
   
 

   
 

1 Data Processing 
Peak calling on DNase1-seq data from DEEP and ENCODE was performed using JAMM (Ibrahim et al., 2015) version 1.0.7.2 using 

default parameters. All peaks that passed the JAMM filtering step are considered for further usage.  

We used bedtools (Quinlan and Hall,2010) version 2.25.0 to generate input bed files for JAMM.  

RNA-Seq reads of DEEP data were processed with TopHat 2.0.11 (Trapnell et al., 2009), and aligned with Bowtie 2.2.1 (Langmead 

and Salzberg, 2012) to NCBI build $37.1$ in --library-type fr-firststrand and --b2-very-sensitive setting.                                 

Gene expression of DEEP data was quantified with Cufflinks version 2.0.2 (Trapnell et al., 2010), and the hg19 reference genome 

using the options frag-bias-correct, multi-read-correct, and compatible-hits-norm. 

 

2 Supplementary Tables 
DEEP Sample ID Sample ID used in this study 

01_HepG2_LiHG_Ct1   HepG2 

41_Hf01_LiHe_Ct   LiHe1 

41_Hf02_LiHe_Ct   LiHe2 

41_Hf03_LiHe_Ct LiHe3 

DEEP File ID Data Type 

01_HepG2_LiHG_Ct1_mRNA_K_1.LXPv1.20150508_genes.fpkm_tracking   Quantified mRNA   

01_HepG2_LiHG_Ct1_DNase_S_1.bwa.20140719.bam Dnase-1 seq   

 Quantified mRNA   

41_Hf01_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq   

 Quantified mRNA   

41_Hf02_LiHe_Ct_DNase_S_1.bwa.20131216.bam Dnase-1 seq   

 Quantified mRNA   

41_Hf03_LiHe_Ct_DNase_S_1.bwa.20150120.bam Dnase-1 seq   

ENCODE accession number Data Type 

ENCFF000DYC   Quantified mRNA of K562  

ENCFF000SVN   DNase -1 seq of K562  

ENCFF000CZF   Quantified mRNA of GM12878 

ENCFF000SKV   DNase -1 seq of GM12878 

ENCFF000SKW   DNase -1 seq of GM12878 

ENCFF000SKZ   DNase -1 seq of GM12878 

ENCFF000SLB   DNase -1 seq of GM12878 

ENCFF000SLD   DNase -1 seq of GM12878 

ENCFF000DHQ   Quantified mRNA of H1-hESC 

ENCFF000DHS   Quantified mRNA of H1-hESC 

ENCFF000DHU   Quantified mRNA of H1-hESC 

ENCFF000DHW   Quantified mRNA of H1-hESC 

ENCFF000SOA   DNase-1 seq of H1-hESC 

ENCFF000SOC   DNase-1 seq of H1-hESC 

ENCODE Accession number TF ChIP-seq in K562 

ENCSR000BNU ATF3 

ENCSR000BRT CBX3 

ENCSR000BRQ CEBPB 

ENCSR077DKV CREM 



   
 

   
 

ENCSR000DWE CTCF 

ENCSR000BLI E2F6 

ENCSR000BNE EGR1 

ENCSR000BMD ELF1 

ENCSR000BKQ ETS1 

ENCSR000BMV FOSL1 

ENCSR000BLO GABPA 

ENCSR000BKM GATA2 

ENCSR000EFV MAX 

ENCSR000BNV MEF2A 

ENCSR000BRS NR2F2 

ENCSR000BQY PML 

ENCSR000BKV RAD21 

ENCSR000BMW REST 

ENCSR920BLG SIN3A 

ENCSR000BGX SIX5 

ENCSR000FCD SMAD5 

ENCSR000BKO SP1 

ENCSR000BGW SPI1 

ENCSR000BLK SRF 

ENCSR000BRR STAT5A 

ENCSR000BKS TAF1 

ENCSR863KUB TCF7 

ENCSR000BRK TEAD4 

ENCSR000BNN THAP1 

ENCSR000BKT USF1 

ENCSR000BKU YY1 

ENCSR000BKF ZBTB33 

ENCSR000BME ZBTB7A 
 

TF ChIP-seq in HepG2 

ENCFF002CTS ARID3A 

ENCSR000BID BHLHE40 

ENCFF002CTU BRCA1 

ENCFF002CTV CEBPB 

ENCSR000DUG CTCF 

ENCSR000BMZ ELF1 

ENCFF002CUA ESRRA 

ENCSR000ARI EZH2 

ENCSR000BHP FOSL2 

ENCSR000BMO FOXA1 

ENCSR000BNI FOXA2 

ENCSR000BJK GABPA 

ENCSR000BMC HDAC2 

ENCSR000BLF HNF4A 



   
 

   
 

ENCSR000BNJ HNF4G 

ENCFF002CUD HSF1 

ENCFF002CTY JUN 

ENCSR000BGK JUND 

ENCFF002CUG MAFF 

ENCFF002CUI MAFK 

ENCFF002CUJ MAX 

ENCSR000BQX NFIC 

ENCFF002CUY NR2C2 

ENCFF002CUM NRF1 

ENCSR000BOT REST 

ENCFF002CUT RFX5 

ENCSR00BHU RXRA 

ENCSR000BJX SP1 

ENCSR000BOU SP2 

ENCFF002CUV SREBF1 

ENCFF001VLB SREBF2 

ENCSR000BLV SRF 

ENCSR000BJN TAF1 

ENCFF002CUW TBP 

ENCSR200BJG TCF12 

ENCFF002CUX TCF7L2 

ENCSR000BGM USF1 

ENCFF002CUZ USF2 

ENCSR000BHR ZBTB33 
 

TF ChIP-seq in H1-hESC 

ENCFF002CIR ATF2 

ENCFF002CIS ATF3 

ENCFF002CQP BACH1 

ENCFF002CIT BCL11A 

ENCFF002CQQ BRCA1 

ENCFF002CQR CEBPB 

ENCFF002CQS CHD1 

ENCFF002CQT CHD2 

ENCFF002CQW CTBP2 

ENCFF002CIU CTCF 

ENCFF002CIV EGR1 

ENCFF002CJC EP300 

ENCFF002CDT EZH2 

ENCFF002CIW FOSL1 

ENCFF002CIX GABPA 

ENCFF002CQX GTF2F1 

ENCFF002CIY HDAC2 

ENCFF002CQU JUN 



   
 

   
 

ENCFF002CQY JUND 

ENCFF002CDU KDM5A 

ENCFF002CQZ MAFK 

ENCFF002CRA MAX 

ENCFF002CRB MXI1 

ENCFF002CQV MYC 

ENCFF002CJA NANOG 

ENCFF002CRC NRF1 

ENCFF002CJE POLR2A 

ENCFF002CJF POU5F1 

ENCFF002CRD RAD21 

ENCFF002CJG RAD21 

ENCFF002CDV RBBP5 

ENCFF002CJB REST 

ENCFF002CRE RFX5 

ENCFF002CJH RXRA 

ENCFF002CRF SIN3A 

ENCFF002CJJ SIX5 

ENCFF002CJK SP1 

ENCFF002CJL SP2 

ENCFF002CJM SP4 

ENCFF002CJN SRF 

ENCFF002CRG SUZ12 

ENCFF002CJO TAF1 

ENCFF002CJP TAF7 

ENCFF002CRH TBP 

ENCFF002CJQ TCF12 

ENCFF002CJR TEAD4 

ENCFF002CJS USF1 

ENCFF002CRI USF2 

ENCFF002CJT YY1 

ENCFF002CRJ ZNF143 
 

TF ChIP-seq in GM12878 

ENCFF002CGO ATF2 

ENCFF002CGP ATF3 

ENCFF002CGQ BATF 

ENCFF002CGR BCL11A 

ENCFF002CGS BCL3 

ENCFF002CGT BCLAF1 

ENCFF809BIO CBFB 

ENCFF002CGU CEBPB 

ENCFF804OVD CREM 

ENCFF002CGV EBF1 

ENCFF515PNJ EED 



   
 

   
 

ENCFF002CGW EGR1 

ENCFF002CGX ELF1 

ENCFF002CHI EP300 

ENCFF002CGY ETS1 

ENCFF191HSP ETV6 

ENCFF002CGZ FOXM1 

ENCFF002CHA GABPA 

ENCFF002CHB IRF4 

ENCFF939TZS JUNB 

ENCFF002CHC MEF2A 

ENCFF002CHD MEF2C 

ENCFF002CHE MTA3 

ENCFF002CHF NFATC1 

ENCFF002CHG NFIC 

ENCFF002CHJ PAX5 

ENCFF002CHK PAX5 

ENCFF002CHL PBX3 

ENCFF002CHM PML 

ENCFF002CHO POLR2A 

ENCFF002CHP POU2F2 

ENCFF002CHR RAD21 

ENCFF002CHH REST 

ENCFF002CHS RUNX3 

ENCFF002CHT RXRA 

ENCFF002CHU SIX5 

ENCFF374VLY SMAD5 

ENCFF002CHV SP1 

ENCFF002CHQ SPI1 

ENCFF002CHW SRF 

ENCFF002CHX STAT5A 

ENCFF002CHY TAF1 

ENCFF002CHZ TCF12 

ENCFF002CIA TCF3 

ENCFF144PGS TCF7 

ENCFF002CIB USF1 

ENCFF002CIC YY1 

ENCFF694OTE ZBED1 

ENCFF002CID ZBTB33 

ENCFF002CIE ZEB1 

Supplementary Table 1: IDs of ENCODE and DEEP data used in this study. 

  



   
 

   
 

ID2 E2F4 MAX CEBPB SREBF2 NR3C1 CEBPZ TOPORS 

GATA4 ELK1 TBX15 SRF ETS1 ARNT MAZ HERPUD1 

HSF1 ZBTB18 CENPB TGIF1 YY1 NFIX SMAD2 CDC5L 

ESR1 HES1 CEBPD RFX5 SPI1 ELF2 NR4A1 HMGN3 

CTCF NFATC3 SOX5 SP3 IRF8 FUBP1 NR1D1 CCNT2 

RARA ELK4 NR2F6 USF1 SP1 TFDP1 PBX2 RAD21 

IRF1 FOSL2 ZBED1 MEF2A ESRRA PBX3 GATA6 SETDB1 

STAT6 RXRA FOXO1 NFE2L2 KLF4 NR4A3 HMGA1 GTF2I 

MYC TCF12 JUNB ZFX NFKB2 BACH1 NR1H2 HBP1 

CREB1 NR5A2 FOXO3 ZNF410 PPARG PPARA FOSB PTEN 

STAT3 BHLHE40 GABPA HNF4A ELK3 MBD2 ETS2 THRB 

ATF4 JUND RELA DBP FOXJ3 EPAS1 KLF6 CCDC6 

ERF JDP2 NFYA NFIA EGR1 NR1H4 SMAD4 HDAC2 

TP53 HNF4G CREB3 MLX IRF2 NFYC STAT2 HLX 

HNF1A CUX2 ZNF263 ELF3 SMAD3 HIF1A TRIM28 NFE2L1 

MEF2C USF2 AR FOS SNAI2 DDIT3 NFIB CHD2 

KLF12 SREBF1 HLF ZEB1 ELF1 AHR SMC3 ARHGEF12 

FOXA1 REST NFKB1 RORA TCF4 NR1I2 NR2F2 MXI1 

NR2F1 IRF9 NFIC RREB1 CREM BPTF IRF6 SIN3A 

CREB3L2 JUN CEBPA ZNF143 XBP1 SMAD1 ZNF384 ZBTB16 

BCL6 TEAD1 NFIL3 MLXIPL STAT1 FOXA3 BBX SP100 

ATF1 ATF7 TFCP2 TEF FOXA2 NR1I3 EP300 PATZ1 

CEBPG HLTF NR4A2 ATF3 ONECUT1 MAF ZBTB14 ITGB2 

NFYB ZBTB7B MAFF ZBTB33 FOXP1 ATF2 ZNF281 ZNF691 

PROX1 CUX1 MAFB TCF7L2 GRHL1 IRF3 RBPJ ATF6 

 

Supplementary Table 2: IDs of TFs used in a gold standard comparison for regulation in primary human hepatocytes 

 

  



   
 

   
 

3 Details on TRAP 
Extensive details on the mathematical background of TRAP can be found in Roider et al. (Bioinformatics, 2007). 

Here, we only provide a brief summary of Section 2.3 of the aforementioned paper.  

In TRAP, one assumes that the fraction of TFs bound to a certain genomic location S is at an equilibrium such that 

the fraction of bound sites p(S) can be denoted as 

𝑝(𝑆) =  
𝐾(𝑆)∗[𝑇𝐹]

1+𝐾(𝑆)∗[𝑇𝐹]
. 

Here K denotes a site-specific equilibrium constant, which depends on the site with highest affinity (S0), a TF 

specific mismatch energy  E(S) and the Boltzmann constant kB: 

𝐾(𝑆) = 𝐾(𝑆0)𝑒−𝛽𝐸(𝑆) 

Thus, we can denote p(s) as: 

𝑝(𝑆) =  
𝐾(𝑆0)∗[𝑇𝐹]∗𝑒−𝛽𝐸(𝑆)

1+𝐾(𝑆0)∗[𝑇𝐹]∗𝑒−𝛽𝐸(𝑆) =
𝑅0∗𝑒−𝛽𝐸(𝑆)

1+𝑅0∗𝑒−𝛽𝐸(𝑆) . 

 The mismatch energy E(S) is computed using a TF motif matrix according to: 

𝛽𝐸(𝑆) =
1

 𝜆
∑ ∑ 𝑆𝑖

𝛼

𝛼=𝐴,𝐶,𝐺,𝑇

log (
𝑚𝑖,𝑚𝑎𝑥

𝑚𝑖,𝛼
𝑏𝑖,𝛼)

𝑊

𝑖=1

. 

Here 𝑆𝑖
𝛼, is an indicator function evaluating to 1 if the considered sequence S has letter α at position i. The most 

frequent element in the motif matrix is denoted by 𝑚𝑖,𝑚𝑎𝑥. 𝜆 is a parameter used to scale the mismatch energy. 

Thus, there are only two sequence and TF-independent parameters R0 and 𝜆. For details on how these 

parameters are determined, please consult Sections 2.3 and 3.1 of Roider et al. (Bioinformatics, 2007). 

Overall, TRAP computes the expected number N of TFs bound to sequence s with length l by summing up the 

binding score for each individual binding site in s: 

𝑁 = 𝑝(𝑆) = ∑ 𝑝𝑙
𝐿−𝑊
𝑙=1 =  ∑

𝑅0∗𝑒−𝛽𝐸𝑙(𝜆)

1+𝑅0∗𝑒−𝛽𝐸𝑙(𝜆) 
𝐿−𝑊
𝑙=1 . 

Here, W denotes the length of the motif for the TF of interest.  



   
 

   
 

4 Schematics of feature matrices 
In the following, we sketch the content of the feature matrices used for the linear regression setups depending 
on the used annotation version. Note that the gene expression used as response is not contained in the feature 
matrix. 

4.1 ChIP-seq TF features (C) 
 Chipped TF 1  … Chipped TF n 

Gene 1 𝑎1,1
𝐶   𝑎1,𝑛

𝐶  

...    

Gene m 𝑎𝑚,1
𝐶   𝑎𝑚,𝑛

𝐶  

 

4.2 ChIP-seq TF features normalized (CN) 
 Chipped TF 1  … Chipped TF n 

Gene 1 �̅�1,1
𝐶   �̅�1,𝑛

𝐶  

...    

Gene m �̅�𝑚,1
𝐶   �̅�𝑚,𝑛

𝐶  

 

4.3 ChIP-seq peak features (CPF) 
 ChIP peak count  ChIP peak length 

Gene 1 𝑐1
𝐶  𝑙1

𝐶  
...   

Gene m 𝑐𝑚
𝐶  𝑙𝑚

𝐶  

 

4.4 DNase-Decay (D) and DNase-Decay-Scaled (DS) 
 Predicted TF 1 … Predicted TF n 

Gene 1 𝑎1,1
D(S) 

  𝑎1,𝑛
D(S) 

 

...    

Gene m 𝑎𝑚,1
D(S) 

  𝑎𝑚,𝑛
D(S) 

 

 

4.5 DNase-Decay normalized (DN) 
 Predicted TF 

1 
… Predicted TF n Peak count DNase  Peak length DNase 

Gene 1 �̅�1,1
𝐷   �̅�1,𝑛

𝐷  𝑐1
𝐷 𝑙1

𝐷 

...      

Gene m �̅�𝑚,1
𝐷   �̅�𝑚,𝑛

𝐷  𝑐𝑚
𝐷  𝑙𝑚

𝐷  

 

4.6 DNase peak-features (DPF) 
 Peak count DNase  Peak length DNase 

Gene 1 𝑐1
𝐷 𝑙1

𝐷 
...   

Gene m 𝑐𝑚
𝐷  𝑙𝑚

𝐷  



   
 

   
 

 

4.7 DNase peak-features and signal (DPFS) 
 Peak count DNase  Peak length DNase Peak signal DNase 

Gene 1 𝑐1
𝐷 𝑙1

𝐷 𝑓1
𝐷 

...    

Gene m 𝑐𝑚
𝐷  𝑙𝑚

𝐷  𝑓𝑚
𝐷 

 

4.8 DNase-Decay-Scaled normalized (DSN) 
 Predicted TF 

1 
… Predicted TF n Peak count DNase  Peak length 

DNase 
Peak signal 
DNase 

Gene 1 �̅�1,1
𝐷   �̅�1,𝑛

𝐷  𝑐1
𝐷 𝑙1

𝐷 𝑓1
𝐷 

...       

Gene m �̅�𝑚,1
𝐷   �̅�𝑚,𝑛

𝐷  𝑐𝑚
𝐷  𝑙𝑚

𝐷  𝑓𝑚
𝐷 

 

 

5 Example for the permutation of the feature matrix 
In this article we follow the permutation strategy suggested by Bessiere et al. (PLoS Comput. Biol., 2018). They 

suggested to randomize the feature matrix independently for each row, i.e. per gene. Thereby TF specific signal 

would be lost, but confounders that affect all scores for one gene would be preserved. In the following example, 

the color code visualizes the effect of the permutation. 

 TF 1  TF 2 TF 3 … 

Gene 1 𝑎1,1 𝑎1,2 𝑎1,3  

Gene 2 𝑎2,1 𝑎2,2 𝑎2,3  

Gene 3 𝑎3,1 𝑎3,2 𝑎3,3  

...     

 

6 Precision (Pr) and Recall (Rec) Computation 
Precision (PR) and Recall (Rec) are computed from True Positives (TP), False Positives (FP) and False Negatives 

(FN) as: 

Pr =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

  

 TF 1  TF 2 TF 3 … 

Gene 1 𝑎1,3 𝑎1,2 𝑎1,1  

Gene 2 𝑎2,2 𝑎2,3 𝑎2,1  

Gene 3 𝑎3,1 𝑎3,3 𝑎3,2  

...     

Permute 



   
 

   
 

7 Scaling feature matrices per row (i.e. per gene) 
 

In addition to the feature matrices discussed in the main paper, which are listed in Sup. Section 4, we tested 

the performance of feature matrices that are scaled according to the maximum value per row (i.e. per gene).  

In the DNase1 case the scaled score �̃�𝑔,𝑡
𝐷  for gene g and TF t is computed according to  

�̃�𝑔,𝑡
𝐷 =

𝑎𝑔,𝑡
𝐷

max
𝑡 ∈𝑇

(𝑎𝑔,𝑡
𝐷 )

. 

We refer to �̃�𝑔,𝑡
𝐷  as maximized D scores.   

Comparably, scaled DS scores are computed as 

�̃�𝑔,𝑡
𝐷𝑆 =

𝑎𝑔,𝑡
𝐷𝑆

max
𝑡 ∈𝑇

(𝑎𝑔,𝑡
𝐷𝑆)

, 

which we refer to as maximized DS scores.  

The corresponding feature matrices are: 

 Predicted TF 1 … Predicted TF n 

Gene 1 �̃�1,1
D(S) 

  �̃�1,𝑛
D(S) 

 

...    

Gene m �̃�𝑚,1
D(S) 

  �̃�𝑚,𝑛
D(S) 

 

 

In the ChIP-seq case, we compute scaled ChIP-seq scores, abbreviated with CM, as 

�̃�𝑔,𝑡
𝐶 =

𝑎𝑔,𝑡
𝐶

max
𝑡 ∈𝑇

(𝑎𝑔,𝑡
𝐶 )

. 

Here, the corresponding feature matrix can be sketched as: 

 Chipped TF 1  … Chipped TF n 

Gene 1 �̃�1,1
𝐶   �̃�1,𝑛

𝐶  

...    

Gene m �̃�𝑚,1
𝐶   �̃�𝑚,𝑛

𝐶  

 

Note that we do not additionally consider scaling per column (i.e. per TF), because the feature matrices are 

already scaled per column in our regression setup. Results based on these scores are shown in Sup. Figures. 18 

and 19. 

  



   
 

   
 

8  Supplementary Figures 

 

 Supplementary Figure 1:  This Figure depicts the regression coefficients of Peak count and Peak length in models using only 

peak features derived from TF-ChIP-seq data of GM12878, H1-hESC, HepG2, and K562.  

  



   
 

   
 

 

Supplementary Figure 2: (a), the computation of the TF-gene scores 𝑎𝑔,𝑡
𝐶 from ChIP-seq data is shown for two genes g1 and g2 as 

well as for several TFs. In (b), we show how the normalization factor 𝑐𝑔
𝐶  is computed. Part (c) illustrates how the normalized TF-

gene scores are computed. As one can see, the scores for g2 are increasing, as there are only very few peaks in the vicinity of that 

gene. Simultaneously all scores of g1 are shrinked. 

  



   
 

   
 

 

Supplementary Figure 3: Here, we show mean squared error (MSE), Spearman and Pearson correlation for all considered ChIP-

seq based models and all available cell-lines.  



   
 

   
 

 

 

Supplementary Figure 4: (a) shows the changed correlation between TAF1 and CTCF comparing C and CN scores. (b) Indicates 

the changes in the distribution of peak scores due to the normalization.  



   
 

   
 

 

Supplementary Figure 5: Figure 5a contrasts model performance, measured with Spearman correlation, using DS scores on 

original and permuted data. Figure 5b compares the original DS feature space against the extended feature space with features 

for Peak count, Peak length and Peak signal, also in terms of Spearman correlation. Figure 5c shows all pairwise correlations of 

TF affinities on both original and permuted data. Figure 5d depicts the pairwise correlation of TF affinities against Peak length, 

Peak count, and Peak signal. All Figures are based on elastic net regularization. 



   
 

   
 

 

Supplementary Figure 6: Model performance is contrasted for original D and permuted D scores in terms of MSE (a), Pearson 

correlation (b) and Spearman correlation (c). A comparison of the original D models against models using only peak features 

(DPF) is shown in (d) using MSE, in (e) using Pearson correlation and in (f) using Spearman correlation. All models use elastic net 

regression.  



   
 

   
 

 

Supplementary Figure 7: Here, the fraction of ChIP-seq peaks that overlap a DNase peak is shown for all ChIP-seq peaks (grey) 

and for all ChIP-seq peaks in a 50kb window around the 5' TSS of protein coding genes.  

 



   
 

   
 

Supplementary Figure 8: In Figure 8a, boxplots show the performance of models using the D, DN, DS, and DSN setup on not 

permuted data using elastic net. Figure 8b illustrates the effect of different regularization methods. Model performance on 

permuted and not permuted data is shown for all the D, DN, DS, and DSN scoring schemes using elastic net or lasso 

regularization. 



   
 

   
 

 

Supplementary Figure 9: Here, the mean squared error for elastic net models based on predicted TFBS sites is shown for original 

and permuted data using the D, DS, DN and DSN setups, compared using MSE in (a), Pearson correlation in (b) and Spearman 

correlation in (c).   



   
 

   
 

 

Supplementary Figure 10: (a), we show the pairwise spearman correlation of TF affinities using the DS and DSN scores against 

Peak length, Peak count and Peak signal.  (b) shows the correlation of TF affinities for HOXA3 using the D setup against Peak 

length. (c) shows the correlation of TF affinities for HOXA3 using the D setup against Peak count. (d) shows the correlation of TF 

affinities for HOXA3 using the DS setup against Peak length. (e), the correlation of HOAX3 against Peak length is shown using the 

DSN setup. As Peak length is identical for D and DS, (b) and (d) look alike. 

 



   
 

   
 

 

Supplementary Figure 11: (a) Shows the performance of length normalized scores (DN) compared to an additional count 

normalization (dividing DN scores by the number of considered peaks). (b) Shows the same comparison on permuted data. 

Model performance is assessed in terms of Spearman correlation. Here, elastic net regularization is used. Error bars are omitted 

due to a neglectable error. 

 

 

Supplementary Figure 12: The bar plots show the number of selected features (i.e. features with a regression coefficients 

unequal to zero) per sample using the D, DN, DS, DSN setup with either elastic net or lasso regularization. 



   
 

   
 

Supplementary Figure 13: Violin plots show the range of regression coefficients per sample inferred on permuted and not 

permuted data for TF gene scores computed using the D, DN, DS, and DSN setup and elastic net regularization. 

 



   
 

   
 

  

Supplementary Figure 14: Overview of the learning paradigm. We randomly split the original data into Test (20%) and Training 

(80%) data in a 10-fold outer cross-validation.  On the training data, model parameters are learned using a 6-fold inner cross-

validation.  Model performance is reported as the average performance on the test data across the 10 outer folds.  



   
 

   
 

Supplementary Figure 15: Model performance using the DN setup on permuted and not permuted data using either elastic net 

or lasso regularization is shown per sample.  

 

 

Supplementary Figure 16: (a) shows the number of selected features across the three samples (LiHe1, LiHe2, LiHe3) for the D, 

DS, DN, and DSN setup using both elastic net and lasso regularization. (b) Shows Precision Recall curves computed using the 

PRROC package distinguishing between samples, annotation setups, and regularization methods.  

  



   
 

   
 

 

Supplementary Figure 17: Comparison of expression models using elastic net regularization between C, CN, and CM scores using 

permuted and not permuted data. CM scores refer to a feature matrix which is normalized according to the maximum entry per 

row. On original data, CM scoring performs worse than both C and CN scores. At the same time, it achieves a worse prediction 

performance on permuted data than both C and CN scores.   

  



   
 

   
 

 

Supplementary Figure 18: Comparison of expression models using elastic net regularization and Spearman correlation for 

various predicted TF-gene scores. (a) Compares original D scores against Maximized D scores, (b) compares original DS scores 

against maximized DS scores, (c) contrasts original DN scores against maximized D scores, and (d) reflects the difference 

between original DSN and maximized DS scoring. In (e) and (f), we compare DN versus maximized D and DSN versus maximized 

DS on permute data respectively. Error bars are omitted due to a neglectable error. 


