
Supplementary document. Derivation of IRN for autonomous systems

We begin by establishing notation, consistent with [31, 32] for convenience
(see table 3 for a summary). Let x = (x1, ..., xn)

T , with each xi ≥ 0, denote the
number of individuals in each compartment of a system, and let the infection
dynamics of the system be described by ẋ = f(x), where f is a vector such that
ẋi = fi(x). The system’s BRN, R0, can then be defined using next-generation
methods [8, 31].

Now suppose that there are k different infections (k ≤ n), either mul-
tiple strains of the same pathogen or infections of different types, and let
A ⊆ {1, ..., k} be a subset of these infections assumed resident within the popula-
tion. Any other infections (not in A) which appear are then considered invading
infections. This structure provides a context against which to define IRNs.

Just as in deriving a BRN, the first step in next-generation operator methods
is epidemiological. To derive an IRN with respect to a set A of resident infec-
tions, one begins by reclassifying all resident infections as non-infected. Now
one can calculate the invasion reproductive number of all the infections not in A
with respect to all the infections in A, that is, the IRN of Ac where Ac denotes
the complement of A in {1, . . . , k}. This invasion reproductive number will be
denoted as AR̃0, in order to specify the set of infections assumed resident. The
IRN is calculated for the set of infections j ∈ Ac and so only those classes with
such infection(s), including single and co-infected classes, are considered to be
infected. The invasion reproductive number is then the expected number of sec-
ondary cases that one infected individual with some infection j ∈ Ac produces
in a population where all (and only) infections in A are resident.

The system’s compartments are then arranged so that the first m compart-
ments correspond to infected individuals with infections from Ac. Define EA to
be the set of all Ac-infection free states, that is,

EA = {x ≥ 0|xi = 0, i = 1, ...,m} . (27)

Let Fi(x) be the rate of new infections in compartment i, V
+
i (x) be the rate

of transfer into compartment i by all other means, and V
−
i (x) be the rate

of transfer out of compartment i. Assume that each function is continuously
differentiable at least twice in each variable. Now the model becomes:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ..., n, (28)

where Vi = V
−
i −V

+
i . In addition, these functions need to satisfy the following

assumptions:

• (A1) If x ≥ 0, then Fi,V
+
i ,V −

i ≥ 0 for i = 1, ...n

• (A2) If xi = 0 then V
−
i = 0. If x ∈ EA, then V

−
i = 0 for i = 1, ...m

• (A3) Fi = 0 if i > m

• (A4) If x ∈ EA then Fi = 0 and V
+
i = 0 for i = 1, ...m
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• (A5) If Fi is set to zero, then all eigenvalues of Df(x0) have negative real
parts, for some A-endemic equilibrium, x0 ∈ EA.

For (A3), no new invading infections can happen in those classes that are con-
sidered non-infected classes. (A4) states that if the system is at a state free
of infections in Ac, then it will stay that way. (A5) states that there is an A-
endemic equilibrium which is locally stable in the Ac-free subspace, EA. This
last condition requires, in turn, additional conditions, in general that reproduc-
tive numbers for the A-only subsystem be greater than 1, which is an existence
criterion for the A-endemic equilibrium. This allows the matrix Df(x0) to be
partitioned using the following lemma.

Lemma 2. Assume that for the subsystem of system (28) beginning with compo-
nent m+ 1 (i.e., excluding all invading infections), all BRNs and IRNs exceed
1. If x0 ∈ EA is an equilibrium free of infections in Ac and fi(x) satisfies
(A1)–(A5), then the derivatives DF (x0) and DV (x0) are partitioned as

DF (x0) =

(

F 0
0 0

)

, DV (x0) =

(

V 0
J3 J4

)

where F and V are the m×m matrices defined by

F =

[

∂Fi

∂xj

(x0)

]

V =

[

∂Vi

∂xj

(x0)

]

1 ≤ i, j ≤ m.

Further, F is non-negative, V is a non-singular M -matrix and all eigenvalues
of J4 have positive real part.

The proof is similar to [31]. The difference here in the Lemma is that it
requires that all A-only reproductive numbers exceed 1 in the hypothesis. This
is important in order to distinguish between a disease-free equilibrium and an
Ac-free equilibrium. Requiring that R0 > 1, for instance, ensures that the
disease-free equilibrium can never be stable.

Now the invasion reproductive number can be calculated. The goal here is to
see if the extension of the method for the BRN gives the same threshold behavior
for the IRN for some Ac-infection free equilibrium. That is, if all reproductive
numbers in the A-only subsystem exceed 1 and AR̃0 < 1, then the Ac-infection
free equilibrium, x0, is stable, but if AR̃0 > 1 then it is unstable. Recall that the
invasion reproductive number is the expected number of secondary cases one
infected individual with some infection j ∈ Ac produces in a population where
all (and only) infections in A are resident. This definition can be interpreted by
looking at the entries of FV −1. Thus we can mathematically define AR̃0 as:

AR̃0 = ρ(FV −1) (29)

where ρ(A) is the spectral radius of the matrix A. This leads to the following
theorem.
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Lemma 3. Consider the disease transmission model given by (28) with f(x)
satisfying conditions (A1)–(A5). Assume that all reproductive numbers in the
A-only subsystem exceed 1. If x0 is an Ac-infection free equilibrium of the model,
then x0 is locally asymptotically stable if AR̃0 < 1, but unstable if AR̃0 > 1, where

AR̃0 is as defined in (29).

The proof proceeds in a similar way to [31], the differences being epidemio-
logically as described above where only those infections from Ac are considered
infected.

A Set of resident pathogens
Ac Set of invading pathogens
f Vector of compartmental population growth rates
k Total number of pathogens cocirculating in the population
m Number of compartments involving invading (Ac) pathogens
n Total number of compartments/classes
R0 Overall BRN for the entire system
Ri BRN for pathogen i

AR̃0 Overall IRN when [all] pathogens in A are resident

AR̃T Time-average RN for periodic system with pathogens in A resident

AR̃i IRN of pathogen i ∈ Ac when [all] pathogens in A are resident

R̃i IRN of pathogen i in a two-pathogen system
where the other pathogen is assumed resident

x State vector of all compartments/classes
xi(t) Number of individuals in compartment i at time t

Table 3: Notation

S3




