Supplementary Table S5
Testing of PLA-containing human urine and plasma samples on transiently with human HCA₂ or HCA₃ or empty vector transfected CHO-K1 cells

		HCA ₂	HCA ₃	empty vector	HCA ₂ (PTX)	HCA ₃ (PTX)	empty vector (PTX)		
		% of	% of	% of	% of	% of	% of		
		forskolin	forskolin	forskolin	forskolin	forskolin	forskolin		
111 41	DI A	stimulated	stimulated	stimulated	stimulated	stimulated	stimulated		
dilution	PLA	w/o	w/o	w/o	w/o	w/o	w/o		
	[nM] urine (80 min containing 285 μM PLA)								
1:20,480 13.9 82.3 ± 3.3 91.8 ± 3.6 96.4 ± 5.3 92.1 ± 6.3 97.7 ± 4.2 100.6									
1:10,240	27.8	99.3 ± 5.5	84.8 ± 4.1	96.9 ± 5.0	92.4 ± 8.9	95.3 ± 2.4	95.4 ± 0.5		
1:5,120	55.7	95.6 ± 8.0	81.1 ± 3.5	95.1 ± 4.4	93.5 ± 4.6	92.3 ± 2.8	97.9 ± 3.6		
1:2,560	111.3	104.9 ± 1.7	68.8 ± 1.8	98.4 ± 4.0	91.1 ± 8.6	87.9 ± 0.7	96.7 ± 3.5		
1:1,280	222.7	93.3 ± 1.4	65.2 ± 0.6	91.7 ± 1.5	88.7 ± 4.8	86.4 ± 0.5	96.8 ± 6.5		
1:640	445.3	92.2 ± 5.9	56.0 ± 2.4	86.8 ± 3.3	82.1 ± 2.0	85.4 ± 3.8	99.7 ± 6.3		
1:320	890.6	85.5 ± 2.7	48.4 ± 3.6	80.5 ± 2.3	87.7 ± 5.2	86.4 ± 2.9	93.4 ± 5.4		
1:160	1781.3	72.1 ± 4.5	43.3 ± 4.0	74.1 ± 2.9	82.3 ± 5.9	76.5 ± 5.9	89.0 ± 9.6		
1:80	3562.5	54.8 ± 2.3	37.4 ± 2.8	66.6 ± 2.7	83.3 ± 9.53	75.7 ± 7.0	84.3 ± 9.5		
		urine	(340 min co	ontaining 33	μM PLA)	T			
1:1,280	25.8	91.2 ± 6.8	87.4 ± 8.8	81.7 ± 2.5	n.d.	n.d.	n.d.		
1:640	51.6	87.1 ± 0.8	74.5 ± 2.0	80.1 ± 4.7	n.d.	n.d.	n.d.		
1:320	103.1	75.5 ± 2.4	58.7 ± 1.9	71.2 ± 2.0	n.d.	n.d.	n.d.		
1:160	206.3	62.2 ± 4.0	52.8 ± 0.1	60.5 ± 4.5	n.d.	n.d.	n.d.		
		urine	(510 min co	ntaining 3.4	μM PLA)	Γ			
1:1,280	2.7	94.6 ± 5.0	85.9 ± 4.2	82.4 ± 9.3	n.d.	n.d.	n.d.		
1:640	5.4	87.4 ± 0.5	77.3 ± 1.1	70.6 ± 2.1	n.d.	n.d.	n.d.		
1:320	10.8	85.0 ± 5.70	75.9 ± 7.0	76.1 ± 5.2	n.d.	n.d.	n.d.		
1:160	21.5	76.9 ± 3.0	67.5 ± 7.5	72.0 ± 0.7	n.d.	n.d.	n.d.		
	plasma (30 min containing 23 μM PLA)								
1:20,480	1.1	96.2 ± 5.9	96.0 ± 0.3	99.3 ± 0.9	106.3 ± 3.0	102.5 ± 2.4	101.4 ± 0.1		
1:10,240	2.2	102.9 ± 2.8	90.2 ± 2.5	101.1 ± 2.7	101.5 ± 2.5	99.5 ± 4.1	95.7 ± 0.5		
1:5,120	4.5	97.8 ± 0.1	84.4 ± 3.9	101.0 ± 0.5	97.6 ± 3.1	94.9 ± 0.1	91.0 ± 4.8		
1:2,560	9.0	104.4 ± 5.1	88.0 ± 1.9	109.1 ± 5.6	102.0 ± 3.2	96.5 ± 4.0	98.6± 4.5		
1:1,280	18.0	102.0 ± 9.3	72.8 ± 2.5	102.5 ± 1.3	99.4 ± 4.5	94.5 ± 2.3	95.7 ± 0.2		
1:640	35.9	92.0 ± 3.1	67.1 ± 1.8	93.2 ± 1.6	100.2 ± 1.7	90.9 ± 0.5	97.5 ± 2.3		
1:320	71.9	79.5 ± 1.2	57.6 ± 6.8	85.7 ± 3.5	98.9 ± 3.1	95.7 ± 1.3	101.2 ± 2.8		
1:160	143.8	67.4 ± 4.7	47.1 ± 3.5	73.0 ± 0.6	95.5 ± 4.4	91.7 ± 6.0	98.0 ± 4.3		
1:80	287.5	47.8 ± 4.1	33.3 ± 0.9	58.9 ± 3.6	88.0 ± 5.8	87.1 ± 4.3	95.8 ± 0.3		

plasma (0 min containing 0.42 μM PLA)									
1:320	1.3	75.1 ± 4.7	90.4 ± 1.0	91.0 ± 0.1	n.d.	n.d.	n.d.		
1:160	2.6	60.4 ± 6.8		69.8 ± 1.8	n.d.	n.d.	n.d.		
plasma (60 min containing 8.9 μM PLA)									
1:320	27.8	80.1 ± 1.2	73.5 ± 5.4	83.9 ± 6.2	n.d.	n.d.	n.d.		
1:160	55.6	75.4 ± 0.7	59.3 ± 3.2	67.4 ± 3.7	n.d.	n.d.	n.d.		
	Ţ	plasm	a (120 min c	containing 2.9	μM PLA)	T	1		
1:320	9.1	76.8 ± 0.8	77.6 ± 6.3	82.4 ± 4.7	n.d.	n.d.	n.d.		
1:160	18.1	67.7 ± 4.2	61.5 ± 5.9	66.4 ± 4.7	n.d.	n.d.	n.d.		
		plasm	a (180 min c	ontaining 0.8	8 μM PLA)				
1:320	2.5	78.1 ± 5.1	80.4 ± 2.3	88.6 ± 7.9	n.d.	n.d.	n.d.		
1:160	5.0	57.0 ± 2.7	70.6 ± 5.5	70.6 ± 2.5	n.d.	n.d.	n.d.		
plasma (240 min containing 0.6 μM PLA)									
1:320	1.9	66.2 ± 5.9	75.4 ± 3.5	77.7 ± 4.4	n.d.	n.d.	n.d.		
1:160	3.8	48.7 ± 1.3	57.1± 2.1	51.6 ± 1.1	n.d.	n.d.	n.d.		
plasma (300 min containing 0.35 μM PLA)									
1:320	1.1	70.8 ± 8.6	79.8 ± 5.5	85.7 ± 1.3	n.d.	n.d.	n.d.		
1:160	2.2	55.7 ± 0.8	63.8 ± 2.7	67.1 ± 4.5	n.d.	n.d.	n.d.		
				ontaining 0.2	ı	l .			
1:320	0.9	77.8 ± 4.7	79.5 ± 6.7	85.7 ± 6.7	n.d.	n.d.	n.d.		
1:160	1.8	62.9 ± 3.9	65.2 ± 3.3		n.d.	n.d.	n.d.		
1.100	1.0			ontaining 0.3		11.4.	11.4.		
1:320	1.0	83.8 ± 3.2		95.1 ± 3.7	n.d.	n.d.	n.d.		
1:160	1.9	60.1 ± 0.8		69.6 ± 1.3	n.d.	n.d.	n.d.		
	•	1	•	•	•	•	•		
			Sauerkra	ut experime	nt				
		plasma (bei	ore Sauerki	raut containi	ng 0.3 μM Pl	LA)			
1:160	2.1	64.7 ± 6.5			110.2 ± 0.7		104.4 ± 4.1		
1:320	1.1	86.2 ± 2.6					103.0 ± 3.6		
	•				g 1.4 μM PL		·		
1:160	8.8	67.8 ± 4.4	59.2 ± 3.6	86.6 ± 3.2	100.2 ± 2.8	107.1 ± 0.4	103.7 ± 4.9		
1:320	4.4	90.8 ± 6.1	74.7 ± 3.8	98.5 ± 3.7	103.1 ± 5.9	103.5 ± 2.2	105.1 ± 5.2		
			•		g 1.8 μM PL				
1:160	11.5	56.4 ± 3.3	61.4 ± 3.7	79.0 ± 5.5	91.7 ± 3.5	91.9± 2.9	98.0 ± 2.8		
1:320	5.8	78.3 ± 1.7	69.3 ± 4.6	88.1 ± 5.0	95.4 ± 2.0	93.3 ± 1.5	93.0± 2.3		
1.020	2.0	urine (230 m					70.0-2.0		
1:160	89.2	71.1 ± 5.3	50.5 ± 2.9	74.5 ± 0.7	95.3 ± 4.6	93.4± 4.9	101.8 ± 3.9		
1:320		89.0 ± 4.9	62.2 ± 3.3		95.4 ± 0.3	92.0 ± 3.5	94.9 ± 1.2		
1.520	1 -10	•	į.	•	ing 6.3 μM P		1 7 1.7 - 1.2		
1:160	39.2	77.8 ± 0.4	53.9 ± 1.7	80.8 ± 4.9	90.8 ± 2.2	95.0 ± 2.8	88.6 ± 2.6		
1:320	19.6	89.5 ± 2.1	62.8 ± 5.9	82.1 ± 6.4	98.7 ± 0.7	92.6 ± 3.1	88.5 ± 3.4		
urine (1080 min postprandial containing 3.1 μM PLA)									
1:160	19.2	73.8 ± 4.6	63.0 ± 3.2	85.0 ± 1.6	101.6 ± 4.7	108.4 ± 2.0	105.1 ± 2.3		
1:320	9.6	83.4 ± 2.1	73.8 ± 2.0	88.7 ± 1.6	102.1 ± 1.5	101.6 ± 3.9	100.9 ± 3.7		

urine (1230 min postprandial containing 1.8 μM PLA)								
1:160	11.6	•		84.2 ± 0.6	n.d.	n.d.	n.d.	
1:320	5.8	79.4 ± 3.3	73.5 ± 2.3	87.3 ± 0.3	n.d.	n.d.	n.d.	
urine (180 min postprandial containing 5.0 μM PLA)								
1:160	31.4	81.1 ± 5.6	60.1 ± 2.4	90.4 ± 5.7	n.d.	n.d.	n.d.	
1:320	15.7	87.0 ± 4.6	69.4 ± 2.2	92.8 ± 5.3	n.d.	n.d.	n.d.	
urine (390 min postprandial containing 1.9 μM PLA)								
1:160	11.8	73.1 ± 4.9	59.2 ± 0.6	80.1 ± 6.0	n.d.	n.d.	n.d.	
1:320	5.9	78.1 ± 3.4	70.7 ± 1.6	86.3 ± 0.3	n.d.	n.d.	n.d.	
urine (540 min postprandial containing 1.4 μM PLA)								
1:160	8.6	69.6 ± 3.3	64.2 ± 2.0	79.0± 3.9	n.d.	n.d.	n.d.	
1:320	4.3	85.6 ± 1.6	71.1 ± 2.8	84.1 ± 4.4	n.d.	n.d.	n.d.	
urine (1425 min postprandial containing 3.1 μM PLA)								
1:160	19.6	77.1 ± 5.0	70.6 ± 2.5	87.6 ± 4.1	n.d.	n.d.	n.d.	
1:320	9.8	82.5 ± 2.8	75.6 ± 1.9	93.7 ± 0.9	n.d.	n.d.	n.d.	
urine (360 min postprandial containing 10.3 μM PLA)								
1:160	64.3	76.7 ± 2.0	53.0 ± 1.8	82.6 ± 3.4	88.6 ± 0.6	93.1 ± 2.4	93.7 ± 2.9	
1:320	32.2	82.6 ± 5.2	64.1 ± 1.9	91.7 ± 4.0	91.1 ± 2.7	96.4 ± 1.2	98.4 ± 2.5	
urine (after sauerkraut containing 1.5 μM PLA)								
1:160	9	68.7 ± 2.2	72.5 ± 4.5	90.8 ± 4.2	n.d.	n.d.	n.d.	
1:320	4.5	84.7 ± 1.1	77.8 ± 4.4	93.4 ± 5.9	n.d.	n.d.	n.d.	

CHO-K1 cells were transfected with receptor constructs and cAMP accumulation was determined with the ALPHAScreenTM technology (see Material and Methods). Data is given as mean \pm SEM of three independent experiments each performed in triplicates.