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ABSTRACT One of the central tasks in systems biology is to understand how cells regulate their metabolism. Hierarchical
regulation analysis is a powerful tool to study this regulation at the metabolic, gene-expression, and signaling levels. It has
been widely applied to study steady-state regulation, but analysis of the metabolic dynamics remains challenging because it
is difficult to measure time-dependent metabolic flux. Here, we develop a nonparametric method that uses Gaussian processes
to accurately infer the dynamics of a metabolic pathway based only on metabolite measurements; from this, we then go on to
obtain a dynamical view of the hierarchical regulation processes invoked over time to control the activity in a pathway. Our
approach allows us to use hierarchical regulation analysis in a dynamic setting but without the need for explicitly time-dependent
flux measurements.
INTRODUCTION
It is important to understand how microbes regulate their
metabolism in response to changes in environmental condi-
tions. A key aspect of regulation of metabolism (or meta-
bolic fluxes) is to modulate enzyme abundance, either
through transcriptional regulation or through signaling and
post-translational modification. Experimental studies of
central metabolism, e.g., in three species of parasitic protists
(1) and in Bacillus subtilis (2), show that flux regulation is
rarely achieved exclusively at the transcriptional level.
It is thus important to take a more comprehensive assess-
ment of metabolic regulation, including substrate and prod-
uct changes, allosteric regulation, and post-translational
enzyme modifications.

Hierarchical regulation analysis (1,3) (HRA) is a power-
ful tool to study regulatory processes across different levels.
For each reaction step, HRA quantifies the contributions
stemming from different regulatory levels, including gene
expression and signaling, to the regulation of overall flux.
This approach has been successfully used to analyze the reg-
ulatory properties of many important metabolic pathways
(2,4–7); for all instances, it was found that regulation is typi-
cally distributed across levels.
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We consider an example in which the rate vi of an
enzyme-catalyzed reaction i depends linearly on two
functions, which we denote by h and g. The former is
related to hierarchical effects due to changes in enzyme
concentration or covalent modification. The latter is
related to metabolic effects, in which changes in rate are
caused by changes in the concentrations of substrates,
products, and metabolic effectors. Identifying the rate vi
at steady state with the flux through the enzyme J, we
obtain

J ¼ vi ¼ hðeiÞ � giðXÞ: (1)

ei represents the concentration of the enzyme catalyzing
the process vi; X denotes a vector of concentrations of me-
tabolites that are involved in reaction i. For covalent modi-
fications, the first term can be expanded as h(ei) ¼ ei � 4a,i,
with 4a,i denoting the fraction of the enzyme that is in the
active covalent modification state (Fig. 1 b). Then, the
change in the logarithm of the steady-state flux J can be
expressed as

D ln J ¼ D ln hðeiÞ þ D ln giðXÞ; (2)

rearranging this expression, we have

1 ¼ D ln hðeiÞ
D ln J

þ D ln giðXÞ
D ln J

¼ rih þ rim; (3)
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a b FIGURE 1 Illustration of hierarchical and meta-

bolic regulation in an unbranched metabolic

pathway. (a) The enzyme e1 that catalyzes the first

reaction is regulated through both transcriptional

repression (gene-expression regulation) and allo-

steric inhibition (metabolic regulation) by the end

product. (b) A fraction of the enzyme that is in a

covalent modification state (ei � 4a,i) actively cat-

alyzes the first reaction. Hierarchical regulation

comprises gene-expression and signaling regula-

tion. To see this figure in color, go online.
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where D denotes the difference between two steady states.
The hierarchical regulation coefficient rih quantifies the
contribution of changes in enzyme concentration (or
enzyme capacity, i.e., hðeiÞ ¼ Vi

max) to the regulation of
the flux. The relative contribution of the changes in the
enzyme activity through its interaction with the rest of the
metabolism is quantified by the metabolic regulation coeffi-
cient rim (see Fig. 1 for illustration of hierarchical and meta-
bolic regulation). The hierarchical regulation coefficient can
be further expressed as a sum of the gene-expression and
signal-transduction regulation coefficients (i.e., rih ¼
d ln hðeiÞ=d ln J ¼ d ln ei=d ln Jþ d ln4a;i=d ln J ¼ rig þ
ris). Experimentally, it is relatively easy to measure the hi-
erarchal regulation coefficient because only enzyme con-
centration measurements, ei (or Vi

max), and the flux are
required; this is normally done under two experimental con-
ditions. More recently, Chubukov et al. (2) generalized this
to multiple conditions—which increases computational ac-
curacy—by using linear regression to relate ln(ei) and
DlnJ. The metabolic regulation coefficient can then be
calculated from rim ¼ 1� rih.

Most existing HRA studies investigate steady-state regu-
lation; however, it is typically important to know how cells
adapt to environmental changes. Time-dependent regulation
analysis aims to quantify the regulation coefficients as a
function of time (8,9). The integrative version of time-
dependent regulation analysis integrates all the regulation
between time t0 (the start of the perturbation) and t. For
instance, the time-dependent hierarchical regulation coeffi-
cients can be calculated as

rihðtÞ ¼
ln hðeiðtÞÞ � ln hðeiðt0ÞÞ

ln viðtÞ � ln viðt0Þ
z

ðhðeiðtÞÞ � hðeiðt0ÞÞÞ=hðeiðt0ÞÞ
ðviðtÞ � viðt0ÞÞ=viðt0Þ :

(4)

Here, the reaction rate, v, is employed in the denominator
rather than the flux, J, because we are studying the transient
effect rather than the steady states. The latter expression
only provides a good approximation when h(ei(t))/h(ei(t0))
z 1 and vi(t)/vi(t0)z 1. When there is no post-translational
modification, h(ei(t)) can be simplified as ei(t) or Vmax(t) (9).
The time-dependent metabolic regulation coefficients are
simply rimðtÞ ¼ 1� rihðtÞ. We can also develop an instanta-
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neous version of time-dependent regulation analysis (8,10)
that quantifies the contribution of hierarchical and metabolic
regulation to the change in the reaction rate at time point,
which will not be discussed here.

Dynamic flux measurement or estimation is a key limita-
tion for generalizing HRA from steady-state to dynamic reg-
ulatory analysis: it is hard to directly measure fluxes,
whereas intracellular fluxes can be estimated by tracking
isotope-labeled (e.g., 13C and 15N) metabolites (11,12), but
this is only suitable for steady-state analysis. The only
time-dependent regulation analysis (9) for nitrogen starva-
tion in yeast that has been presented is based on fluxes esti-
mated at a limited number of time points, but the results
cannot capture the complete temporal behavior, and it re-
quires several independent experiments to generate the con-
fidence limits on the HRA results; experimentally, this is
both expensive and time-consuming.

Here, we develop a new, to our knowledge, nonparametric
Bayesian modeling framework for dynamic (or time-depen-
dent) HRA. High-resolution time-dependent metabolite pro-
files can be first estimated from discrete metabolite
concentration measurements using nonparametric Gaussian
process regression (GPR). Dynamic reaction rates or fluxes
can then be inferred from the derivatives of the correspond-
ing metabolite profiles and the network stoichiometry.
Finally, the time-dependent hierarchical regulation coeffi-
cients are calculated from the time-dependent reaction rates
and enzyme profiles. A key advantage of our approach lies
in its reliance on only experimental protein and metabolite
data without the need of time-dependent flux measurements.
With this, we obtain complete temporal hierarchical regula-
tion profiles for each reaction together with statistical
confidence.
MATERIALS AND METHODS

Dynamic reaction rate estimation from metabolite
measurements: motivation examples

We first consider the simple linear metabolic pathway example (Fig. 1 a).

We assume that x1 is an external substrate with constant concentration,

and the last reaction rate vN depends only on the concentration of the last

metabolite xN with known degradation kinetics gN(xN); eN is a constant

because gene-expression regulation is not considered in this last step. The

ordinary differential equations (ODEs) of this linear pathway are



_x2 ¼ e1 � g1ðx1; xnÞ� e2 � g2ðx2; x3Þ ¼ v1 � v2 v1 ¼ _x2 þ v2
_x3 ¼ e2 � g2ðx2; x3Þ� e3 � g3ðx3; x4Þ ¼ v2 � v3 v2 ¼ _x3 þ v3
« 0 «

_xN�1 ¼ eN�1 � gN�1ðxN�1; xNÞ� gNðxNÞ ¼ vN�1 � gNðxNÞ
_e1 ¼ geðxNÞ� kd � e1:

vN�1 ¼ _xN þ gNðxNÞ
(5)

Mechanistic Insights into the Modulation
The changes of metabolite concentration can also be expressed by the

differences between incoming and outgoing reaction rates. After the deriv-

atives of metabolite concentrations are approximated from the Gaussian

process (GP) derivatives, the reaction rate of each reaction can be calcu-

lated. The generic expression of the ith reaction rate is

vi ¼ _xiþ1 þ.þ _xN þ gNðxNÞ: (6)

This example illustrates that dynamic reaction rates in a linear metabolic

pathway can be expressed in terms of the derivatives of time-dependent

metabolite concentrations. For branched pathways or pathways with feed-

back/feedforward reactions, in general, there can be more reactions than

metabolites. Therefore, not all the reaction rates can be expressed explicitly

in terms of metabolite concentrations. In such cases, either some reaction

rates need to be measured experimentally to reduce the total number of un-

known reactions or some reactions may need to be combined or merged
D ln~v2 ¼ D lnðv2 � v4Þ ¼ D lnðe2 � g2ðx1; x2Þ� e4 � g4ðx1; x3ÞÞ
¼ D lnðe2 � g2ðx1; x2Þð1þ e4 � g4ðx1; x3Þ = e2 � g2ðx1; x2ÞÞÞ
¼ D ln e2 þD ln g2ðx1; x2ÞþD lnð1þ e4 � g4ðx1; x3Þ = e2 � g2ðx1; x2ÞÞ:
together so that the number of unknown reactions is equal to the number

of metabolites. For instance, the reaction rates, v1 and v4, as shown in the

branched pathway in Fig. 2 a, cannot be uniquely determined and shall

be combined into an overall net-reaction rate ~v1 as

_x1 ¼ v1 � v2 � v4 ~v1 ¼ v1 � v4 ¼ _x1 þ v2
_x2 ¼ v2 þ v3 0 v2 ¼ _x2 þ v3
_x3 ¼ v3 v3 ¼ _x3

: (7)

Similarly, for a pathway with a feedback reaction as given in Fig. 2 b,

there are four reactions but only three metabolites. To estimate reaction

rates from metabolites, the feedback reaction rate (�v4) can be expressed

via the forward reaction rates v2 and v3 (i.e., ~v2 ¼ v2 � v4, ~v3 ¼ v3 �
a b
v4). In such a way, the original pathway can be approximated as a linear

pathway and the net-reaction rates between metabolites can be estimated:

_x1 ¼ v1 �~v2 v1 ¼ _x1 þ~v2
_x2 ¼ ~v2 �~v3 0 ~v2 ¼ _x2 þ~v3
_x3 ¼ ~v3 ~v3 ¼ _x3

: (8)

For a pathway with branches or feedback/feedforward loops, we will not

be able to compute the regulation coefficients with respect to each reaction

unless practically one can measure the flux go through some of the

branches. However, a hierarchical regulation coefficient of a specific

enzyme with respect to a joint net-reaction rate can still be defined and

calculated, but its summation with the corresponding metabolic regulation

coefficient will no longer be conserved (i.e., always equal to one). For

instance, the relative change of the ~v2 in the feedback pathway example is
Dividing both sides of the equation by Dln~v2, the first term

D ln e2=D ln~v2 is a hierarchical regulation coefficient that quantifies the

contribution of relative change of enzyme e2 to the relative change of

net-reaction rate ~v2. The second term is the corresponding metabolic regu-

lation coefficient. However, the last term depends not only on the enzymes

but also on metabolite interactions with respect to both reactions 2 and 4.

Hence, the conservation law is not applicable for branched or feedback/

feedforward pathways, and we will not be able to directly calculate the

metabolic regulation coefficient even if the hierarchical coefficient is

available. For a pathway with multiple branches or feedback/feedforward

loops, several branches will be combined to form the net flux, which does

not require multiple transformations, although the definition of ‘‘net’’ flux

may not be unique (because one can have multiple ways to combine

different branches).
FIGURE 2 Illustration of (a) a branched meta-

bolic pathway and (b) a pathway with a feedback

reaction. The lower diagram shows the equivalent

unbranched pathway, with reactions from the orig-

inal pathway (orange) merged to form ‘‘net’’ reac-

tions (red). To see this figure in color, go online.
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Time-dependent metabolites estimation using
GPR

The examples given in the previous subsection indicate that to estimate

dynamic fluxes, we first need to estimate time-dependent metabolite con-

centrations. In general, metabolic pathways can be modeled by a set of

ODEs,

_xðtÞ ¼ fðxðtÞ; t; qÞ; (9)

where x(t)¼ [x1(t), x1(t),..., xN(t)] is the vector of metabolite concentrations

at time t and q is the vector of model kinetic parameters. The rate of change

of the ithmetabolite is _xiðtÞ ¼ fiðxðtÞ;t; qÞ. We assume that the ithmetabolite

can be measured with some additive normally distributed noise (with con-

stant variance):

yiðtÞ ¼ xiðtÞ þ x; x � N �
0; s2

x

�
: (10)

Identifying the underlying time-dependent metabolic processes from

limited noisy observations is challenging, especially when the ‘‘true’’ ki-

netics and parameters are unknown. GPR (13), a nonparametric Bayesian

inference approach, can then be employed to recover the underlying dy-

namic process without having to estimate reaction kinetics.
Single-output GPR

The most straightforward approach is to use standard single-output GPR to

model the concentration of each metabolite as a function of time xi(t) from

the noisy observations yi(t). GPR assumes that outputs (xi) evaluated at a

finite number of inputs (i.e., time points t ¼ {t1, t2,..., tS}) have a multivar-

iate Gaussian distribution. A prior can be put directly on a function rather

than the parameters of a parametric function. A GP prior over the observed

outputs (a function over time) for the ith metabolite is

yiðtÞ � GP�mðtÞ; kðt; t0Þ þ s2
xdðt; t0Þ

�
; (11)

where m(t) is a mean function of the metabolite concentrations taken at

times t, d(t, t0) is the Kronecker d function, and k(t, t0) is a covariance func-
tion. Normally, a squared covariance function is selected, kðtp; tqÞ ¼
s2f expð� ðtp � tqÞ2=2l2dÞ, where the hyperparameters, (sf, ld, sx), can be

determined by maximizing the likelihood function (14). Given the GP prior,

it is possible to compute the posterior because the joint (prior) probability

distribution of the training outputs, yi, and the test outputs is again multivar-

iate Gaussian,�
yi
x�i

�
� N

��
mo

m�

�
;

�
Ko þ s2

xI Ko�
K�o K��

�
;

�
; (12)

where yi ¼ [yi(t1),..., yi(tS)]
T is a set of output observations; x�i ¼

½xiðt�1Þ;.; xiðt�RÞ�T is the test outputs to be estimated at any finite set of

time points, (Ko)pq ¼ k(tp, tq), ðKo�Þpq ¼ kðtp; t�qÞ, ðK�oÞpq ¼ kðt�p ; tqÞ, and
ðK��Þpq ¼ kðt�p ; t�qÞ.

The posterior distribution for the ith time-dependent metabolite con-

centrations xi(t) can be obtained by updating the GP prior using the

observed data set yi(t) (from conditioning the joint Gaussian prior

distribution),

�
xi
�
t�1
�
;.; xi

�
t�R
�	jyi � N



mi

post;K
i
post

�
; (13)

where mi
post ¼ m� þ K�oðKo þ s2xIÞ�1ðyi �moÞ and Ki

post ¼ K�� �
K�oðKo þ s2xIÞ�1

Ko�. From the GP posterior, we can obtain dense metabo-

lite concentration time series from limited experimental samples.
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Multi-output GPR

Different metabolites in a metabolic pathway often interact with one

another, e.g., via substrate/product effects or allosteric regulation or if

they are affected by the same noise process (e.g., enzyme gene expression).

Single-output GPR is computationally efficient at modeling individual

metabolite trajectories, where such (often unknown or neglected) interac-

tions between metabolites can be ignored. Multi-output GPs can account

for such unknown relationships and are implemented either by specifying

positive definite covariance functions between different outputs through

so-called co-kriging (or coregionalization) (15,16) or through parameter-

izing impulse responses function via linear systems theory (17–19). In

this work, the latter approach is employed. Considering a stationary linear

system withM independent white noise processes, u1(t),..., uM(t), as inputs,

it produces N outputs y1(t),..., yN(t) with nth defined as

ynðtÞ ¼ znðtÞ þ wnðtÞ; (14)

where wn(t) is stationary Gaussian white noise with variance s2n, and the

multi-input multi-output filter is defined as

znðtÞ ¼
XM
m¼ 1

hmnðtÞ5umðtÞ ¼
XM
m¼ 1

Z N

�N

hmnðtÞumðt � tÞdt;

(15)

where hmn is the Gaussian kernel connecting input m to output n; hence, a

multi-input multi-output filter can capture the dependencies among output

variables yn(t). By evaluating the convolution integral, the covariance be-

tween yi(tp) and yj(tq) is

CijðdÞ ¼
XM
m¼ 1

Z N

�N

hmiðtÞhmjðt þ dÞdt

¼
XM
m¼ 1

ð2pÞ
p
2vmivmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ami þ Amj

p exp


� 1

2

�
d � �

mmi � mmj

	�2
S

�
;

(16)

where d ¼ tp � tq is the distance between two input points, S ¼ Ami(Ami þ
Amj)

�1Amj, and mmi is the offset parameter. The (positive definite) covari-

ance matrix between N output variables becomes

C ¼
2
4C11 þ s2

1I / C1N

« 1 «
CN1 / CNN þ s2

NI

3
5: (17)

C is a R� Rmatrix with R ¼ PN
i¼1Ri and Ri observations of output i. The

hyperparameters q ¼ {nmn, mmn, Amn, sn} can be estimated by maximizing

the log-likelihood, LðqÞ ¼ � ð1=2ÞlogjCðqÞ j � ð1=2ÞyTCðqÞ�1y�
ðR=2Þlog2p, using a multistart or constrained Nelder-Mead algorithm im-

plemented in MATLAB’s (The MathWorks, Natick, MA) nonlinear optimi-

zation toolbox, where yT ¼ ½ðy1;1/y1;R1
Þ/ðyi;1/yi;Ri

Þ/ðyN;1/yN;RN
Þ�.

The distribution of predictions over Rt ¼ PN
i¼1R

t
i (R

t
i are the testing time

points, i.e., t�1 ; t
�
2 ;.; t�Rt

i
, for output i) for all the output variables (e.g., me-

tabolites in a pathway) has mean and varianceh
z1



t�1;1

�
;.; z1



t�1;Rt

1

�
;/; zN



t�N;1

�
;.; zN



t�N;Rt

N

�i
jy

� N �
KM

�oC
�1y;KM

�� � KM
�oC

�1KM
o�
�
; (18)



Mechanistic Insights into the Modulation
where KM
�o, KM

o� and KM
�� are defined in the Supporting Materials and

Methods. For notational simplicity, the conditional probability distribution

in Eq. 18 will below be written as [z1,..., zN]j[y1,..., yN].
Derivative processes and reaction rate estimation

As shown above, reaction rates depend on the derivatives of metabolite con-

centrations in a pathway. Because differentiation is a linear operator, the de-

rivative of a GP is another GP. We thus obtain for the GP posterior

distribution for the derivatives of metabolite concentrationsh
_xi
�
t�1
�
;.; _xi

�
t�R
�ijzi � N



mi

post;K
i
post

�
; (19)

where the training set zi are the time-dependent estimates of the ith metab-

olite obtained from the multi-output GPR and the expressions formi
post and

Ki
post are the same as in Eq. 13; K�o,Ko�, and K�� are defined differently here

(14,20):

K�o ¼
�

Ko

LDF

�
;Ko� ¼ ðKo LDF Þ; and K��

¼
�

Ko LDF
LDF M

�
;

with ðLDFÞpq ¼ covð _xðtpÞ; xðtqÞÞ ¼ d=dtpkðtp; tqÞ, ðLFDÞpq ¼ covðxðtpÞ;
_xðtqÞÞ ¼ d=dtqkðtp; tqÞ, and ðMÞpq ¼ covð _xðtpÞ; _xðtqÞÞ ¼ d2=dtpdtqkðtp;
tqÞ. Because the sum of GPs is another GP, according to Eq. 6, the distribu-

tion of the reaction rate of the ith reaction (over the same finite time points)

can be expressed in terms of the derivatives of corresponding metabolite

concentrations,�
vi
�
t�1
�
;.; vi

�
t�R
�	jzi � N �

mi
v;K

i
v

�
; (20)

wheremi
v ¼miþ1

post þ.þmN
post þ gNðmN

postÞ, Ki
v ¼ Kiþ1

post þ.þ KN
post. This

expression is generic for estimating reaction rates in a linear metabolic

pathway or the net-reaction rates in a branched or feedback/feedforward

pathways.

Practically, when estimating reaction rates of a large metabolic pathway

with many metabolites, there can be a large number of parameters associ-

ated with the multi-output GP (as in Eq. 16), and if only limited data are

available, the optimization can become an ill-posed problem. In such cases,

single-output GPs may be used as an alternative by replacing the zi in Eq. 18

with xi in Eq. 13; correlations between metabolites will then no longer be

modeled explicitly.
Time-dependent regulation coefficients
estimation

The time-dependent hierarchical regulation coefficient expression Eq. 4 for

the ith reaction at time t is defined as a ratio of the relative changes of

enzyme concentration to the relative change of the reaction rate. Because

of the dependency between reaction rate and enzyme concentration,

the relative changes between these two variables (over finite time points

t�1 ; t
�
2 ; .; t�R) are therefore calculated as joint posterior predictions of a

multi-output GP,

½ze; zv�j½ye; yv� � N ðmr;KrÞ; (21)

wheremr ¼ KM
�oC

�1y, Kr ¼ KM
�� � KM

�oC
�1KM

o�. The training data ye are the
relative changes of enzyme concentrations; yv is the relative change of the

estimated reaction rate from Eq. 20. By assuming the previous steady-state

(or the one before perturbation) enzyme concentrations ei(t0) and reaction
rates vi(t0) are known, the distribution of time-dependent hierarchical regu-

lation coefficients ½rihðt�1Þ;.; rihðt�RÞ� can be evaluated according to�
ln ei

�
t�1
�
;.; ln ei

�
t�R
�	� ln eiðt0Þ

½ln viðt�1Þ;.; ln viðt�RÞ� � ln viðt0Þ ¼ ze
zv
: (22)

For each time t, this is the ratio of two GPs, and the probability density of

the hierarchical regulation coefficient pðrihðtÞÞ can be evaluated as a ratio

between two Gaussian variables,

p
�
rihðtÞ

� ¼ p

�
ln eiðtÞ � ln eiðt0Þ
ln viðtÞ � ln viðt0Þ

�

¼ p

0
@ze � N



mze; s

2
ze

�
zv � N �

mzv; s
2
zv

�
1
A: (23)

Because the reaction rate vi is a function of enzyme concentration, ei, the

probability density of the ratio (i.e., z ¼ ze/zv, ze � Nðmze; s
2
ze
Þ and

zv � Nðmzv;s
2
zv
Þ) can be calculated from the means, SDs and correlation co-

efficient of the two Gaussian variables (i.e., pzðz;mze; mzv;sze; szv; rÞ); see
Supporting Materials and Methods and (21). Here, the correlation coeffi-

cients between two GPs over all test sampling times (i.e., corrðze; zvÞ ¼
½rðt�1Þ;.; rðt�RÞ�) is calculated from the covariance matrix C employed in

the multi-output GP (Eq. 16),

corrðze; zvÞ ¼ covðze; zvÞ
sze$szv

¼ diagðC12Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðC11 þ s2

1IÞ
p

$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðC22 þ s2

2IÞ
p :

(24)

After obtaining the probability density pðrihðtÞÞ, we can also compute the

mean and the confidence intervals at each time t. The most recently updated

source code for the implementation is available to download from https://

github.com/FeiHeIC/DynamicRegAnalysis/.
RESULTS

An unbranched pathway with negative feedback
transcriptional regulation

Fig. 3 a shows an unbranched metabolic pathway with three
metabolites, where for all the three enzymes, gene expres-
sion is regulated by the last metabolite. We describe this
as (with all the kinetic equations and parameters provided
in Eq. 8)

_x1 ¼ v1ðS; x1; eÞ� v2ðx1; x2; eÞ
_x2 ¼ v2ðx1; x2; eÞ� v3ðx2; x3; eÞ v1 ¼ _x1 þ v2
_x3 ¼ v3ðx2; x3; eÞ� g3ðx3;PÞ 0 v2 ¼ _x2 þ v3

_mRNA ¼ vtrscsyn � vtrscdeg
_e ¼ vtrnlsyn � vtrnldeg

v3 ¼ _x3 þ g3ðx3;PÞ
:

(25)

We add additive Gaussian random noise (s2 ¼ 0.05) to
the simulated metabolite, messenger RNA (mRNA), and
enzyme concentrations. The system is perturbed from a
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FIGURE 3 A three-metabolite unbranched meta-

bolic pathway and estimation results. (a) The

pathway model diagram is given. The metabolites

are denoted by xi and enzymes by e. S and P are

the external metabolites. The first enzyme e1 is regu-

lated through both transcriptional repression and

allosteric inhibition by the third metabolite. En-

zymes 1, 2, and 3 are encoded on the same operon.

(b and c) GPR to simulated metabolite observations

x1, x2, x3, mRNA, and enzymes e after the change in

S from 0.1 to 1 at t ¼ 0 is shown. The noisy metab-

olite observations are shown in dot, and the confi-

dence intervals in gray represent the 5 2� SDs of

the GP posterior distribution. To see this figure in

color, go online.
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reference steady state with S¼ 0.1 to S¼ 1 at t ¼ 0. We fit a
GP to each of the metabolite time courses (Fig. 3, b and c)
and calculate their derivatives. The time-dependent reaction
rate (vi) for each reaction i can then be calculated from the
GP derivative processes (Fig. 4, a–c). Finally, we calculate
the time-dependent hierarchical and metabolic regulation
coefficients for each reaction and the corresponding confi-
dence intervals (Fig. 4, d–f).

After perturbing external metabolite S, only the first reac-
tion rate v1 increases instantaneously (from 40 to 120 from
time t ¼ 0� to 0þ, not shown) because it is directly affected
by the changes in S; all other metabolite concentrations and
reaction rates have not yet had time to respond. At the new
steady state, all metabolite concentrations are increased—
i.e., x1 from 4.8 to 52.2, x2 from 1.9 to 3.8, and x3 from
0.7 to 0.9—and all the reaction rates increase from 40 to
46, whereas enzyme concentrations decrease from 1.3 to
1. This explains the negative hierarchical regulation coeffi-
cients shown in Fig. 4, d–f. The estimated regulation coeffi-
cients in Fig. 4, d–f show that metabolic regulation is
initially responsible for the decrease in the reaction rate v1
and increase in the reaction rates v2 and v3 because the hier-
archical regulation coefficient is close to zero. It takes some
time for the negative hierarchical regulation to come into ef-
fect because gene expression is a relatively slow process.
Although the first reaction is under a negative allosteric
regulation, the overall metabolic regulation shows a positive
effect because it also includes substrate and product effects.
The regulation coefficients for all three reactions are very
similar. This is because the relative changes in the enzyme
concentration are very small in magnitude compared to
the reaction rates, although the latter vary differently after
perturbation.
Leucine biosynthetic pathway with positive
feedforward transcriptional regulation

The previous example shows a metabolic intermediate in-
hibits upstream enzymes through transcriptional regulation.
2040 Biophysical Journal 116, 2035–2046, May 21, 2019
Here, we investigate a different regulatory structure: a
metabolite activating downstream enzymes through tran-
scriptional regulation. A simplified mathematical model
describing the leucine biosynthetic pathway in Saccharo-
myces cerevisiae (22) is used to demonstrate such positive
feedforward regulation (Fig. 5 a). This pathway converts py-
ruvate into leucine with two major regulatory mechanisms:
metabolic/allosteric feedback inhibition of Leu4 and Leu9
(Eu) by leucine and transcriptional regulation of down-
stream enzymes Leu1 (E1) and Leu2 (E2) by aIPM (I1). It
has been demonstrated that positive feedforward regulation
has similar effects in maintaining pathway flux as negative
feedback regulation from a control engineering perspective
(23). The kinetic model describing the dynamics of aIPM
(I1), bIPM (I2), leucine (P), Leu1 (E1), and Leu2 (E2)
together with parameters estimated from experimental
data are provided in (22). The dynamics can be described as

_I1 ¼ v1 � v2
_I2 ¼ v2 � v3
_P ¼ v3 þFext � d5P

0
v2 ¼ _I2 þ v3
v3 ¼ _P�Fext þ d5P

:
(26)

Fext is the external leucine flux. Because the enzyme Eu is
treated as a constant in the model, we will only investigate
the hierarchical regulation with respect to the reactions cata-
lyzed by E1 and E2. To investigate flux regulation, the
pathway is perturbed by adding an external flux of aIPM af-
ter the system reaches a quasi-steady state. This is achieved
by adding a constant external flux term fext in the first equa-
tion of Eq. 26. To evaluate the system’s responses and regu-
lation strength under different perturbations, three levels of
perturbations are considered by adding fext ¼ 0.1, 0.2, and
0.3 mM/min at t ¼ 0 min, respectively. The system is simu-
lated for 400 min with a sampling time of 20 min. The multi-
output GPR estimates of I2 (bIPM) and P (leucine) are
shown in Fig. 5, b and c, with reaction rate estimates given
in Fig. 5, d and e. Before perturbation, the steady-state
concentration of bIPM is 0.27 mM, leucine is 1.1 mM, en-
zymes Leu1 and Leu2 are 0.0055 and 0.0014 mM, and the
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FIGURE 4 Time-dependent reaction rates (a–c) and regulation coefficients (d–f) with respect to the three reactions in the metabolic pathway. In (a)–(c), the

time-dependent reaction rates estimated from GP regression are shown in blue; for comparison, the results based on ODEmodel simulations are shown in red.

In (d)–(f), metabolic regulation coefficients, rimðtÞ, are shown in blue, and hierarchical regulation coefficients rihðtÞ are in red. Results based on ODE model

simulations are shown as dotted lines; results based on nonparametric GP regression are shown as a solid line, with confidence intervals indicated by the

bands. To see this figure in color, go online.

Mechanistic Insights into the Modulation
quasi-steady-state flux is 0.08 mM/min. It is clear that after
perturbation, bIPM, leucine, enzymes, and reaction rates all
increase.

The time-dependent regulation coefficients for the last
two reactions under relatively small perturbation (fext ¼
0.1) are first calculated (Fig. 6, a and b). Because both en-
zymes are regulated by positive feedforward transcriptional
regulation from aIPM, the hierarchical regulation coeffi-
cients of both steps are positive, in contrast to the previous
example. Initially, the increases in the pathway’s reaction
rates mainly stem from metabolic regulation because the
metabolic regulation coefficient is close to 1; the hierarchi-
cal regulation gradually comes into effect and eventually be-
comes a more important contributor to the increase of
reaction rates. Such a switch takes less than 40 min for
the reaction catalyzed by Leu1 to happen, whereas it takes
around 100 min for the reaction catalyzed by Leu2, indi-
cating the transcriptional regulatory strength for the former
reaction is stronger.

It is also interesting to investigate how regulation changes
with the strength of the perturbation; see Fig. 6, c and d. For
the reaction catalyzed by E1, hierarchical regulation in-
creases at the same rate despite changes in perturbation
strength; the regulation will only last for longer periods if
the perturbation increases. For the reaction catalyzed by
E2, hierarchical regulation increases more quickly as the
perturbation increases, whereas it stops sooner by settling
at a lower steady-state value. This is probably due to E2

reaching its maximal catalytic capacity more quickly than
E1 (i.e., with a smaller Michaelis constant).
Nitrogen assimilation pathway in Escherichia coli

Finally, we apply our approach to experimental data from
E. coli and study the regulation in the nitrogen assimilation.
Ammonium is a preferred nitrogen source for E. coli
growth, and there are two ammonium assimilation pathways
(24): glutamate dehydrogenase (GDH) and glutamine syn-
thetase (GS)-glutamate synthase (GOGAT) (Fig. 7 a). After
a period of nitrogen starvation, the ammonium level in the
bacterial cultures is instantaneously increased. Fig. 7, b–
d present experimental measurements for a-ketoglutarade
(aKG), glutamate (GLU), and glutamine (GLN) concentra-
tions over time (i.e., at 0, 1, 2, 5, and 15 min) after an ammo-
nium spike. Red stars are the wild-type metabolite
measurements; green stars indicate the isogenic glnG dele-
tion measurements. The relationships between pathway me-
tabolites and reaction rates can be described as below.
Biophysical Journal 116, 2035–2046, May 21, 2019 2041



_aKG ¼ v1 �ðv2 þ v4:1Þ ¼ v1 �~v2 v1 ¼ _aKGþ _GLUþ _GLN

_GLU ¼ v2 þ v4:1 �ðv3 � v4:2Þ ¼ ~v2 �~v3 0 ~v2 ¼ _GLUþ _GLN

_GLN ¼ v3 � v4:2 ¼ ~v3 ~v3 ¼ _GLN

(27)
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Because we can only infer three reaction rates from
three metabolites, reaction rate v4 (as shown in Fig. 7 a)
can be split into two parts, i.e., v4.1 and v4.2, which can
be summarized with reaction rates v2 and v3 to form the
‘‘net’’ reaction rates ~v2 and ~v3. Multi-output GP models
are first used to fit the metabolite measurements under
both wild-type and glnG deletion conditions, as given in
Fig. 7, b–d. Time-dependent reaction rates for all the three
reactions (i.e., v1, ~v2, and ~v3) can then be estimated ac-
cording to Eq. 27 and are shown in Fig. 7, e–g. It can
be clearly noted that most of the flux is through the
GDH reaction in such an ammonium-rich condition,
which confirms previous studies (24). When comparing
the results of wild-type and glnG deletion conditions,
the rate ~v3 under glnG deletion is significantly reduced
to a very low level (Fig. 7 g), whereas the glutamine de-
creases and aKG increases (Fig. 7, b and d). This can be
explained by glnG encoding the transcription factor Ntrc
f

a

b d

c e g
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that controls GS enzyme expression, which catalyzes
GLN synthesis in its active form. The experimental mea-
surements of protein concentrations (i.e., GS and its active
form GS0, GOGAT, and GDH) and GP model predictions
are provided in Fig. 7, h and i. Clearly, we can see that
the GS protein (and its active form) concentrations under
glnG deletion are significantly lower compared to the cor-
responding wild-type condition, whereas other proteins
remain at similar levels in both conditions.

Next, we quantify the contributions from hierarchical
regulation effects, i.e., those involving gene expression
and post-translational modifications, to the regulation of re-
action rates after ammonium spike. Because we have the
time-dependent estimates of protein GS, GOGAT, and
GDH profiles and the reaction rates, ~v2 and ~v3, we can
compute the gene-expression regulation coefficients, i.e.,
D lnGDH=D ln~v2, D lnGS=D ln~v3, D lnGOGAT=D ln~v2,
and D lnGOGAT=D ln~v3, with respect to both reactions
FIGURE 5 A simplified leucine biosynthetic

pathway and estimation results. (a) The pathway

model diagram is given. Multi-output GPR esti-

mates of (b) I2 (bIPM) and (c) P (leucine) concen-

trations under different levels of perturbation

(adding exogenous aIPM flux fext ¼ 0.1 mM/

min as shown in green, fext ¼ 0.2 mM/min in

blue, and fext ¼ 0.3 mM/min in red) are shown.

The time-dependent reaction rates v2 and v3 can

then be estimated as shown in (d) and (e). The

GPR fits to the proteins E1 (Leu1) and E2 (Leu2)

are given in (f) and (g). To see this figure in color,

go online.



FIGURE 6 Time-dependent hierarchical regula-

tion coefficient rihðtÞ (in green) and metabolic regu-

lation coefficient rimðtÞ (in yellow) for reactions

catalyzed by (a) E1 and (b) E2 under a constant

flux perturbation (fext ¼ 0.1 mM/min) to aIPM.

Time-dependent hierarchical regulation coeffi-

cients for reactions catalyzed by (c) E1 and (d) E2

under different levels of flux perturbations to

aIPM are shown (i.e., fext ¼ 0.1 mM/min in green,

fext¼ 0.2 mM/min in blue, and fext¼ 0.3 mM/min

in red). To see this figure in color, go online.

Mechanistic Insights into the Modulation
as given in Fig. 8. The results indicate that gene-expression
regulation has a relatively minor effect on modulating reac-
tion rates ~v2 after ammonium fluctuations under both con-
ditions. This observation indicates metabolic regulation
would play a major role in regulating ~v2. For the reaction
rate ~v3, gene-expression regulation of GS and GOGAT in-
creases after an ammonium spike under the wild-type con-
dition, whereas it remains at low levels in the glnG deletion
condition.

It is well known that signal transduction and post-transla-
tional modification (here adenylyltransferase) play crucial
roles in regulating GS activity. Because the time-dependent
measurements (and GP estimates) of total GS protein and its
active form GS0 are available (Fig. 7, h and i) andGS0¼GS
� 4a, with 4a denoting the fraction of the enzyme that is in
active form because of post-translational modification, we
can further calculate the time-dependent signal-transduction
regulation coefficient, rs ¼ D ln4a=D ln~v3, and total hierar-
chical regulation coefficient, rh ¼ D lnGS0=D ln~v3, with
respect to net-reaction rate, ~v3. The results for both condi-
tions are shown in Fig. 9. It is interesting to see that
signal-transduction regulation is much higher after an
ammonium spike compared to the gene-expression regula-
tion and that the former contributes a major part to the over-
all hierarchical regulation under the wild-type condition,
indicating the importance of post-translational modification
in regulating pathway flux. Under the glnG deletion condi-
tion, all three regulation coefficients are small over time,
whereas signal-transduction regulation still contributes
more to the overall hierarchical regulation for the majority
of the time.
DISCUSSION

To conclude, we have developed a nonparametric method
that uses Gaussian processes to accurately infer temporal
profiles (and associated uncertainties) of reaction rates in
metabolic pathways and to characterize the time-dependent
hierarchical regulation in a metabolic pathway.

A key contribution of the proposed approach is to
generalize the widely used steady-state regulation analysis
to the dynamic scenario without the need for time-depen-
dent flux measurements. Simulation studies demonstrate
that the proposed approach can accurately capture the
true regulation profile, even in the presence of experi-
mental noise. It can therefore be used to quantify subtle
changes in regulation even away from steady state. This
can be particular useful for the analysis of real pathway
perturbations or synthetic biosensor design. When both
time-dependent measurements of enzyme concentration
and the fraction that is in the active post-translational
modification state are measurable, we can further quantify
the time-dependent contributions from gene expression
and signal transduction to the regulation of metabolic
activity.

For a branched pathway or a pathway with feedback or
feedforward structures, we can still evaluate the hierarchical
regulation of an enzyme with respect to the ‘‘net’’ reaction
Biophysical Journal 116, 2035–2046, May 21, 2019 2043



FIGURE 7 The nitrogen assimilation pathway in E. coli and estimation of metabolite, protein concentrations, and reaction rates. (a) The pathway model

diagram is given. (b–d) Multi-output GP predictions of metabolite aKG, GLU, and GLN concentrations under wild-type (red) and isogenic glnG deletion

(green) conditions are shown. Experimental measurements are shown by star symbols. (e–g) Time-dependent reaction rate estimations of v1, ~v2, and ~v3 from

derivate GP processes are shown. Time-dependent estimates of enzymes GS (and its active form GS0), GOGAT, and GDH under (h) wild-type and (i) glnG

deletion conditions are shown. To see this figure in color, go online.
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rate, although the summation law between the hierarchical
and metabolic regulation no longer holds. For a large-scale
reaction network with complex structure, a practical strat-
egy is to partition the large network into several smaller
subnetworks because one can assume metabolites that are
far away from each other would have weaker interactions
FIGURE 8 Time-dependent gene-expression regulation coefficients (wild-typ

(c) D lnGOGAT=D ln~v2, and (d) D lnGOGAT=D ln~v3 are shown. To see this fi

2044 Biophysical Journal 116, 2035–2046, May 21, 2019
(this may not always be true, e.g., long-range allosteric
regulation, so one needs to carefully partition the network
according to the specific pathway structure). In such a
way, within each subnetwork with a relatively small number
of metabolites, multi-output GPR and the proposed time-
dependent regulation analysis can still be applied.
e: red, glnG deletion: green). (a) D lnGDH=DDln~v2, (b) D lnGS=D ln~v3,

gure in color, go online.



FIGURE 9 Time-dependent estimates of hierar-

chical, gene-expression, and signal-transduction

regulation coefficients (i.e., rh in black, rg in red,

and rs in blue) of protein GS with respect to net

rate ~v3, under (a) wild-type and (b) glnG deletion

conditions. To see this figure in color, go online.

Mechanistic Insights into the Modulation
There are other parametric or nonparametric modeling
methods that can be used to interpolate the data and then
estimate time derivatives, such as local polynomial regres-
sion or smoothing splines. The advantage of using GP over
these approaches are 1) GP can be easily used to fit a wide
range of functions or data without assuming the data are
characterized by a specific function; and 2) the estimation
errors (for both time-course data and derivatives) can be
automatically obtained from a GP posterior, whereas
other interpolation methods (e.g., nonlinear regression or
splines) often only provide a maximal a posteriori point
estimate and can be very difficult for determining the esti-
mation errors. This is important for this work because we
are interested in knowing the estimation errors of the regu-
lation coefficients.

The use of GPR in this work requires the additive
Gaussian noise assumption, and the noise in a metabolic
pathway can be introduced from intrinsic or extrinsic sto-
chasticity of molecular interactions (e.g., enzyme gene
expression) or from the measurement process. Simulation
studies (25,26) have demonstrated that linear noise approx-
imation (with Gaussian stochastic distribution) would be a
good approximation to the exact stochastic simulation in
metabolic reactions if the enzyme kinetic parameters satisfy
certain conditions. In a more general case, if we have to
consider non-Gaussian stochasticity or noise effects in the
data, using warped GP (27) would be a promising alterna-
tive to the standard GP; it would be relatively straightfor-
ward to compute the mean values, but it would be difficult
to compute the confidence intervals or the distribution of
the regulation coefficients because a ratio between non-
Gaussian distributions will need to be evaluated at each
sampling time point.

The computational or optimization cost is an important
limitation of generalizing multi-output GPR to high-dimen-
sional cases; apart from partitioning a large network into
several smaller ones as discussed above, practically, one
can possibly reduce the optimization cost by using one of
the following tricks: 1) sometimes, we can assume some
of the hyperparameters are the same across different vari-
ables (e.g., set the noise SDs of different outputs to be one
parameter if we know the noise levels of different variables
are similar) 2); constraining the hyperparameters into a
reduced parameter space by setting appropriate lower and
upper bounds, especially for the parameters that control
the kernel length-scale and noise SD, which often leads to
a more efficient optimization if we have some ideas of the
smoothness of the time series data and the noise levels;
3) replacing the multi-output GP with a number of single-
output GPs if we have a sufficient number of samples.

For cases in which discrete flux measurements are avail-
able at limited time points (e.g., as in the study by (9)),
the proposed method can be easily adapted to estimate
time-dependent reaction rate profiles directly by applying
multi-output GPR to the discrete flux data (rather than indi-
rectly inferring these from the derivative processes using
metabolite measurements).
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SUPPLEMENTARY MATERIAL 

1. Supplementary Information 

1.1. MULTI-OUTPUT GAUSSIAN PROCESS 

The *
M
oK , *

M
oK  and **

MK  in (18) are defined as: 
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1.2. PROBABLITY DENSITY OF THE RATIO BETWEEN TWO 
DEPENDENT GAUSSIAN VARIABLES 

The probability density of the ratio between two dependent Gaussian variables (i.e. 

/z x y ,  2,x xx    and  2,y yy   ) can be calculated from the means, standard 

deviations and correlation coefficient of the two Gaussian variables: 
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where the Pochhammer symbol  ,k  is defined by 

         , 1 1 Γ / Γk k k             with Γ  the Gamma function. r is the 

correlation coefficient between the two Gaussian variables. 
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