Supplementary Material

Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling

Ping Ji^{1*}, Yongxin Zhou^{2*}, Yibao Yang^{1*}, Junlu Wu¹, Hao Zhou³, Wenqiang Quan¹, Junjun Sun¹, Yiwen Yao¹, Anquan Shang¹, ChenZheng Gu¹, Bingjie Zeng¹,Jenni Firrman⁴,Weidong Xiao⁵, Robert Bals⁶, Zujun Sun¹and Dong Li¹

¹Department of Clinical Laboratory, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China. ²Department of Thoracic-cardiovascular Surgery, tongji hospital,Tongji University School of Medicine,Shanghai 200065, China. ³Department of Pharmacy, Putuo People's Hospital, Shanghai 200060, China. ⁴Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agriculture Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA. ⁵Sol Sherry Thrombosis Research Center, Temple University, Philadelphia, PA 19140, USA. ⁶Department of Internal Medicine V–Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, Homburg 66424, Germany.

Corresponding Authors: Zujun Sun, email: 14111010030@fudan.edu.cn; and Dong Li, email: lidong@tongji.edu.cn

*The authors contributed equally to this work

Supplementary Table

Table S1 Primer used for qRT-PCR

qRT-PCR primers	forward (5'-3')	reverse (5'-3')
Gapdh	AAGAAGGTGGTGAAGCAG	TCATACCAGGAAATGAGC
Cdkn1a	AAAACGGAGGCAGACCAG	GCTAAGGCCGAAGATGGG
Axin2	GCTCCAGAAGATCACAAAGAGC	AGCTTTGAGCCTTCAGCATC
c-myc	GCTGTTTGAAGGCTGGATTTC	GATGAAATAGGGCTGTACGGAG
Cend1	GCCATCCAAACTGAGGAAAA	GATCCTGGGAGTCATCGGTA
Gsk3b	TCCGAGGAGAGCCCAATGTTTCAT	TGGACGTGTAATCAGTGGCTCCAA
Wnt3	GCCGACTTCGGGGGTGCTGGT	CTTGAAGAGCGCGTACTTAG
AKT	TAAAGAAGGAGGTCATCGTGG	CGGGACAGGTGGAAGAAAA
LEF1	GCCACCGATGAGATGATCCC	TTGATGTCGGCTAAGTCGCC
TCF1	GACCTGACCGAGTTGCCTAAT	GCG-AAGTCTTCCCCATCGTC
TLR2	GCCTACTGGGTGGAGAACCTT	CCAGTTCATACTTGCACCACTC
TLR4	GATTAGCATACTTAGACTACTACC TCCATG	GATCAACTTCTGAAAAAGCATTCCC AC
TTP	TCCACAACCCTAGCGAAGAC	GAGAAGGCAGAGGGTGACAG
mouse β-actin	AGCCTCGCCTTTGCCGA	CTGGTGCCTGGGGCG
mouse CRAMP	AATTTTCTTGAACCGAAAGGGC	TGTTTTCTCAGATCCTTGGGAGC

Supplementary Figure

Figure S1. (A) Wright stain of the macrophages and neutrophils isolated from lung tissues of mice with or without 2×10^5 LLC cells inoculation. Scale bar, 500 µm. (B) Freshly isolated macrophages or neutrophils (1×10^6) from lung tissues of mice with or without 2×10^5 LLC cells inoculation were incubated in serum-free DMEM for 24h. After incubation, LL-37 was measured by ELISA Supernatants were collected and assessed for LL-37 production by ELISA. (C) Cells were pelleted, lysed, and mRNA measured by quantitative qRT-PCR.

Figure S2. LL-37 increased β -catenin-mediated transcriptional activity. A549 cells were co-transfected with a TCF/LEF reporter (TOPFlash) or flash reporter or Renilla luciferase (pRL) plasmids. At 24 h post-transfection, A549 cells were serum starved (2%) for 12 h; subsequently, Wnt/ β -catenin signaling was stimulated with LL-37 (1 ug/ml) for a 12 h period. After incubation, cells were washed and lysed, and luciferase activity was assayed. The activity was normalized with respect to the activity of the Renilla luciferase.

Figure S3. Correlation of mRNA level of CAMP (LL-37) with TLR2 (A) or TLR4 (B) in NSCLC in the TCGA and CGGA databases (Pearson correlation analysis). (C) Western blot analysis of TLR2, TLR4, and β -actin in A549 cells after indicated treatments. (D) qRT-PCR analysis of TLR2 and TLR4 in A549 cells after indicated treatments.

Figure S4. Immunohistochemical analysis of TLR2 (A) and TLR4 (B) expression in wild-type (WT) and Camp^{-/-} mice. Scale bar, 50 μm.

Figure S5. (A) Immunofluorescence analysis of TLR2 and CD68 (macrophage marker) expression in wild-type (WT) and Camp^{-/-} mice. Scale bar, 50 μm. (B) Immunofluorescence analysis of TLR4 and CD68 (macrophage marker) expression in wild-type (WT) and Camp^{-/-} mice. Scale bar, 50 μm.

Figure S6. (A) Western blot analysis of unphosphorylated β -catenin, total β -catenin, and β -actin in A549 cells after indicated treatments. (B) qRT-PCR analysis of LEF1 and TCF1 in A549 cells after indicated treatments. (C) Immunofluorescent staining shows subcellular unphosphorylated β --catenin and actin (phalloidin) localization in A549 cells after indicated treatments. Scale bar, 20 µm.