Biophysical Journal, Volume 116

Supplemental Information

Engineered Passive Potassium Conductance in the KR2 Sodium Pump

Arend Vogt, Arita Silapetere, Christiane Grimm, Florian Heiser, Maximiliano Ancina Möller, and Peter Hegemann

Supplementary Figure 1: Comparison of light-driven Na+ pumps from different organisms in oocytes. (*A*) List of NaRs tested in this study, with their origin and protein ID; references are provided in the main article. (*B-C*) Comparison of absolute stationary photocurrent amplitudes, shown as box-chart diagrams. Detectable photocurrents were only observed after addition of the " β HK"-targeting sequence (the eKR2 targeting design was only tested for KR2). (*C*) Stationary photocurrent amplitudes of the various R109X mutants are shown. In addition to KR2, only NdR2_{βHK} and NMR2_{βHK} provided sufficient photocurrents for testing the effect of the R109Q mutation (R108 in NMR2). (*D*) Photocurrent traces of various NaRs (all with " β HK") in buffer containing 100 mM NaCl, pH₀ 7.5. The IAR rhodopsin was remarkable in that produced showed negative peak-shaped photocurrents at negative holding potentials.

Multiple sequence alinment of NaRs and proton pumps

KR2	1	MTOFLGNANFENFLGATEGESELAYOFTSHILTIGYAVMLAGLIYFILTIKNYDKKE-OMSNILSAVVM 68
NdR2	1	MIQUIGNSNEENYVGAT DGESEMAYOMT SHVITIGYAVMEAGULYEULTIKNVDKKY-BMSNULSAVVM 68
NMR2	1	MOOLGNSNEENYLGASEGESEMAYOMTSHVLTLGYAVMLAGLLYELLTLKKVDKRE-OMSNLLSAVVM 67
YIK11	1	MOOLGDANFENYIGATEGESEMAYOMTSHVITIGYAVMIAGLIYELITIKNYDKKE-RMSNIISAVVM. 67
GLR	59	YE DAT OF LGNANFENELGATEGESE LAVOETSHULTLGYAVALAGULYE ULTUKKVDKKY - DM SNULSAVVA 129
	1	
	1	
	1	
	1	
CSR	1	
DK		
		S70 L75 R109 NDQ (Na ⁺ pump)
KR2	69	V SAFULUYAQAQNW - TSSFTFNEEVGRYFLDPS GDLFNNGYRYLNWLIDVPMLLFQILFVVSLTT 132
NdR2	69	V SAALLLYAQAGNW - TESFAFDAERGKYFLVEG GDLFNNGYRYLNWLID V PMLLFQILFVVQLTK 132
NMR2	68	V SAFLLLYAQAGNW T S S F T F D I E L G RYFL D P D G D L F N NG Y RYL NWL I D V P M L L F Q I L F V V T L T K 131
YIK11	68	
GLR	130	VSAFLLLYAOAFNWTTSFTFDISRGKYFLFPNGDLFNNGYRYLNWLLDVPMLLFOLLFVVSLTK 193
IAR	68	
TrNaR1	59	VS AFLALYOLHOTWLSAFTENGEVWE
TrNaR2	72	V SAFLILLINOLINW. TSALOEDPATARYRIAPEGVEGIVTAGDIENNGYRYLNWLIDVPMLIEOLLEVVTLSR 143
CsR	51	
RD	51	
DIX	51	
KR2	133	SKFSSVRNQFWFSGAMMIITGYIGQFYEVSNLTAFLVWGAISSAFFFHILWVMKKVINEGKEGISPAGQKILSN 206
NdR2	133	SKLSSVRNQFWFSGAMMIITGYIGQYYEVTDLSAFFIWGAISTVFFFHILWLMNKVIKEGKVGIPKKGQKILSN 206
NMR2	132	S K L S S L B NO EWES G TMM L LT G Y LG O E Y E V S D L T WELL WG A LS T V E E E H LL Y L MK K V L N E G K EG LS T K G O K LL S N 205
YIK11	132	S K L S S V B NO F W F S G AMM L L T G Y L G O F Y F V S D L P L F F L WG A L S T A F F F H L WL M H K V L K F G K S G L P O K A O K L L S N 205
GLR	194	SKESSIENDEWESGAMMIITGYIGDEYEVSNITAFEVWGAISSVEFEHILWVMKKVINEGKEGISADAOKIISN 267
IAR	132	SNESSIENCEWISGTGMIVTGYIGOEYEVTDITMEAIWGAISTVEEEHIIWIMKKVIDEGKDGIPAKAOETIOS 205
TrNaR1	119	AREREI WIDEVVAGIAMIYTGYAGOEYEATDSARIYI WGA ISTAFFI WII VI VRETIEDPPDAI PERAAGI MRG 192
TrNaR2	144	S F A S Y PNO FWES G Y AM I IT G Y Y G O F Y E Y TR PG I F ELWGS I S T Y F E I H I I I Y M R PY I K EG Y E N A P D S A K GMI G A 217
CcP	107	
RD	106	
Dh	100	GIILALVGADGINIGIGLVGALIKVIBIKFYWWAIDIAAMLIILIVLFFGFIJKAESMKFEVASIEKVI/3
		D251
KR2	207	IWILFLISWTLYPGAYLMPYLTGVD - GFLYSEDGVMARQLVYTIADVSSKVIYGVLLGNLAITLSKNKELVEAN 279
NdR2	207	I W LLELV SWELY PGAYLMPHIGGLE - GELENES GVVGROLTYTLADVCSKVLYGVLIGNLALVLSKNKEMLETA 279
NMR2	206	IWILELISWELY PGAYLMPYLGGID-GELYNESGYVGROLTYTIADYCSKYLYGYLLGNLAMTISTKNKNEHKP 278
YIK11	206	WVLELISWELYPGAYLMPYLGGLD-GELYNESGVVGROITYT LADVCSKVLYGVLLGNLAMTLSKKHONVEET 278
GLR	268	WVLELVSWELVEGAVIMPYLTGLD-GEFESEDGVMAROLTYTLADVCSKVLYGVLLGNLALKLSNNKEMVELS 340
IAR	206	WVLELVSWMIYPGAYIMPHIAGIE-GLEESELGVVAROITYTIADVSSKVIYGLITTNVAOVMSKEEGVLEHT 778
TrNaR1	102	
TrNIaD2	219	
CcP	174	
RD RD	174	
DIV	1/4	

Nucleotide sequence of all tested KR2-constructs

KR2 (oocytes):

<mark>βHK</mark>-KR2 (oocytes):

eKR2 = C2C1-KR2-TS-eYFP-ER (oocytes):

eKR2 = C2C1-KR2-TS-eYFP-ER (ND7/23-cells):

KR2-TEV-6xHis (E.coli):

Composition of all buffers used for oocytes and ND7/23-cells

extracellular buffer	composition [mM]	рН
oocytes		(adjusted with)
Na 10.0	NaCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	10.0 (NaOH)
Na 7.5	NaCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], MOPS [5]	7.5 (NaOH)
Na 5.0	NaCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], citric acid/Na-citrate [5]	5.0 (NaOH)
KCI 10.0	KCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	10.0 (KOH)
KCI 7.5	KCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], MOPS [5]	7.5 (KOH)
KCI 5.0	KCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], citric acid [5]	5.0 (KOH)
LiCl 10.0	LiCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	10.0 (LiOH)
LiCl 7.5	LiCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], MOPS [5]	7.5 (LiOH)
LiCl 5.0	LiCl [100], MgCl ₂ [1.0], CaCl ₂ [0.1], citric acid [5]	5.0 (LiOH)
50/50 NaCl/KCl	NaCl [50], KCl [50], MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	10.0 (NaOH)
50 KCl	KCl [50], MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	10.0 (KOH)
KCl 10.0 (titration)	KCI [200/100/50/25/10/0], glucose [0/0/50/75/90/100],	10.0 (KOH)
	MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	
NMG 10.0	NMG [100], MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	10.0 (HCl)
NMG 7.5	NMG [100], MgCl ₂ [1.0], CaCl ₂ [0.1], MOPS [5]	7.5 (HCl)
Na-Gluk 10.0	Na-gluconate [100], MgCl ₂ [1.0], CaCl ₂ [0.1], glycine [5]	10.0 (NaOH)
Na-Gluk 7.5	Na-gluconate [100], MgCl ₂ [1.0], CaCl ₂ [0.1], MOPS [5]	7.5 (NaOH)
MgCl ₂ 7.5	MgCl ₂ [100], CaCl ₂ [0.1], MOPS [5]	10.0 (NaOH)
CaCl ₂ 7.5	MgCl ₂ [1.0], CaCl ₂ [100], MOPS [5]	7.5 (NaOH)

extracellular	composition [mM]	рН	osmolarity
buffer		(adjusted with)	(adjusted with
ND7/23-cells			glucose)
NaCl 9.0	NaCl [110], KCl [1], MgCl ₂ [1.0], CaCl ₂ [1.0], Tris [10],	9.0 (HCl)	310 mOsm
	TEA [20], CsCl [5], BaCl ₂ [5]		
KCI 9.0	NaCl [1], KCl [110], MgCl ₂ [1.0], CaCl ₂ [1.0], Tris [10],	9.0 (HCl)	310 mOsm
	TEA [20], CsCl [5], BaCl ₂ [5]		
LiCl 9.0	NaCl [1], KCl [1], LiCl [110], MgCl ₂ [1.0], CaCl ₂ [1.0], Tris [10],	9.0 (HCl)	310 mOsm
	TEA [20], CsCl [5], BaCl ₂ [5]		

intracellular	composition [mM]	рН	osmolarity
buffer		(adjusted with)	(adjusted with
ND7/23-cells			glucose)
0.1 mM NaCl	NaCl [0.1], KCl [0.1], NMG [110], MgCl ₂ [1.0], CaCl ₂ [1.0],	7.2 (HCl)	290 mOsm
0.1 mM KCl	EGTA [10], HEPES [10]		
pH 7.2			
1 mM NaCl	NaCl [1], KCl [1], NMG [110], MgCl ₂ [1.0], CaCl ₂ [1.0],	7.2 (HCl)	290 mOsm
1 mM KCl	EGTA [10], HEPES [10]		
pH 7.2			
110 mM NaCl	NaCl [110], KCl [1], MgCl ₂ [1.0], CaCl ₂ [1.0],	7.2 (NaOH)	290 mOsm
1 mM KCl	EGTA [10], HEPES [10]		
pH 7.2			
1 mM NaCl	NaCl [1], KCl [110], MgCl ₂ [1.0], CaCl ₂ [1.0],	7.2 (KOH)	290 mOsm
110 mM KCl	EGTA [10], HEPES [10],		
pH 7.2	TEA [20], CsCl [5], BaCl ₂ [5]		
1 mM NaCl	NaCl [1], KCl [1], LiCl [110], MgCl ₂ [1.0], CaCl ₂ [1.0],	7.2 (LiOH)	290 mOsm
1 mM KCl	EGTA [10], HEPES [10]		
110 mM LiCl			
pH 7.2			

Supplementary Figure 5: Current-voltage plots for various KR2 mutants, measured in *Xenopus laevis* oocytes. Cells were measured at different pHo values or cation conditions. Reversal potentials are indicated, if possible, and where appropriate. Small black boxes show the respective condition used for normalization.

Supplementary Figure 6: Additional results obtained from electrophysiological measurements in oocytes. (*A*) Comparison of the absolute stationary photocurrent amplitudes for different extracellular buffer conditions and holding potentials. The mutants D116N and D251N are not shown because no obvious stationary photocurrents were observed. (*B*) The pH₀-dependency is illustrated as the ratio between the photocurrents at pH₀ 10.0 and pH₀ 7.5 (with 100 mM KCl). Current-voltage plots for (*C*) KR2-WT and (*D-E*) KR2-R109Q at different extracellular ion conditions (all at a concentration of 100 mM). Ca⁺² and Mg⁺² are not transported but influence the photocurrents, whereas removal of extracellular Cl⁻ does not influence photocurrents. Data indicate minor passive Na⁺ conductance. Small black boxes show the respective condition used for normalization. (*F*) Current-voltage-plot of KR2-R109Q in different extracellular Na⁺ and K⁺ (photocurrents were normalized to 100 mM NaCl, pH₀ 7.5, not shown in this plot). K⁺determines the reversal potential, whereas Na⁺ shows an inhibitory effect.

Supplementary Figure 7: Further electrophysiological analysis of NdR2_{βHK}-R109Q, NMR2_{βHK}-R108Q, and TrNaR2_{βHK}-WT in oocytes. (*A-B*) Current-voltage plots of NdR2_{βHK}-R109Q and NMR2_{βHK}-R108Q demonstrate different ion-selectivities of the mutants and their pH₀-dependency (normalized to 100 mM KCl, pH₀ 10, and 0 mV). (*C*) Photocurrent traces of TrNaR2_{βHK}-WT indicate leakiness in the WT protein. However, amplitudes were poor, and only the best measurement is shown. (*D*) Current-voltage plot of TrNaR2_{βHK}-WT after removal of Cl or Na⁺ ions (normalized to 100 mM NaCl, pH₀ 10, and 0 mV. Results indicate leakiness for cations.

Supplementary Figure 8: Influence of construct design and spectral characteristics of KR2. (*A*) Structure of the targeting constructs KR2_{βHK} and eKR2; nucleotide sequences of each construct are shown in Supplementary Fig. 3. (*B-E*) Comparison of the two targeting constructs, both tested in oocytes, for KR2-WT and KR2-R109Q. Photocurrents were normalized to 0 mV, 100 mM NaCl, and pH 7.5 (WT) or pH 10.0 (R109Q). The pH₀-dependency was similar for all constructs, but differences in the reversal potentials were observed for KR2-R109Q. (*F*) The constructs utilized for the pH-assay and for purification from *E. coli* are functional without any additional targeting. (*G-H*) Absorption spectra of purified KR2-WT and KR2-R109Q, measured at pH 9.0 and in 110 mM of the indicated salt. KR2-R109Q is characterized by an increased amount of protein with a deprotonated Schiff-base (365 nm) and an increased cation-dependency of the absorption maxima.

Supplementary Figure 9: Analysis of light-induced pH changes in suspensions of *Escherichia coli* expressing various KR2 mutants. Suspensions of cells expressing (*A*) KR2-WT, (*B, D-E*) KR2-R109Q/N/A, and (*C*) KR2-S70A-R109Q were tested before (continuous line) and after (dotted lines) addition of the protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Only WT and R109Q KR2 exhibited pH-changes during illumination. (*F*) Photos *E. coli* cell cultures are shown (all concentrated to OD₆₀₀ =10). The faint colors of KR2-R109N, KR2-R109Q, and KR2-S70A-R109Q indicate lower protein expression.

Overview of all KR2 constructs and mutants tested in oocytes

	location/motivation/earlier investigations in KR2	results
KR2-WT		only positive currents
βKR2-WT	1	only positive currents
eKR2-WT	1	only positive currents
βКR2-L32E	extracellular half channel, interaction partner of R109	positive currents + negative currents with K and Li at high elechtrochemical load (-125 mV)
βKR2-S60T	ion uptake region	only positive currents
βKR2-N61P	ion uptake region, increased proton pumping proposed by Kato et al. 2015 (N61Y), Gushchin et al. 2015 (N61M)	only positive currents
βKR2-S64T	ion uptake region	only positive currents
BKR2-S70A	counter-ion complex, Kato 2015 et al. (S70T/A)	studied intensively in this study
BKR2-S70V	counter-ion complex, Kato 2015 et al. (S70T/A)	similar to S70A
βKR2-L75K	counter-ion complex, Inoue et al. 2013 (R109A)	studied intensively in this study
βKR2-R109Q	counter-ion complex, Inoue et al. 2013 (R109A)	studied intensively in this study
βKR2-R109A	counter-ion complex, Inoue et al. 2013 (R109A)	studied intensively in this study
BKR2-R109N	counter-ion complex, Inoue et al. 2013 (R109A)	studied intensively in this study
βKR2-N112D	counter-ion complex, Inoue et al. 2013 (N112A/D)	studied intensively in this study
βKR2-D116N	counter-ion complex, Inoue et al. 2013 (D116A/E/N)	studied intensively in this study
βKR2-D116E	counter-ion complex, Inoue et al. 2013 (D116A/E/N)	only positive currents, low amplitudes
βKR2-Q244E	ion-release cavity, interaction partner of R109	only positive currents
βKR2-D251N	counter-ion complex, Inoue et al. 2013 (D251A/E/N)	studied intensively in this study
βKR2-D251E	counter-ion complex, Inoue et al. 2013 (D251A/E/N)	studied intensively in this study
βКR2-G263W	ion uptake region, increased potassium pumping proposed by Kato et al. 2015 (G263W) and Gushchin et al. 2015 (G263F/G263L)	only positive currents
βKR2-N61P-G263W	ion uptake region, increased potassium pumping proposed by Kato et al. 2015	only positive currents, low amplitudes, pronounced transient peak current
βKR2-R109Q-E11D	ion-release cavity, Gushchin et al. 2015 (E11A), Kato et al. 2015 (E11A)	leaky , low amplitudes
βKR2-R109Q-E18Q	extracellular side	leaky , low amplitudes
BKR2-R109Q-F20A	ion-release cavity	leaky , low amplitudes
BKR2-R109Q-E22Q	extracellular side	similar to R109Q

BKR2-R109Q-T33D	transmembrane surface of KR2	very low amplitudes
βKR2-R109Q-V67A	interaction with Schiff-base from intracellular side	leaky for Na/K/Li, high amplitudes (but lower than
0023 00014 CAN		
5KK2-K109Q-570A	see single mutations	stualea Intensively in this study
βKR2-R109Q-S70V	see single mutations	similar to R109Q-S70A but lower amplitudes
BKR2-R109Q-L75K	see single mutations	similar to R109Q
βKR2-R109Q-L75T	see single mutations	leaky for Na/K/Li, low amplitudes
βKR2-R109Q-E91Q	extracellular side	leaky , low amplitudes
βKR2-R109Q-R94Q	extracellular side	leaky , low amplitudes
BKR2-R109Q-D98N	extracellular side	leaky
BKR2-R109Q-D102N	extracellular side, Gushchin et al. 2015 (D102N), Kato et al. 2015 (D102N)	leaky
βKR2-R109Q-N112D	see single mutations	similar to R109Q leaky
βKR2-R109Q-D116N	see single mutations	no stationary currents
βKR2-R109Q-D116E	see single mutations	leaky, very low amplitudes
βKR2-R109Q-D116A	see single mutations	no stationary currents
βKR2-R109Q-L120D	interaction with Schiff-base from intracellular side	no currents
BKR2-R109Q-Q123A	ion uptake region, Inoue et al. 2013 (Q123A/E/D)	leaky, low amplitudes
βKR2-R109Q-E160Q	ion-release cavity, Inoue et al. (E160Q), Gushchin et al. 2015 (E160A), Kato et al. 2015 (E160A)	leaky
ßKR2-R109Q-E237Q	extracellular side	leaky
BKR2-R109Q-R243Q	ion-release cavity, Gushchin et al. 2015 (R243Q/A), Kato et al. 2015 (R243A)	leaky, low amplitudes
βKR2-R109Q-D251N	see single mutations	studied intensively in this study
βKR2-R109Q-D251E	see single mutations	leaky for Na/K/Li, Iow amplitudes, pH _o -dependency further increased
ßKR2-R109Q-D251T	see single mutations	very low amplitudes
ßKR2-R109Q-D251H	see single mutations	very low amplitudes
ßKR2-R109Q-S254D	interaction with Schiff-base from intracellular side	no currents
βKR2-R109Q-S70A-L75K	see single mutations	leakyness for Na/K/Li, very high amplitudes for Li
βKR2-R109Q-N112D-D251N	see single mutations	no stationary currents
βKR2-R109Q-N61P-G263W	see single mutations	no currents
eKR2-R109A	see single mutations	studied intensively in this study
eKR2-R109Q	see single mutations	studied intensively in this study
eKR2-R109Q-S70A	see single mutations	studied intensively in this study