H	3.03/96	-1.12455	0.13884	
1	-1.41497	3.69315	0.03424	C	1.20272	2.85699	0.06304	
H	-1.79597	3.09230	-1.03551	C	1.27602	4.25393	-0.01340	
H	0.35028	-1.94443	-3.47423	H	2.11877	4.69311	0.02841	
H	-1.87360	-2.17549	-1.22285	С	0.11809	4.99039	-0.15179	
ŀ	-0.83485	-3.32245	-1.65729	Н	0.15757	5.93869	-0.18357	
				С	-1.08030	4.35330	-0.24224	
Mn(l	bpy)3](PF6)2			Н	-1.88295	4.84540	-0.36419	
Charg	e = +2, Spin	Multiplicity	= 6	С	-1.10192	2.97901	-0.15422	
				Н	-1.94185	2.53925	-0.20545	
Мn	0.00000	0.00000	0.00000					
N	-0.19303	-0.14858	-2.23478	[Fe(l	0 py)3](PF6) 2			
N	-2.20554	-0.17800	-0.43481	Char	ge = +2, Spin	Multiplicity	= 1	
N	0.24867	-2.20777	0.32362		-	- •		
N	-0.28652	-0.36881	2.18964	Fe	0.00000	0.00000	0.00000	
N	2.15314	0.64177	0.09143	С	-0.21077	-0.01898	-3.13055	
V	-0.00000	2.23023	0.00000	С	0.24295	-0.01512	-4.44618	
2	-1.45165	-0.29401	-2.73064	С	1.60656	-0.20043	-4.67815	
ŗ	-1.65299	-0.40436	-4.09634	Č	2.46214	-0.37854	-3.59321	
Ŧ	-2 52840	-0 54962	-4 43623	č	1 93856	-0 37321	-2 29461	
7	-0 60348	-0 30459	_4 94548	N	0.60864	-0 19651	-2 07633	
-	-0.7/077	-0.30-139	-7.27270	Ċ	2 77021	-0.19031	-2.07033	
ע. ר	-0./492/	-0.33119	-J.00329 _A 15795	Ċ	2.11931 A 12152	-0.32730	-1.00021	
	1 12150	-0.12912	5 02720	C	1.13133 2 00077	-0.00041	-1.1442/	
1	1.43432	-0.05500	-3.03/28	C	2.880//	-0.38/93	1.233/0	
	0.84599	-0.06834	-3.0/883	C	4.23297	-0./1831	1.24980	
1	1./1951	0.03257	-2.72186	C	4.86/01	-0.98104	0.03478	
	-2.55474	-0.28421	-1.74473	H	-1.26800	0.11823	-2.90168	
2	-3.89482	-0.33122	-2.12285	Н	-0.46161	0.12925	-5.26398	
Η	-4.12881	-0.40168	-3.04138	Н	2.00347	-0.20114	-5.69339	
2	-4.89024	-0.27675	-1.15084	Η	2.34602	-0.18971	2.16491	
Η	-5.80684	-0.28055	-1.39723	Н	4.76772	-0.77457	2.19704	
С	-4.52145	-0.21369	0.16814	Н	5.92044	-1.25919	0.00338	
Н	-5.17860	-0.20730	0.85391	Ν	2.16004	-0.29199	0.10171	
С	-3.17233	-0.15961	0.48570	С	1.10796	2.93769	0.06381	

С	1.08045	4.32111	-0.08557	С	-4.69698	-0.18040	-1.42761	
С	-0.14953	4.93931	-0.31444	С	-4.43290	-0.05286	-0.06432	
С	-1.29981	4.15682	-0.38829	С	-3.08009	-0.03229	0.31022	
С	-1.20079	2.76949	-0.22689	Ν	0.01228	-0.19639	-2.10974	
Ν	-0.00000	2.17450	0.00000	С	-1.16087	-0.21899	-2.73245	
С	-2.36727	1.86255	-0.31692	С	-1.28044	-0.30113	-4.10824	
С	-3.68659	2.32757	-0.37620	С	-0.15458	-0.37541	-4.87280	
С	-3.10266	-0.34277	-0.45050	С	1.07347	-0.36914	-4.23677	
С	-4.43523	0.05066	-0.53560	С	1.12098	-0.29457	-2.88764	
С	-4.73146	1.41348	-0.48942	Ν	0.23772	-2.09107	0.30501	
H	2.04520	2.41154	0.24746	C	-0.06422	-2.52952	1.55320	
Н	2.00495	4.89321	-0.02202	Ċ	0.02691	-3.86771	1.91299	
Н	-0 21437	6 02017	-0 44010	Č	0 43503	-4 77724	0.95594	
Н	-2.83113	-1 39857	-0 46687	Č	0.78263	-4 31436	-0 30879	
Н	-5 21782	-0.70133	-0.62732	Č	0.64743	-2.98636	-0.58075	
н	-5 76295	1 76251	-0 53718	N N	-0.41327	-0.22531	2 07722	
N	-2 08406	0 53245	-0 34443	C	-0.48858	-1 48307	2.51242	
н	-2.00400	3 39351	-0.32785	C C	-0.95248	-1.40507	3 80735	
и П	-3.90078	1 62442	-0.52785	C C	1 34652	0.75708	1.62426	
п u	-2.20304	4.02442	-0.38302	C C	-1.34032	-0.73708	4.02420	
п	4.00808	-1.09636	-2.09942	C C	-1.23243	0.33320	4.19330	
п	5.52990	-0.30008	-3./3909	C U	-0.76020	0.70320	2.93328	
C	-0.74913	-3.8/606	1.86911	H	2.14480	4.50848	0.48970	
C	-0./2345	-4.82391	0.85061	H	0.23929	5.85107	0.18908	
C	-0.86/44	-1.69296	3.93081	H	-1.//951	4.846/1	-0.24942	
C	-0.86866	-0.63238	4.83167	H	-1.91661	2.54362	-0.31/4/	
H	-0.90385	-4.19083	2.89917	H	3.81915	3.17190	0.62184	
Н	-0.86094	-5.88050	1.08013	H	5.56093	1.60102	0.84506	
Н	-1.08669	-2.70015	4.27965	Н	5.04053	-0.63136	0.65929	
Н	-1.08444	-0.80735	5.88560	Н	2.87340	-1.31879	0.36383	
С	-0.57024	-2.52069	1.55985	Н	-3.81754	-0.32531	-3.24988	
С	-0.51734	-4.39802	-0.46360	Н	-5.59319	-0.22778	-1.73992	
С	-0.58914	-1.45399	2.57818	Н	-5.13164	0.01685	0.57712	
С	-0.59258	0.65368	4.36191	Н	-2.88173	0.02721	1.23793	
С	-0.33939	-3.03972	-0.70164	Н	-2.13849	-0.30403	-4.51690	
Ν	-0.36273	-2.11146	0.27762	Н	-0.21234	-0.43093	-5.82015	
С	-0.32976	0.82355	3.00716	Н	1.87691	-0.41774	-4.74406	
Ν	-0.32370	-0.19753	2.12476	Н	1.97147	-0.31142	-2.46273	
Н	-0.49082	-5.10158	-1.29466	Н	-0.18523	-4.15099	2.79565	
Н	-0.58190	1.51552	5.02783	Н	0.48113	-5.70503	1.15905	
Н	-0.17219	-2.66912	-1.71307	Н	1.13453	-4.89211	-0.94714	
Н	-0.11328	1.81185	2.60152	Н	0.86028	-2.68574	-1.45707	
				Н	-0.98409	-2.67082	4.11531	
[Co(b	pv)3](PF6)2			Н	-1.70078	-0.94550	5.48642	
Charg	e = +2. Spin	Multiplicity	= 2	Н	-1.47368	1.25978	4.76092	
2	, -, -, -, -, -, -, -, -, -, -, -, -, -,	j		Н	-0.67235	1.66415	2.64229	
Co	0.00000	0.00000	0.00000			~~ / • •	- /	
N	0.00000	2,14380	-0.00000	[C n	(bpy)31(BF4)5(PF6)		
C	1 17837	2 72780	0 22230	[Cu Chs	rge = +3 Spin	Multiplicity	= 1	
č	1 29929	4 11018	0 31164			manipheny	ĩ	
č	0 17444	4 90378	0 13412	Co	0 00000	0 00000	0.00000	
č	-0 99905	4 32045	-0 11045	CO N	0.00000	1 93022	0.00000	
č	-1 06805	7 94601	-0 16117	IN N	_1 85121	0 21208	0 54477	
N	2 04504	0 50310	0.28223	IN NI	-0.40628	0.21290	-1 88078	
C	2.04394	1 81061	0.20223	IN NT	-0.40020 1 87887	-0 10804	-1.007/0	
C	2.30024	2 22074	0.57205	IN NT	1.0200/	1 02104	0.12157	
C	3.032/9 166101	2.237/4 1.20169	0.30913	IN NT	-0.000/0	-1.73104	0.1313/	
C	4.00481	1.32108	0.0941/	IN C	0.4005/	-0.12889	1.83323	
C	4.34981	0.02005	0.39638	C TT	1.0080/	2./3494	-0.52927	
U	3.06433	-0.38842	0.40/82	H	1.82166	2.33948	-0.58470	
N	-2.06809	-0.09055	-0.52645	C	0.88429	4.12924	-0.30398	
C	-2.33574	-0.15938	-1.83600	Н	1.61328	4.67448	-0.49901	
С	-3.65063	-0.23590	-2.31784	С	-0.30524	4.66547	0.00400	

Co	0.00000	0.00000	0.00000
Ν	0.00000	1.93022	0.00000
Ν	-1.85131	0.21298	0.54477
Ν	-0.40628	0.09691	-1.88978
Ν	1.82887	-0.10894	-0.60260
Ν	-0.08676	-1.93104	0.13157
Ν	0.46057	-0.12889	1.85325
С	1.00867	2.73494	-0.32927
Η	1.82166	2.35948	-0.58470
С	0.88429	4.12924	-0.30398
Н	1.61328	4.67448	-0.49901
С	-0.30524	4.66547	0.00400

-2.33574 -3.65063

-0.15938 -0.23590

-1.83600 -2.31784

Н	-0.41087	5.58904	-0.00002	С	-0.52697	-1.63317	3.74378	
С	-1.36552	3.85651	0.32317	С	-0.26949	1.08142	2.83875	
Н	-2.19235	4.23099	0.52608	Ċ	-0.52449	0.89797	4.14525	
Ĉ	-1.20272	2.49732	0.34083	Č	-0.66596	-0.48996	4.70628	
Ĉ	-2.23380	1.51021	0.70733	H	0.43677	-2.42323	-2.03490	
Č	-3 48672	1 79828	1 14183	Н	0 51887	-4 80168	-1 71596	
н	-3 74958	2 68606	1 23032	н	0.15919	-5 83592	0.66034	
C	-4 36594	0.80132	1.25052	Н	-0.18586	2.08919	2 45585	
н	-5 20573	1.00751	1 79466	н	-0 64064	1 75401	4 80139	
C	-4 01781	-0.45413	1.75400	н	-0.90572	-0.66586	5 77452	
н	-4 63310	-1 13688	1.20425	N	-0.12780	-0.00330	1 95003	
C II	-7 69844	-0.75727	0.84022	C	2 80218	-0.01149	1 15809	
ч	-2.02044	-1.6/386	0.76871	C	1 13103	0.12370	1.03360	
n C	1 50406	0 21043	2 44802	C	4.15105	0.12379	0.32657	
с u	-1.39490	0.21043	-2.44802	C	3 83002	0.27737	-0.32037	
II C	1 81362	0.17979	-1.89082	C	2 50256	0.23778	-1.31197	
с u	-1.61302	0.37199	-3.01/3/	U N	2.30230	0.12394	-1.32374	
п	-2.07232	0.41032	-4.17213	IN C	1.95059	-0.00000	0.00000	
C H	-0.0/334	0.40380	-4.03308	C	1.4/921	0.10393	-2.41/00	
п	-0./3130	0.03083	-3.34331	C	1./3344	0.10416	-3./3009	
U H	0.30002	0.29993	-4.04851	C	-0.9/468	-0.07036	-2.80903	
П	1.31/83	0.28304	-4.58/47	C	-0./6247	-0.08/02	-4.19241	
C	0./0645	0.15950	-2.68197	U	0.03406	0.02441	-4./36/3	
C	1.96441	0.03114	-1.95922	H	2.37023	-0.10484	2.14496	
C	3.22085	0.09371	-2.54320	H	4.75885	0.13311	1.91811	
H	3.30063	0.19547	-3.46550	H	5.84775	0.41278	-0.45004	
С	4.33249	0.00542	-1.7/2/4	H	-1.98634	-0.15803	-2.49784	
Н	5.17884	0.07333	-2.15083	Н	-1.60161	-0.18730	-4.87306	
С	4.18288	-0.18536	-0.42793	Н	0.83187	-0.02390	-5.82619	
Н	4.93049	-0.28093	0.11756	Ν	0.12382	0.04185	-1.94649	
С	2.92278	-0.23468	0.11223	Н	2.77282	0.13335	-4.10066	
Н	2.83977	-0.36372	1.02861	Η	4.25161	0.36577	-2.50179	
С	-0.36384	-2.77862	-0.85302	Η	-0.65027	-2.64118	4.11537	
Н	-0.42813	-2.44519	-1.71899	Η	-0.21258	-4.17771	2.63004	
С	-0.55921	-4.12202	-0.65131	С	-3.75261	1.74758	0.03886	
Н	-0.78528	-4.69268	-1.35139	С	-4.75058	0.63672	0.15796	
С	-0.40525	-4.58335	0.63655	С	-1.56535	3.79313	-0.25479	
Н	-0.51706	-5.48994	0.81091	С	-0.39492	4.70173	-0.36796	
С	-0.09431	-3.74581	1.65879	Η	-4.11236	2.76929	0.04486	
Н	-0.01357	-4.06205	2.53125	Η	-5.83279	0.84691	0.27087	
С	0.09666	-2.42010	1.36974	Η	-2.55328	4.22849	-0.31270	
С	0.45757	-1.36112	2.36764	Η	-0.55270	5.76628	-0.49289	
С	0.78276	-1.62480	3.68364	С	-2.43763	1.46046	-0.04149	
Н	0.78260	-2.49707	4.00584	С	-4.20672	-0.76342	0.20614	
С	1.10675	-0.56918	4.50837	С	-1.36009	2.47822	-0.11590	
Н	1.31914	-0.72663	5.40001	С	0.97525	4.12441	-0.29769	
С	1.11638	0.74477	4.00654	С	-2.88544	-0.98597	0.11783	
Н	1.33908	1.47393	4.53790	Ν	-1.96055	0.10454	-0.02550	
С	0.77847	0.88489	2.69028	С	1.12252	2.81062	-0.14939	
Н	0.76652	1.74732	2.34224	Ν	-0.03069	1.94349	-0.05540	
				Н	-4.88804	-1.59782	0.31970	
[Ni(b	pv)3](PF6)2			Н	1.84170	4.77633	-0.36974	
Charo	e = +2. Spin	Multiplicity	= 3	H	-2.51879	-1.99965	0.15743	
Linai E	,- <i>-</i> , opm		-	Н	2.12481	2.41972	-0.10119	
Ni	0.00000	0.00000	0.00000		2.12 101	2.11 <i>7/2</i>	0.10117	
C	0.26771	-2.82564	-1.04666	[Zn/l	onv)3l(PFa)2			
č	0 31341	-4 15243	-0.87127	Char	$p_{e} = +2$ Snin	Multiplicity	= 1	
č	0.08686	-4 74305	0 49111	Unarg		manipheny	T	
č	_0 11558	-3 78028	1 62008	7n	0 00000	0 00000	0 00000	
č	-0.11550	-3.76020	1 20196	C	_0 07885	1 07101	-0 20278	
U N	-0.14011	-2.432/0 1.04200	1.39100	с ц	-0.9/003	4.2/424 170017	-0.373/0	
IN C	0.00413	-1.94290	0.03844	n C	-1./4110	4./074/ 1 06670	-0.32391	
U	-0.2/0/8	-1.39008	2.44291	C	1.3/0/4	4.00070	-0.12389	

Н	2.22086	4.45418	-0.06907	Ru	0.00000	0.00000	-0.00000	
С	-1.06684	2.91563	-0.20759	Н	-2.86219	-0.69273	5.18066	
Н	-1.90814	2.52176	-0.22638	С	-2.30969	-0.56344	4.25050	
С	0.27375	4.84731	-0.37589	С	-2.98749	-0.41159	3.04481	
Н	0.37239	5.75871	-0.53241	Н	-4.07577	-0.42284	3.02536	
Ν	-0.00000	2.12810	0.00000	С	-0.91345	-0.54767	4.24153	
N	2.09729	0.48430	0.11620	H	-4.95472	-0.14210	1.17148	
C	-4.77204	-0.50429	0.97461	C	-4.27247	-0.04480	0.32907	
Ĥ	-5 67343	-0 57875	1 19149	н	-0 33549	-0.66311	5 15741	
C	2 35573	1 79621	0 29012	C	-2 26739	-0 24675	1 85671	
C	-2 47623	-0 40934	1 62920	Č	-4 77310	0.11346	-0.95950	
c	-3 81778	-0 52271	1.02920	н	-5 84838	0 14066	-1 13328	
н	-4 07115	-0.60897	2 86334	C	-2 88983	-0 07841	0 54003	
C	-4 38856	-0.37768	-0.33529	C	-0.24819	-0.38179	3 03264	
н	-5.01621	-0.37076	-1 02078	N	-0.24619	-0.23119	1 85442	
C	-3.03216	-0.25982	-0.60607	C	-3.87185	0.23607	-2 01906	
ч	-2 76422	-0.18064	-1.49304	N	-2.01001	0.04262	-0.50/39	
N	2 10101	0.25453	0.32884	н	-2.01001	0.04202	2 00060	
IN NI	-2.10191	-0.23433	0.32884	II C	2 50826	-0.30202	2.33000	
N C	-0.13413	-0.19030	2.13170	С Ц	-2.30830	0.19709	-1./3292	
U U	-1.39390	-0.70555	3.94449	п	-4.21203	0.30211	-3.04398	
п	-2.43082	-0.94032	4.24/33	п	-1.///98	0.28734	-2.33430	
U N	-1.3813/	-0.44420	2.01409	п	2.11025	1.49930	-3.30089	
N	-0.05209	-0.11538	-2.1//85	C	1./232/	1.19276	-4.39557	
C II	4.38042	-0.01007	0.65452	C	1.35022	2.14/00	-3.45400	
H	5.05591	-0.64093	0.75779	Н	1.44469	3.20670	-3.68398	
N	0.28061	-2.0/49/	-0.39101	C	1.59248	-0.1585/	-4.06931	
C	3.615/0	2.24/48	0.66239	H	0.813/0	4.516/4	-2.20838	
H	3.77431	3.15637	0.77526	С	0.46466	4.06207	-1.28305	
C	1.22931	2.70899	0.03/86	H	1.87094	-0.94453	-4.76996	
C	0.52140	-0.44509	-4.85862	C	0.85515	1.74152	-2.20992	
H	0.73360	-0.55790	-5.75789	С	0.04765	4.86397	-0.22510	
C	-0.09314	0.91457	-3.03671	Н	0.06745	5.94958	-0.31578	
H	-0.31653	1.75614	-2.71134	C	0.43456	2.66915	-1.15520	
C	3.09570	-0.40149	0.28379	С	1.09553	-0.50583	-2.81881	
H	2.92318	-1.30428	0.14797	N	0.72731	0.41306	-1.89604	
С	0.21888	-2.43604	-1.67459	С	-0.39462	4.24993	0.94837	
C	0.88220	-0.23533	3.02313	Ν	0.00000	2.07214	0.00000	
Н	1.73836	-0.05275	2.70648	Н	0.97760	-1.54925	-2.53333	
С	0.18394	0.77590	-4.39693	С	-0.40460	2.86218	1.02150	
Н	0.13836	1.50692	-4.97034	Н	-0.73180	4.83222	1.80478	
С	0.24783	-1.33053	-2.66404	Н	-0.73860	2.35129	1.92251	
С	0.19597	-4.36686	0.25623	Н	0.93006	-5.88444	-0.13941	
Н	0.20208	-5.00943	0.92913	С	0.72994	-4.81345	-0.12844	
С	0.11436	-4.73587	-1.07463	С	1.71569	-3.91773	0.27417	
Н	0.04249	-5.63304	-1.30518	Н	2.69380	-4.28409	0.58067	
С	0.26466	-3.03431	0.55805	С	-0.51441	-4.31205	-0.51564	
Н	0.30333	-2.78043	1.45222	Н	4.07502	-2.84039	1.12587	
С	0.55392	-1.52172	-4.00571	С	3.72513	-1.80998	1.10100	
Η	0.77706	-2.36801	-4.32164	Н	-1.31966	-4.97063	-0.83821	
С	4.63111	1.33183	0.86630	С	1.44724	-2.54466	0.28411	
Η	5.47286	1.61564	1.14234	С	4.57618	-0.77447	1.47439	
С	-0.53366	-0.80830	4.81750	Η	5.59576	-0.98746	1.79417	
Η	-0.66959	-1.02631	5.71169	С	2.41806	-1.52444	0.69178	
С	0.14288	-3.76492	-2.06393	С	-0.72717	-2.93899	-0.48772	
Η	0.10990	-3.99934	-2.96281	Ν	0.22427	-2.05810	-0.10035	
С	0.73362	-0.52656	4.35212	С	4.09725	0.53638	1.42993	
Η	1.46638	-0.53499	4.92505	Ν	1.95297	-0.23530	0.65200	
				Η	-1.68293	-2.51486	-0.78904	
[Ru(l	bpy)3](BPh4)	2		С	2.79037	0.76373	1.01551	
Charg	ge = +2, Spin	Multiplicity	= 1	Η	4.72289	1.38238	1.71107	
				Н	2.38461	1.77256	0.97255	

[Rh(bpy) ₃](PF ₆) ₃ Charge = +3, Spin Multiplicity = 1								
Rh	0.00000	0.00000	0.00000					
N	-2.05143	-0.08257	-0.12565					
С	-2.52424	-0.18279	-1.44126					
С	-3.90226	-0.44256	-1.63458					
С	-4.76014	-0.50483	-0.45292					
С	-4.25420	-0.29767	0.73160					
С	-2.89432	-0.07119	0.94378					
Н	-4.25890	-0.54860	-2.51984					
Н	-5.68969	-0.72189	-0.55410					
Н	-4.84742	-0.28563	1.48550					
Н	-2.55501	0.08595	1.82860					
Ν	0.22259	-2.03398	0.21050					
Ν	0.01492	0.36605	2.02404					
Ν	-0.23606	-0.15321	-2.03759					
Ν	0.00000	2.05693	0.00000					
Ν	2.04997	-0.15321	-0.07131					
С	-1.57674	-0.23992	-2.43696					
С	1.56016	-2.45213	0.18815					
С	-0.80374	-2.91195	0.38394					
С	0.02744	1.73102	2.34206					
C	-0.01221	-0.59743	2.98594					
C	0.78491	-0.14624	-2.93861					
C	-0.00069	2.61287	1.28661					
C	0.02597	2.83179	-1.11946					
C	2.51407	-1.46905	0.06139					
C	2.89940	0.89502	-0.25558					
C	-1.86556	-0.15195	-3.81994					
C	1.84123	-3./9943	0.51914					
	-0.30837	-4.24501	0.07840					
п	-1./1433	-2.01017	0.50859					
C	-0.15855	2.10002	5.09590 A 31846					
с u	-0.10447	-0.21432	7.31040					
C	0.00788	-0.09116	_4 29902					
н	1 69736	-0 17435	-2 63966					
C	0.19616	4 00943	1 40759					
Č	0 18908	4 21008	-0.98059					
H	-0.06228	2.43302	-1.98891					
C	3.88897	-1.71551	-0.16817					
Ċ	4.25629	0.63608	-0.44891					
Н	2.56660	1.79612	-0.25640					
С	-0.74187	-0.06228	-4.75023					
Н	-2.77378	-0.17628	-4.13084					
С	0.71261	-4.69075	0.77978					
Н	2.74735	-4.11628	0.54503					
Н	-1.23259	-4.86125	0.79667					
С	-0.26628	1.03256	4.68848					
Н	-0.18693	3.02577	3.94950					
Н	-0.17964	-0.89394	4.99543					
Н	1.20210	-0.09011	-4.93281					
С	0.30216	4.79534	0.17987					
Н	0.23280	4.42346	2.27324					
Н	0.20341	4.75517	-1.76994					
С	4.75352	-0.57005	-0.44498					
Н	4.23946	-2.60807	-0.11709					
н	4.85413	1.37576	-0 57485					

Н

-0.91221

0.04141

-5.68919

Н	0.87800	-5.59747	1.04792
Н	-0.43546	1.25564	5.60664
Н	0.47852	5.73729	0.23492
Н	5.68084	-0.71498	-0.64619

[Os(bpy)3](PF6)2 Charge = +2, Spin Multiplicity = 1

Os	0.00000	0.00000	0.00000
С	-1.19186	0.79615	2.67470
С	-1.66701	0.55995	3.92115
Ċ	-1.91395	-0.72295	4.35184
Ċ	-1 68672	-1 77292	3 49532
Č	-1 17976	-1 48929	2 24413
N	-0.88705	-0.22507	1 84126
н	-1.05206	1 81429	2 34197
н	-1.85525	1 30064	1 58/07
и Ц	2 28217	0.00212	5 3 5 1 7 2
и П	-2.26217	2 78800	3 70452
N	1 03633	0.22507	0.65400
IN N	0.00000	-0.22307	0.00400
IN NI	0.00000	2.03013	-0.00000
IN NI	-0.2/498	-2.05512	0.10210
IN NI	-1.62932	0.45265	-0.85205
IN C	1.03322	-0.003/1	-1./04/2
C	-0.88608	-2.32883	1.21072
C	2.29605	-0.35881	1.95136
C	2.91703	-0.23419	-0.28641
C	1.02542	2.82220	0.43831
C	-1.11131	2.68158	-0.46912
C	0.10573	-2.90871	-0.85829
C	-2.73543	-0.49580	-1.21655
C	-2.14117	1.74327	-1.01112
C	0.50010	0.14497	-2.98953
C	2.40128	-0.17254	-1.68820
C	-1.21054	-3.86234	1.34998
C	3.60125	-0.38395	2.31332
Н	1.53128	-0.44444	2.70942
С	4.25727	-0.28260	0.03663
С	0.90469	4.16922	0.51672
Н	1.95276	2.35248	0.73202
С	-1.26630	4.05177	-0.43036
С	-0.21572	-4.22191	-0.77253
Н	0.67215	-2.55323	-1.70661
С	-3.86887	-0.13658	-1.86576
Н	-2.55089	-1.53875	-1.00424
С	-3.29517	2.15392	-1.64562
С	1.24567	0.01327	-4.11291
Н	-0.55323	0.36964	-3.07255
С	3.20146	-0.28782	-2.80594
С	-0.88237	-4.71597	0.32464
Н	-1.70923	-4.22521	2.23642
С	4.59808	-0.33908	1.36642
Н	3.86212	-0.44102	3.35966
Н	5.01653	-0.27422	-0.73123
С	-0.24072	4.80187	0.09235
Н	1.71954	4.75395	0.91704
Н	-2.16669	4.52163	-0.79735
Н	0.05625	-4.88975	-1.57637
С	-4.16182	1.18760	-2.09600
Н	-4.55190	-0.90064	-2.20608

Н	-3.51097	3.20258	-1.78663	С	1.18616	3.14935	-1.03558	
C	2.60079	-0.21147	-4.03926	Ċ	1.31220	2.45749	-2.38900	
H	0.76925	0.08682	-5.07922	Ĉ	2.55013	3.31278	-0.35965	
Н	4 26735	-0.43578	-2.71574	Č	0.01608	2.98267	1 67022	
н	-1 14446	-5 76278	0 37888	Č	-0.99037	2 26379	2 56238	
н	5 63633	-0.34820	1 66542	C	-0 23159	4 47972	1 64604	
н	-0.33217	5 87571	0 16037	C	-0.23137	-2.81620	-1 88578	
н	-5.06274	1 /638/	-2 62466	C	-0.2450	-4.21462	-2.04882	
п п	2 18522	0.22645	-2.02400	C	-0.82451	1 82624	2.04002	
п	5.16522	-0.32043	-4.94075	C	-0.80001	-1.62024	-2.80251	
/n D	N)IDNCLI			C	0.40301	-3.40539	0.95247	
("Du		M-141-11-14-	1	C	0.32343	-2.91004	2.5/155	
Char	ge = -1, Spin	Multiplicity	= 1	C	1.84004	-3./2/0/	0.52603	
P	0.00000	0.00000	0.00000	CI	2.13/18	-0.1/984	0.22765	
Ru	0.00000	0.00000	0.00000	H	-1.53095	4.43157	-1.33338	
CI	-1.11862	-1.93530	-0.58141	Н	-3.49992	5.69935	-2.28982	
Ν	0.00000	-0.00000	1.56981	Н	-4.76607	5.14985	-2.50381	
Cl	-1.93530	1.11862	-0.58141	Η	-3.72756	4.97205	-3.40248	
Cl	1.11862	1.93530	-0.58141	Н	-4.92803	2.61401	-2.28626	
Cl	1.93530	-1.11862	-0.58141	Η	-4.20196	0.63543	-1.34122	
				Η	-4.36863	0.07380	0.87890	
(ⁿ Bu	4N)[ReNCl4]			Η	-5.57488	-1.76221	1.60877	
Char	ge = -1, Spin	Multiplicity =	= 2	Н	-5.83616	-4.31497	1.53612	
	1			Н	-4.88815	-4.38098	2.64283	
Re	0.00000	0.00000	0.00000	Н	-4.68451	-5.13425	1.40435	
Ν	0.00000	0.00000	1.65852	Н	-2.47637	-4.09675	0.72975	
Cl	2.28675	0.00000	-0.57018	Н	0.85098	4.01610	-1.14275	
Cl	-2.28674	0.00002	-0.57018	Н	1.68208	1.54878	-2.28890	
Cl	0.00001	-2 28664	-0 57020	Н	1 85792	2 97517	-2 95218	
Cl	-0.00001	2.28665	-0.570	н	0.49203	2.37317	-2 78732	
CI	0.00001	2.20005	0.570	н	3 15364	3 77715	-0.94929	
(nP 11	N)OcNCL1			и П	2 50686	3 81061	0.47585	
Char	an = 1 Spin	Multiplicity -	- 1	и П	2.30080	2 42460	0.47385	
Cilai	ge – -1, Spin	Multiplicity	- 1	и П	2.93000	2.43400	-0.09200	
0-	0.00000	0.00000	0.00000	п	0.80230	2.01007	2.60040	
US N	0.00000	0.00000	0.00000	п	-0.85208	1.20/33	2.00940	
N Cl	0.00000	0.00000	1.60459	H	-0.959/9	2.59276	3.50864	
CI	-1.93222	1.12521	-0.57954	Н	-1.86523	2.40313	2.28393	
CI	1.12521	1.93222	-0.57954	H	-0.17497	4.80433	2.48298	
CI	1.93222	-1.12521	-0.57954	H	-1.07643	4.70246	1.30771	
CI	-1.12521	-1.93222	-0.57954	Н	0.44513	4.95191	1.12715	
/ -				H	0.66170	-2.79179	-2.02691	
(PNI	?)NiCl			H	-0.68300	-4.51210	-2.93677	
Char	ge = 0, Spin M	Multiplicity =	- 1	Η	-1.71832	-4.19773	-1.89891	
				Η	-0.43927	-4.83849	-1.45069	
Ni	0.00000	0.00000	0.00000	Η	-0.76796	-2.12488	-3.71879	
Р	0.00000	2.20128	0.00000	Η	-1.80092	-1.80940	-2.70315	
С	-1.63017	2.49705	-0.71664	Η	-0.49856	-0.97751	-2.77537	
С	-2.09501	3.66222	-1.31291	Η	-0.10346	-4.15361	0.86988	
С	-3.34920	3.73790	-1.90060	Η	0.66627	-3.54823	2.99257	
С	-3.86325	4.99460	-2.55571	Н	-0.55868	-2.76294	2.61692	
С	-4.13022	2.58232	-1.87016	Н	0.83393	-2.13361	2.46211	
С	-3.69896	1.41288	-1.28297	Н	2.22307	-4.41643	1.11594	
С	-2.43349	1.32674	-0.67595	Н	2.41170	-2.91206	0.49501	
Ν	-1.88602	0.17607	-0.11984	Н	1.88244	-4.08848	-0.32989	
C	-2.70051	-0.88938	0.29289		1.00211		0.02/07	
č	-4 00262	-0 75456	0 79846	[PNI	NiCli(OTf)			
č	_4 70730	-1 86797	1 22655	Char	re = +1 Spin	Multiplicity	= 2	
č	-4 16063	-1.00/9/	1 10358	Unal	5° ' 1, Spill	munpheny	2	
č	_4 02926	-3.13172	1.19550	Ni	0 00000	0 00000	0.00000	
C	-+.2000 2 87052	2 2000/	0.72254		2 12202	0.00000	0.00000	
C C	-2.0/032	-3.20004	0.72234	U D	2.12203	-0.2028/	0.20903	
U D	-2.13/49	-2.1/022	0.28/93	r C	0.00000	2.21203	-0.00000	
r	-0.38919	-2.10114	-0.1/012	U	-1.34190	2.41212	-0.928/2	

С	-1.94369	3.52014	-1.65661	Н	-5.36694	-1.41418	2.02744	
С	-3.18101	3.53691	-2.30633	Н	-5.64884	-4.05180	2.02262	
С	-3.59388	4.74245	-3.11033	Н	-4.80496	-3.85551	3.29063	
С	-4.00001	2.41369	-2.19762	Н	-4.42682	-4.84715	2.18661	
С	-3.62658	1.29596	-1.47504	Н	-2.46693	-3.97750	1.03223	
С	-2.37789	1.28333	-0.83488	Н	0.89564	3.99996	-1.08210	
Ν	-1.83816	0.18072	-0.16872	Н	2.14169	3.00841	-2.67331	
С	-2.65195	-0.81803	0.39672	Н	0.79023	2.29848	-2.70194	
С	-3.89560	-0.56428	0.99132	Н	2.05679	1.57730	-2.09136	
С	-4.57080	-1.59655	1.61616	Н	2.35168	3.83730	0.71666	
С	-4.06639	-2.89966	1.63406	Н	3.17348	3.92734	-0.55258	
С	-4.81643	-4.00604	2.32448	Н	2.99240	2.54414	0.15615	
С	-2.82520	-3.13834	1.03772	Н	0.44532	2.91205	2.09830	
С	-2.09886	-2.11017	0.44603	Н	-1.56049	2.73676	3.20947	
Р	-0.40397	-2.17664	-0.18919	Н	-2.29245	2.41021	1.91155	
С	1.28220	3.16416	-0.88904	Н	-1.25213	1.37634	2.44357	
С	1.60928	2.46879	-2.20797	Н	-1.34668	4.68980	0.92829	
С	2.53536	3.39038	-0.04864	Н	0.05335	4.98072	1.04600	
С	-0.31481	3.03270	1.61791	Н	-0.75016	4.91998	2.32790	
С	-1.43480	2.30464	2.36646	Н	-0.19230	-4.22613	0.77194	
С	-0.60921	4.52293	1.46840	Н	2.32536	-3.16720	0.07407	
С	0.46660	-3.46180	0.79052	Н	2.17323	-4.60173	0.69817	
С	1.78549	-3.88042	0.14812	Н	1.65827	-4.25013	-0.72901	
С	0.67231	-2.97662	2.22569	Н	1.14226	-3.67647	2.71646	
С	-0.46001	-2.76480	-1.93165	Н	1.31824	-2.16727	2.22040	
С	-1.18075	-1.74055	-2.80935	Н	-0.12351	-2.75114	2.60850	
С	-1.07363	-4.15550	-2.04804	Н	0.45068	-2.79899	-2.12778	
Η	-1.43777	4.26203	-1.73192	Н	-0.75620	-0.89725	-2.76143	
Η	-3.09088	5.53016	-2.94203	Н	-2.15094	-1.61576	-2.53590	
Н	-3.40492	4.57516	-3.98902	Н	-1.18009	-2.00376	-3.73921	
Η	-4.47534	4.92153	-2.99433	Н	-1.98727	-4.18079	-1.74442	
Η	-4.79844	2.41665	-2.62981	Н	-0.62172	-4.82802	-1.50026	
Н	-4.14503	0.54933	-1.51542	Н	-1.05672	-4.44045	-2.95360	
Н	-4.21430	0.28908	0.99075					

		Р	redicte	ed	Experimental			
Compound	Formula	% C	% H	% N	% C	% H	% N	
[Co(NH3)6]Cl ₃	CoN ₆ H ₁₈ Cl ₃	0.00	6.78	31.42	0.12	6.73	31.59	
[Co(NH3)5Cl]Cl2	CoN5H15Cl3	0.00	6.04	27.96	0.15	5.95	27.73	
[Ni(NH ₃) ₆]Cl ₂	NiN ₆ H ₁₈ Cl ₂	0.00	7.83	36.26	0.21	7.66	35.23	
[Cu(NH ₃) ₄](SO ₄)•H ₂ O	CuN4H16SO5	0.00	6.51	22.61	0.12	5.59	22.31	
[Cu(en) ₂](OTf) ₂ ·H ₂ O	$CuC_6N_4H_{18}F_6O_7S_2$	14.42	3.63	11.21	15.02	3.29	11.66	
[Ni(en)3]Cl2•2H2O	NiC6N6H28Cl2O2	20.83	8.16	24.29	21.10	8.16	24.31	
[Zn(en) ₃]Cl ₂ ·H ₂ O	ZnC ₆ N ₆ H ₂₆ C ₁₂ O	21.54	7.83	25.12	21.26	6.93	24.42	
[Mn(bpy)3](PF6)2	MnC30H24N6P2F12	44.29	2.97	10.33	44.22	2.83	10.32	
[Fe(bpy) ₃](PF ₆) ₂	FeC ₃₀ H ₂₄ N ₆ P ₂ F ₁₂	44.25	2.97	10.32	44.14	2.95	10.35	
[Co(bpy)3](PF6)2	CoC ₃₀ H ₂₄ N ₆ P ₂ F ₁₂	44.08	2.96	10.28	44.01	2.79	10.20	
[Co(bpy) ₃](BF ₄) ₂ (PF ₆)	$C_0C_{30}H_{24}N_6B_2PF_{14}$	42.59	2.86	9.93	42.05	3.33	9.85	
[Ni(bpy)3](PF6)2	NiC30H24N6P2F12	44.09	2.96	10.28	44.13	2.83	10.27	
[Zn(bpy)3](PF6)2	ZnC30H24N6P2F12	43.74	2.94	10.20	43.72	2.84	10.09	
[Ru(bpy)3](BPh4)2	RuC78H64N6B2	77.55	5.34	6.96	77.21	5.25	6.98	
[Rh(bpy)3](PF6)3	RhC30H24N6P3F18	35.80	2.40	8.35	35.80	2.51	8.39	
[Os(bpy)3](PF6)2	OsC30H24N6P2F12	37.98	2.55	8.86	36.62	2.35	8.31	
(ⁿ Bu ₄ N)[RuNCl ₄]	RuN2Cl4C16H36	38.48	7.27	5.61	38.86	7.20	5.31	
(ⁿ Bu ₄ N)[ReNCl ₄]	ReN2Cl4C16H36	32.88	6.21	4.79	32.62	6.17	4.57	
(ⁿ Bu ₄ N)[OsNCl ₄]	OsN2Cl4C16H36	32.65	6.17	4.76	32.25	6.02	4.52	

 Table S1. Elemental analysis results.

Fig. S1. Cu L_{2,3}-edge XAS normalized spectra of (nmph)₂[CuCl₄] in red with SNIP background in blue.

Fig. S2. Fit Cu $L_{2,3}$ -edge XAS spectra of $(nmph)_2$ [CuCl₄] showing experimental spectra in red, individual pseudo-Voigt peaks below in grey, composite fit spectra in a dotted black line overlaid on the experimental, and residual intensity above in blue.

Fig. S3. Cu L_{2,3}-edge XAS normalized spectra of [Cu(en)₂](OTf)₂ in red with SNIP background in blue.

Fig. S4. Fit Cu $L_{2,3}$ -edge XAS spectra of [Cu(en)₂](OTf)₂ showing experimental spectra in red, individual pseudo-Voigt peaks below in grey, composite fit spectra in a dotted black line overlaid on the experimental, and residual intensity above in blue.

Fig S5. Cu L_{2,3}-edge XAS normalized spectra of [Cu(NH₃)₄](SO₄) in red with SNIP background in blue.

Fig. S6. Fit Cu $L_{2,3}$ -edge XAS spectra of $[Cu(NH_3)_4](SO_4)$ showing experimental spectra in red, individual pseudo-Voigt peaks below in grey, composite fit spectra in a dotted black line overlaid on the experimental, and residual intensity above in blue.

Fig. S7. N K-edge XAS photodamage scans at a single sample position for (a) $[Co(NH_3)_6]Cl_3$ (b) $[Ni(en)_3]Cl_2$ and (c) $(^nBu_4N)[RuNCl_4]$.

[Co(NH₃)₆]³⁺

Fig. S8. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[Co(NH₃)₅Cl]²⁺

Fig. S9. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[Ni(NH₃)₆]²⁺

Fig. S10. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[Cu(NH₃)₄]²⁺

Fig. S11. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

Fig. S12. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

Fig. S13. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

Fig. S14. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[Mn(bpy)3]²⁺

Fig. S15. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[Fe(bpy)₃]²⁺

Fig. S16. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[Co(bpy)₃]²⁺

Fig. S17. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).* *denotes Co second order L*₂ *transition*.

[Co(bpy)₃]³⁺

Fig. S18. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).* *denotes Co second order L*₂ *transition*.

Fig. S19. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

Fig. S20. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

Fig. S21. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[Os(bpy)₃]²⁺

Fig. S22. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[RuNCl4]⁻

Fig. S23. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[ReNCl4]⁻

Fig. S24. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

[OsNCl4]⁻

Fig. S25. Experimental overlay with DFT/ROCIS (a) and TDDFT (b) calculated spectra shifted according to global fit (black) and ligand class (grey). Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black) (c). Molecular orbital diagram showing N-donor orbitals in black, acceptor orbitals in red denoting nitrogen p character, and unparticipating d orbitals in grey (d).

Fig. S26. Overlay of experimental and TDDFT (a) and DFT/ROCIS (b) calculated N K-edge XAS spectra for PNPH (black), (PNP)NiCl (blue), and [(PNP)NiCl](OTf) (red) with energies shifted according to global correlation plot seen in Fig 3a and 3c.

Fig. S27. Overlay of experimental and TDDFT (a) and DFT/ROCIS (b) calculated N K-edge XAS spectra for PNPH (black), (PNP)NiCl (blue), and [(PNP)NiCl](OTf) (red) with energies shifted according to PNP ligand-class correlation plot seen in (c) and (d).

Fig. S28. Overlay of experimental and DFT/ROCIS (a) calculated N K-edge XAS spectra for PNPH (black), (PNP)NiCl (blue), and [(PNP)NiCl](OTf) (red) with energies shifted according to individual correlation plots seen in (b).

Fig. S29. Correlation of experimental N K-edge XAS pre-edge peak energies with TDDFT calculated energies for PNPH (red), (PNP)NiCl (green), and [(PNP)NiCl](OTf) (blue).

Fig. S30. Overlay of PNPH experimental and TD-DFT calculated (grey) N K-edge XAS spectra with energies shifted according to individualized correlation plot seen above in Fig S26.

Fig. S31. Fit N K-edge XAS spectra of (PNP)NiCl showing experimental spectra in red, individual pseudo-Voigt peaks below in grey, the edge step-jump function in yellow, composite fit spectra in a dotted black line overlaid on the experimental, and residual intensity below in blue.

Fig. S32. Fit N K-edge XAS spectra of [(PNP)NiCl](OTf) showing experimental spectra in red, individual pseudo-Voigt peaks below in grey, the edge step-jump function in yellow, composite fit spectra in a dotted black line overlaid on the experimental, and residual intensity below in blue.

Fig. S33. Ni K-edge XAS spectra of (PNP)NiCl and [(PNP)NiCl](OTf) with the inset pre-edge region showing transitions into the Ni 3*d* LUMO and Ni 4*p*.

Radial Overlap Analysis

Radial wavefunctions for 1s, 2p, and 3p H-like orbitals ($R_{1,0}(r)$, $R_{2,1}(r)$, and $R_{3,1}(r)$):

$$R_{1,0}(r) = R_{1s} = 2 * \left(\frac{Z_1}{a_0}\right)^{\frac{3}{2}} * e^{-Z_1 * \frac{r}{a_0}}$$

$$R_{2,1}(r) = R_{2p} = \frac{1}{\sqrt{24}} * \left(\frac{Z_2}{a_0}\right)^{\frac{3}{2}} * \left(Z_2 * \frac{r}{a_0}\right) * e^{-.5 * Z_2 * \frac{r}{a_0}}$$

$$R_{3,1}(r) = R_{3p} = \left(\frac{1}{81}\right) * \sqrt{\frac{8}{3}} * \left(\frac{Z_3}{a_0}\right)^{\frac{3}{2}} * \left(\left(6 * Z_3 * \frac{r}{a_0}\right) - \left(Z_3 * \frac{r}{a_0}\right)^2\right) * e^{-\frac{1}{3} * Z_3 * r/a_0}$$

With Z_1 , Z_2 , and Z_3 being the effective nuclear charge felt by the N1s/S1s, N2p, and S3p electrons, respectively. Evaluating the dipole matrix element for the N1s/2p and S1s/3p radial overlap,

$$< R_{2p}|r|R_{1s} > = \int_{0}^{\infty} r^{2} * (R_{2,1}) * r * (R_{1,0}) dr = 9.79796 * a_{0} * Z_{2} * \frac{(Z_{1} * Z_{2})^{\frac{3}{2}}}{(Z_{1} + 0.5 * Z_{2})^{5}}$$

$$< R_{3p}|r|R_{1s} > = \int_{0}^{\infty} r^{2} * (R_{3,1}) * r * (R_{1,0}) dr = 864 * \sqrt{6} * Z_{3} * (2 * Z_{1} - Z_{3}) * \frac{(Z_{1} * Z_{3})^{\frac{3}{2}}}{(3 * Z_{1} + Z_{3})^{6}}$$

Plotting as functions of Z_2 and Z_3 from 0 to 200, with $a_0 = 0.532$ Å and $Z_1 = 6.7$ for N1s and 15.7 for S1s as the Z_{eff} determined by Slater's rules:

Fig. S34. Radial overlap integrals for N1*s*/2*p* (a) compared to S1*s*/3*p* (b) plotted as a function of Z_{eff} . Zoomed in overlap plots (c/d) with Z_{eff} values for effective valence shell populations from n = 0 to 6 (grey) and N 2*p* effective populations of 5.2 and 5.7 (red).

Python Fitting Description (Penelope)

Fitting Functions

XAS spectra result from multiple transitions which will undergo both instrument broadening as well as intrinsic broadening. Thus, each transition is best modelled as a pseudo-Voigt peak with both Gaussian and Lorentzian components. This fitting is carried out using Python.^{1–7} This is given mathematically by

$$f_p(\omega,\mu,a,\sigma,\alpha) = a \big(\alpha^* g(\omega,\mu,\sigma') + (1-\alpha)^* l(\omega,\mu,\sigma) \big), \qquad \sigma' = \frac{\sigma}{\sqrt{2\ln 2}}$$

where g and l are normalized Gaussian and Lorentzian distributions, respectively:

$$g(\omega,\mu,\sigma') = \frac{1}{\sigma'\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\omega-\mu}{\sigma'}\right)^2}$$
$$l(\omega,\mu,\sigma) = \left(\frac{1}{\pi}\right) \frac{\sigma}{(\omega-\mu)^2 + \sigma^2}$$

Here, ω is the energy, *a* is the area of the peak, σ is the full width at half max, μ is the position of the peak max, and α the degree of Gaussian vs Lorentzian character. For a full XAS spectrum, there will be several transitions that can be observed, often overlapping with each other. Thus, the full spectrum of peaks will be modeled by

$$F(\omega) = \sum_{i}^{N} f_{p}(\omega, \mu_{i}, a_{i}, \sigma_{i}, \alpha_{i})$$

where N is the number of peaks. In general, adding more peaks will improve fit statistics, but users must exert caution in over fitting a spectrum. With excessive numbers of peaks there will not be a unique solution, and selecting an appropriate number of peaks to accurately model the raw data is a central challenge to the fitting procedure.

Additionally the rising edge of XAS spectra can best be modeled as a broadened step function given by

$$f_e(\omega, e0, a_e, w, \alpha_e) = \begin{cases} \omega < e0: & f_p(\omega, (e0 + w), a', w, \alpha_e) \\ \omega \ge e0: & f_p((e0 + w), (e0 + w), a', w, \alpha_e) - f_p(\omega, (e0 - w), a', w, \alpha_e), \\ a' = \frac{a_e}{(1 - \alpha_e)/2w\sqrt{\pi \ln 2} + \alpha_e/w\pi} \end{cases}$$

where e0 gives the inflection point, w the degree of broadening, and a_e the amplitude. The full pre-edge and near edge region is thus modeled by:

$$F(\omega) = f_e(\omega, e0, a_e, w, \alpha_e) + \sum_{i}^{N} f_p(\omega, \mu_i, a_i, \sigma_i, \alpha_i)$$

For XAS spectra, peaks in the EXAFS region can no longer be accurately modeled as pseudo-Voigt line shapes. As EXAFS oscillations take the shape of a damped step response function, there is a sharp overshoot close to the excitation threshold. This is modeled in Penelope as large pseudo-Voigt peaks but it should be noted that these are not physical peaks and only necessary for correct fitting statistics at lower energy. Therefore, only analysis of peaks in the pre-edge or near-edge region that can be accurately reproduced were used for area and energy correlations.

General Spectra Fitting Procedure

The first step in fitting a data set is to manually inspect the data and determine whether a set of weights is needed for fitting data, as in the case of weak pre-edge peaks which will appear in the noise of larger rising edge features. The next step is to make an educated guess as to the number of peaks, and allow a totally random set of peaks to be fit to the data. Inspection of the resultant fits (**Figure S35**) will guide further refinement. In this case, the highest scoring fits have largely converged.

Figure S35. Representative fit as produced by the plotbestxanes function in MCFitting. Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black). In order to interpret the fit a histogram can be used (**Figure S36**).

Figure S36. Histogram of peak locations from all fits performed.

By inspection, three peak energy values can be identified with a high degree of certainty at 397.5, 398, and 399.5 eV. After 405 eV there is more variation. At this point a more constrained fit is performed with sets of bounds for each peak based on the histogram. For this data set, 8 peaks were chosen for the constrained fit even though 10 were used in the initial random fit. The results of the constrained 8 peak fit are shown in Figure S37. It should be noted that though a fit may have a high degree of certainty, it is not necessarily unique or the best fit. By introducing bounds the user introduces bias to the fit to find a desired solution. To ensure variables were allowed a reasonable parameter space it is best to inspect histograms of their values and see if most values fall well within the bounds. Once a set of fits is finalized, they can be exported to CSV files for use with other programs.

Figure S37. Final fit as produced by the plotbestxanes function in MCFitting. Fit N K-edge XAS experimental spectra (solid red), individual pseudo-Voigt peak (solid grey) the edge step-jump function (dashed grey), composite fit spectra (dashed black), and residual intensity (solid black). In order to interpret the fit a histogram can be used (**Figure S36**).

References

- 1. M. U. Delgado-Jaime, C. P. Mewis and P. Kennepohl, J. Synch. Rad., 2010, 17, 132-137.
- 2. Hunter, J. D., Comput. Sci. Eng. 2007, 9 (3), 90-95.
- 3. McKinney, W., Proc. of the 9th Python in Science Conf. 2010, 51 56.
- 4. Walt, S. v. d.; Colbert, S. C.; Varoquaux, G., Comput. Sci. Eng. 2011, 13, 22-30.
- 5. Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. (accessed July 7).
- 6. Oliphant, T. E., Comput. Sci. Eng. 2007, 9, 10-20.
- 7. Millman, K. J.; Aivazis, M., Comput. Sci. Eng. 2011, 13, 9-12