
S1 Appendix

Analytic Expression of Uncertainty

Consider a region with geographic divisions given by X = {x1, x2, ..., xn}. Suppose some
species lives in the region, and the fraction of the species that lives in division i is pi. A
basic goal in SDM is to reconstruct the geographic distribution P = {p1, p2, ..., pn}. To
do this, we have some species occurrence data O = {o1, o2, ..., on}, where each oi
specifies the number of times the species has occurred in division i. The occurrence data
can be viewed as a sample from the distribution P . In addition we are given k layers of
environmental data for the region described by features fj(X) for j = 1, . . . , k. For
example, one such function could be the average elevation in each geographic division.

The mathematical formulation of the maximum entropy problem is

max
pi
−

n∑
i=1

pi log pi (1a)

s.t.

n∑
i=1

pifj(xi) = Ê(fj(X)) j = 1, . . . , k (1b)

n∑
i=1

pi = 1 (1c)

pi ≥ 0 i = 1, . . . , n (1d)

The counts O = {o1, o2, ...on} follow a multinomial distribution, whose true
parameter P = {p1, p2, ..., pn} is unknown. Let m =

∑n
i=1 oi be the total number of

observations. The maximum likelihood estimator of P = {p1, p2, ..., pn}, is

P̃ =


p̃1
p̃2
...
p̃n

 =
1

m


o1
o2
...
on

 =
O

m

and it follows a normal distribution [1],

P̃ ∼ Normal(P,
Σ

m
),

where

Σ =


p1(1− p1) −p1p2 · · · −p1pn
−p1p2 p2(1− p2) · · · −p2pn

...
...

. . .
...

−p1pn −p2pn · · · pn(1− pn)

 .

From the analysis in Kapur et al. [2], one can show that the maximum likelihood
estimates of P from maximum entropy model (1) are achieved when

Ê(fj(X)) =

∑n
i=1 fj(xi)oi∑n

i=1 oi
(2)
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For brevity, let aj = Ê(fj(X)). Based on equation (2), the vector of aj can be
expressed as

A =


a1
a2
...
ak

 =
1

m


f1(x1) f1(x2) · · · f1(xn)
f2(x1) f2(x2) · · · f2(xn)

...
...

. . .
...

fk(x1) fk(x2) · · · fk(xn)



o1
o2
...
on

 (3)

Let

F =


f1(x1) f1(x2) · · · f1(xn)
f2(x1) f2(x2) · · · f2(xn)

...
...

. . .
...

fk(x1) fk(x2) · · · fk(xn)

 ,

then

A =
1

m
· F ·O = F · P̃

Because F is constant, A is an affine transformation of P̃ . Using the distribution of P̃ ,
we can write the distribution of A [3]

A ∼ Normal(F · P, F ·Σ · FT

m
). (4)

Let g(A) denote the maximum entropy optimization, model (1), as a function from
Rk to Rn. In other words, the function takes as input the vector A, specifying right
hand sides of the equality constraints Ê(fj(X)), and outputs a probability estimate
across the geographic region P . We would like to understand the uncertainty in the
output g(A) as a function of the uncertainty of the input A. This can be done following
steps similar to those in the delta method [4, p.75].

To understand the uncertainty in the output g(A), we begin by writing a first order
Taylor expansion of g around E(A)

g(A) ≈ g(E(A)) +∇g(E(A)) · [A− E(A)]

≈ g(F · P ) +∇g(F · P ) · [A− E(A)], (5)

where ∇g(·) is an n× k matrix of partial derivatives, with entry (i, j) specified by ∂pi
∂aj

.

If we can compute an expression for these partial derivatives, then everything on the
right hand side above is constant, except [A− E(A)] whose distribution we know
because we know the distribution of A. g(A) is an affine transformation of [A−E(A)],
and can be approximated as

g(A) ∼ Normal(g(F · P ),∇g · F ·Σ · F
T

m
· (∇g)T ). (6)

To complete the analysis of the output uncertainty, we continue by deriving an
expression for ∂pi

∂aj
. We introduce some additional notation, following Kapur et al. [2].

Let λ be the Lagrange multiplier for constraint (1c), and µj be the multiplier for
constraint (1b) for j = 1, . . . , k. It can be shown [2] that the optimal pi have the
expression

pi = e−
∑k

j=1 µjfj(xi)−λ−1 ∀i = 1, 2, ...n. (7)
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Using the constraint (1c), we have

n∑
t=1

e−λ−1−
∑k

j=1 fj(xt)µj = 1

eλ+1 =

n∑
t=1

e−
∑k

j=1 fj(xt)µj . (8)

We can now substitute the expression for eλ+1 back into (7) to derive

pi =
e−

∑k
j=1 fj(xi)µj∑n

t=1 e
−

∑k
j=1 fj(xt)µj

(9)

We now have an expression of the pi in terms of the dual multipliers µj . But, we

would like to compute ∂pi
∂aj

, which we can do by first computing partial derivatives with

respect to the µj and using the expression

∂pi
∂aj

=

k∑
r=1

∂pi
∂µr

∂µr
∂aj

.

What remains to be computed is ∂pi
∂µr

and ∂µr

∂aj
. From (9), we have

∂pi(µ1, µ2...µm)

∂µr
= −fr(xi)e−

∑k
j=1 fj(xi)µj (

n∑
t=1

e−
∑k

j=1 fj(xt)µj )−1

− (

n∑
t=1

e−
∑k

j=1 fj(xt)µj )−2(

n∑
t=1

(−1)fr(xt)e
−

∑k
j=1 fj(xt)µj )e−

∑k
j=1 fj(xi)µj

= −fr(xi)pi − pi(
n∑
t=1

(−1)fr(xt)pt)

= −fr(xi)pi + piar

= pi(ar − fr(xi)),

where we derived the first equality from the chain rule, the second equality by
substituting using expression (9), and the third equality by using the fact that
ar =

∑n
t=1 fr(xt)pt because pi’s are feasible and optimal in the maximum entropy

optimization.
Then, we want to get the value of ∂µr

∂aj
. It is hard to get the expression of µr in

terms of aj , however, we can derive
∂aj
∂µr

and use the Inverse Function Theorem [5] to

calculate ∂µr

∂aj
. To get the expression of aj in terms of µr, we substitute the expression

of the optimal pi (7) into constraint (1b), and then plug-in the expression of λ in terms
of µr (8). Then, we express aj as

aj =

∑n
t=1 fj(xt)e

−
∑k

j=1 fj(xt)µj∑n
t=1 e

−
∑k

j=1 fj(xt)µj
. (10)

From 10, we have
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∂aj
∂µr

=

n∑
i=1

(−fr(xi))fj(xi)e−
∑m

j=1 fj(xi)µj (

n∑
i=1

e−
∑k

j=1 fj(xi)µj )−1

− (

n∑
i=1

e−
∑m

j=1 fj(xi)µj )−2(

n∑
i=1

fj(xi)e
−

∑k
j=1 fj(xi)µj )(

n∑
i=1

−fr(xi)e−
∑k

j=1 fj(xi)µj )

= −
n∑
i=1

fr(xi)fj(xi)pi + (

n∑
i=1

fj(xi)pi)(

n∑
i=1

fr(xi)pi)

= −covP (fr, fj),

where we derived the first equality from the chain rule, the second equality by
substituting using expression (9). The final equality comes from the definition of
covariance, where we take the covariance of feature fr and fj with respect to the
maximum entropy model results pi.

If the determinant of the covariance is non-zero, following the Inverse Function
Theorem [5], the inverse is differentiable. We denote the covariance matrix of features
with respect to the maximum entropy model results as Ψ, where Ψrj = covP (fr, fj).
We denote the inverse covariance matrix as Ψ−1 and refer to its (r, j)th entry as
(Ψ−1)rj . By the inverse function theorem, ∂µr

∂aj
is equal to (Ψ−1)rj . Finally, we can

express the ∂pi
∂aj

as

∂pi
∂aj

=

k∑
r=1

pi(ar − fr(xi))(−Ψ−1)rj . (11)

Increasing programming speed

In the calculation of the relative probability for Aedes aegypti for a 1km2 square grid,
we have 933,680 grid cells in total. The problem of computing the covariance of the
output mainly comes from Σ where

Σ =


p̂1(1− p̂1) −p̂1p̂2 · · · −p̂1p̂n
−p̂1p̂2 p̂2(1− p̂2) · · · −p̂2p̂n

...
...

. . .
...

−p̂1p̂n −p̂2p̂n · · · p̂n(1− p̂n)

 .

The matrix is of size 933680× 933680, which can cause out of memory errors.
To figure out a way of speeding the calculation, we first split Σ into two parts, where

Σ =


p̂1(1− p̂1) −p̂1p̂2 · · · −p̂1p̂n
−p̂1p̂2 p̂2(1− p̂2) · · · −p̂2p̂n

...
...

. . .
...

−p̂1p̂n −p̂2p̂n · · · p̂n(1− p̂n)



=


−p̂21 −p̂1p̂2 · · · −p̂1p̂n
−p̂1p̂2 −p̂22 · · · −p̂2p̂n

...
...

. . .
...

−p̂1p̂n −p̂2p̂n · · · −p̂2n

+


p̂1 0 · · · 0
0 p̂2 · · · 0
...

...
. . .

...
0 0 · · · p̂n

 .
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Define

Σ1 =


−p̂21 −p̂1p̂2 · · · −p̂1p̂n
−p̂1p̂2 −p̂22 · · · −p̂2p̂n

...
...

. . .
...

−p̂1p̂n −p̂2p̂n · · · −p̂2n

 ,

and

Σ2 =


p̂1 0 · · · 0
0 p̂2 · · · 0
...

...
. . .

...
0 0 · · · p̂n

 .

The covariance of the output P can be estimated as

∇g · F ·Σ · F
T

m
· (∇g)T = ∇g · F · (Σ1 + Σ2) · FT

m
· (∇g)T .

First, to calculate ∇g · F·Σ1·FT

m · (∇g)T , we define

P1 =


p̂1 0 · · · 0
p̂2 0 · · · 0
...

...
. . .

...
p̂n 0 · · · 0

 ,

then we have

∇g · F ·Σ1 · FT

m
· (∇g)T = ∇g · F · P1 · PT1 · FT

m
· (∇g)T .

The ith diagonal element of ∇g ·F ·Σ1 ·FT · (∇g)T , denoted as d1i , can be calculated
as

d1i =

(
∂pi
∂a1

(f1(x1)p̂1 + · · ·+ f1(xn)p̂n) + · · ·+ ∂pi
∂ak

(fk(x1)p̂1 + · · ·+ fk(xn)p̂n)

)2

=

(
k∑
`=1

∂pi
∂a`

(

n∑
m=1

f`(xm)p̂m)

)2

(12)

To calculate ∇g · F·Σ2·FT

m · (∇g)T , we define

P2 =


√
p̂1 0 · · · 0
0
√
p̂2 · · · 0

...
...

. . .
...

0 0 · · ·
√
p̂n

 ,

then we have

∇g · F ·Σ2 · FT

m
· (∇g)T = ∇g · F · P2 · PT2 · FT

m
· (∇g)T .

PLOS 5/7



Fig 1. Analytic and Poisson PPM Comparison (a) Figure plots the relationship
between point estimates of Dengue importation probability vs. variance calculated
through analytic method. Non-linear relationship indicates the improper use of Poisson
PPM for Dengue importation cases. (b) Figure plots the standard deviations of Poisson
PPM vs. analytic for Dengue importation case study and indicates that Poisson PPM
provides much larger standard deviation for Dengue imports application. (c) Figure
plots the relationship between point estimates of Aedes Aegypti existence probability vs.
variance calculated through analytic method. (d) Figure shows the standard deviation
comparison between analytic method and Poisson PPM of Aedes Aegypti existence
probability.

The ith diagonal element of ∇g · F · Σ2 · FT · (∇g)T , denoted as d1i , is calculated by

d2i = (
∂pi
∂a1

f1(x1)
√
p̂1 + · · ·+ ∂pi

∂ak
fk(x1)

√
p̂1)2 + · · ·+

(
∂pi
∂a1

f1(xn)
√
p̂n + · · ·+ ∂pi

∂ak
fk(xn)

√
p̂n)2

=

n∑
m=1

(
k∑
`=1

∂pi
∂a`

f`(xm)
√
p̂m

)2

(13)

After we have calculated both d1i and d2i based on 12 and 13, we can calculate the

variance of the pi as
(d1i+d

2
i )

m .

Comparison between Analytic method and Poisson PPM

Poisson PPM was proved to be equivalent to maximum entropy model with hidden
assumptions of independence data. We showed the plots of variance vs. point
estimations and standard deviation comparison between Poisson PPM and analytic
method for both Dengue importation probability and Aedes Aegypti suitability
probability. Fig 1a shows the relationship between Dengue importation probability
point estimates and estimated variance using analytic method, which indicating the
possible improper use of Poisson PPM approach. Fig 1b shows a standard deviation
comparison between the analytic and Poisson PPM method for Dengue importation
probability. The regression line between two results is sa = 0.054sp with R2 = 0.805,
where sa and sp stand for the standard deviation estimates from the analytic and
Poisson PPM methods, respectively. Poisson PPM gives a much larger standard
deviation comparing to analytic and bootstrap method indicating the possible violate of
the case location independence assumption.

Fig 1c shows the relationship between Aedes Aegypti suitability point estimates and
estimated variance using analytic method. There is more linear relationship comparing
to Dengue importation cases. Fig 1d shows the standard deviation comparison between
analytic method and Poisson PPM approach for Aedes Aegypti suitability. Each red dot
represent the standard deviation estimates for each grid using Poisson PPM and
analytic method respectively. The blue dot shows the diagonal line when two methods
aligned well. We have the relationship sa = 0.0917sp with R2 = 0.812, where sa and sp
stand for the standard deviation estimates from the analytic and Poisson PPM methods,
respectively. Similar as Dengue case, Poisson PPM doesn’t seem to functional well with
a much larger standard deviation estimation comparing to analytic and bootstrap
method.
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