Study	Year	Aim	Type of study	Intervention	Metrics	Sample	Results/Conclusions
[17]	2011	To describe a	Proof-of-	Manipulation of	Not described.	Not described.	Since the interface does
		system for the	concept.	CT, MRI and			not require direct
		interactive		Positron			contact or calibration,
		exploration of		emission			it is suitable for use in
		medical images		tomography			the operating room.
		through a		images.			
		gesture-					
		controlled					
		interface using					
		MK.					
[114]	2011	To explore the	Proof-of-	Augmented	Registration	Not described.	The concept is feasible
		potential	concept.	reality in	time.		but the whole process
		simplifications		Medicine.	Registration		is still too time-
		derived from			error.		consuming to be
		using 3D sensors					executed in real time.
		in medical					
		augmented					
		reality					
		applications by					
		designing a low-					
		cost system.					
[116]	2012	To present an	Proof-of-	Augmented	Not described.	A hospital and a	The system can be used
		augmented	concept.	reality in		school.	for educational
		reality magic		Medicine.			purposes, to improve
		mirror for		Anatomy			communication
		anatomy		education.			between doctor and
		teaching.					patients. A possible use
							for anatomy teaching
							in surgery is not
							mentioned.
[5]	2012	To evaluate the	Prototype user	Manipulation of	Usability and	2 radiologists and	Users took 1.4 times
		response time	testing and	CT images.	response time.	8 forensic	longer to recreate an
		and usability	feasibility			pathologists who	image with gesture
		(gestures and	testing.			recreated 12	control and rated the
		voice commands)				images.	system 3.4 out of 5 for
		compared to					ease of use in
		mouse and					comparison to the
		keyboard					keyboard and mouse.
		controls.					The voice recognition
							system did not work
							properly.

Table 1. Summary of included studies evaluating MK.

[102]	2012	To develop a	Proof-of-	Manipulation of	Not described.	Not described.	This is the first
		system to allow	concept.	radiological			example of this
		the surgeon to	Ĩ	images in			technology being used
		interact with the		orthopedics.			to control digital X-rays
		standard PACS		Ĩ			in clinical practice.
		system during					1
		sterile surgical					
		management of					
		orthopedic					
		patients.					
[101]	2012	To present a	Experiment.	Manipulation of	Detection of	9 veterinary	The hypothesis that
[101]		sterile method	Liperment	-	intent based on	-	contextual information
		for the surgeon			contextual	22 students.	integrated with hand
		to manipulate			cues.		trajectory gesture
		images using			Performance in		information can
		touchless			gesture		significantly improve
		freehand			recognition.		the overall recognition
		gestures.			Navigation and		system performance
		8			manipulation		was validated.
					tasks using MRI		The recognition
					images.		accuracy was 98.7%
[99]	2012	To evaluate an	Proof-of-	Manipulation of		A laryngoplasty.	The surgeon can
[,,]	2012	MK-based	concept in the	radiological	not described.	in any ingopiately i	manipulate the
		interaction	operating	images.			preoperative
		system for	room.	iniuges.			information with the
		manipulating	100111.				intraoperative video
		imaging data					and the simulations to
		using 'Magic Lens					correctly place the
		visualization'.					implant.
[60]	2012	To compare the	User testing.	Manipulation of	Time and	15 users.	The gesture-based
[00]	2012	accuracy and	oser testing.	radiological	accuracy for	15 03013.	interface outperformed
		speed of		images.	performing		the traditional mouse
		interaction of MK		iniages.	rotation tasks		with respect to time
		with that of a			and		and accuracy in the
		mouse.			localization of		orientation and
		To study the			internal		rotation task.
		performance of			structures.		The mouse was
		the interaction			structures.		superior in terms of
		methods in					accuracy of localization
		rotation tasks					of internal structures.
		and localization					However, the gesture-
		of internal					based interface was
		structures in a					found to have the
		3D dataset.					
		SD uataset.					fastest target

							localization time.
[97]	2012	To develop a user-friendly touchless system for controlling the presentation of medical images based on hand gesture recognition in the operating room.	Proof-of- concept in the operating room.	Manipulation of radiological images in orthopedic surgery.	Not described.	Not described.	The system does not require calibration and was adapted to the surgical environment following the principles of asepsis/antisepsis.
[30]		To present a touchless gesture interface that allows the surgeon to control medical images using hand gestures.	Proof-of- concept and prototype feasibility testing.	Manipulation of CT images.	Not described.	Enucleation of 4 tumors in 3 urology patients.	First description in the literature of a gesture user interface using MK in the operating room in in-vivo surgery, showing that it is an efficient and low-cost solution.
[115]		To develop a low-cost augmented reality interface projected onto a mannequin simulator.	Proof-of- concept.	Augmented reality for education in Medicine.	Not described.	A physical simulator, video projector, Wii Remote and MK.	The manipulations obtained using MK were similar to those described with the Wii.
[92]	2012	To develop a version of a gesture-based system for controlling images.	Proof-of- concept.	-	Comparison of the rate of recognition of the actions in a clinical case and in a non- clinical case.	Resection of a glioma.	Except for the scanning movement, each movement was recognised with great accuracy. The algorithm can be installed in the clinical area.
[143]	2013	To use MK to operate an automated operating-room light system.	Prototype user testing.	Manipulation of operating room lights.		18 volunteers.	The gestures were easy to learn and the movement of the light beam was sufficiently precise.

[117]	2013	To create a	Proof-of-	Virtual reality	The system	A 3D virtual	Using MK, it was
[]		touchless head	concept.	for simulation	-	operating room	possible to implement
		tracking system	concepti	and education	respect to the	with a virtual	a very accurate
		for an immersive		in surgery.	-	operating table.	interactive tracking
		virtual operating		in surgery.	3D position	operating table.	system regardless of
		room.			using a		the complexity of the
		100111.			magnetic field		virtual reality system.
					based on a		virtual reality system.
					position		
					detection		
[100]	0010				device.		<u> </u>
[103]	2013	To present a new		Manipulation of	-	4 forensic	On average, 4.5
		prototype that	concept and	CT images.	to learn the	pathologists, 1	minutes were required
		allows the user	prototype		system.	0	to learn to use the
		to control the	feasibility		Likert-type	engineer.	system.
		OsiriX system	testing.		scale to rate		Participants rated the
		with finger			the		intuitiveness of the
		gestures using a			intuitiveness of		gestures with 3.8 out of
		low-cost depth			the gestures.		5 and control of the
		camera.					images with 3.8 out of
							5.
							The low cost of the
							system makes it
							affordable for any
							potential user.
[119]	2013	To present a new	Proof-of-	Virtual reality	Not described.	Cholecystectomy	Initial feedback from
		immersive	concept and	for education in		training on	the residents showed
		surgical training	prototype	surgery.		animal tissue	that the system is much
		system.	fidelity testing.			blocks.	more effective than the
							conventional
							videotaped system.
[87]	2013	To test a speech	User testing.	Manipulation of	The	10 radiology	93% of commands
		and gesture-		CT and	participants	residents used	were recognized
		controlled		angiography	rated the	commands under	successfully.
		interventional		images.	convenience of	different lighting	Speech commands
		radiology system.			the application	conditions during	were less prone to
		-			and its possible	18 angiographies	errors than gesture
					use in everyday	and 10 CT-	commands.
							60% of participants
							would use the
							application in their
							routine clinical
							practice.
[104]	2013	To develop an	Proof-of-	Manipulation of	Measurements	Not described.	The system can be
r- ~ ,1		· ···· ·······························		p anation of			

		image operation	concept.	angiographic	of depth,		implemented as a
		system for image		images.	recognition		useful tool in
		manipulation			time of the		angiography for
		using a motion			palms, distance		controlling image
		sensor.			for recognition		viewing using gestures
		501301.			of the hands.		in the operating room.
[10]	2012	The working	Ethnographic	Manipulation of		10	The surgeon's
[19]		-		-		10 veterinary	-
		hypothesis is	study.	MRI images.	recognition	surgeons.	intention to perform a
		that contextual	Experiment.		accuracy.	20 volunteers.	gesture can be
		information such	Survey.		Performance of		accurately recognized
		as the focus of			gesture		by observing
		attention,			recognition		environmental cues
		integrated with			during the		(context).
		gestural			tasks.		The hypothesis was
		information, can					validated by a drop in
		significantly					the false positive rate
		improve overall					of gesture recognition
		system					from 20.76% to 2.33%.
		recognition					A significant rate of
		performance					reduction of the mean
		compared with					task completion time
		interfaces relying					indicated that the user
		on gesture					operates the interface
		recognition					more efficiently with
		alone.					experience.
							The tracking algorithm
							occasionally failed in
							the presence of several
							people in the camera's
							field of view.
[61]	2013	To examine the	User testing.	Manipulation of	Accuracy.	32 participants:	MK users reached
		functionality and	Survey.	anatomical	Time to	Medical students,	accuracy levels almost
		usability of MK to		images.	complete the	professors and	identical to those who
		complete the		_	tasks.	anatomy	used a mouse, and
		visualization of				laboratory staff.	spent less time on
		3D anatomical					performing the same
		images.					tasks.
		5					MK showed potential
							as a device for
							interaction with
							medical images.
[118]	2013	To examine	User testing.	Manipulation of	Time to	17 veterinary	Improvements should
		usability for	Survey.	anatomical	complete the	students.	be made to MK before
		navigating	carrey.	images.	task.	studento.	it can be implemented
		navigatilig		iiiages.	uon.		n can be implemented

		through 3D		Education.	Accuracy.		as a device for medical
		medical images		Luucution.	neeuracy.		use.
		using MK					The preferred method
		compared to a					was the mouse.
		traditional					
							MK has the potential to
		mouse.					reduce time on the
							task.
[13]	2013	To develop a	Proof-of-	Manipulation of	E .	-	The system worked
			concept and	CT and MRI	Feedback via	and 4 open	well in a wide range of
		examine the	prototype	images.	interviews.	procedures	lighting conditions and
		-	feasibility		Observation of	performed by a	procedures.
		new device to	testing.		performance	surgeon.	There was an increase
		help bridge the			during the		in the use of
		sterility barrier			tasks.		intraoperative image
		and eliminate the					consultation.
		time and space					The gesture library
		gap that exists					was intuitive and easy
		between image					to learn.
		review and visual					Gestures were
		correlation with					mastered within 10
		real-time					minutes.
		operative field					
		anatomy.					
[88]	2013	To investigate a	Proof-of-	Manipulation of	Degree of	29 radiologists	The potential of the
		solution for	concept and	CT images.	difficulty of	(diagnostic and	device to enhance
		manipulating	prototype		each task.	interventional).	image-guided
		medical images	feasibility		Overall		treatment in an
		using MK.	testing.		impression of		interventional
					the system.		radiology suite while
							maintaining a sterile
							surgical field was
							demonstrated.
							69% of those surveyed
							believed that the
							device could be useful
							in the interventional
							radiology field.
[125]	2014	To investigate	Pilot study.	Analysis of the	Not described.	Not described.	The results highlight
r .= 01		the need for	· · · · · · · · · · · · · · · · · · ·	operator's			the importance of
		posture and		movements			posture during
		position training		during a			bronchoscopy and the
		during		bronchoscopy.			need to implement a
		bronchoscopy		Education.			training module for the
		using a tool		Laucution			simulator.
		using a tool					sinnuator.

		called ETrack					
[73]		called ETrack To evaluate a new touchless, portable, low- cost 3D measurement system for objective breast assessment. To describe a gesture- controlled 3D teaching tool in	Concurrent validation study. Proof-of- concept.	Calculation of breast implant volumes. Manipulation of anatomical images. Education.	Volume measurements. Not described.	9 silicone implants of known volumes. 0.15 mm slice thickness cadaveric temporal bone	The implant volumes were calculated with an error margin of 10%. Reproducibility was satisfactory. The system was validated for clinical use. The interactive 3D model developed seems promising as an educational tool.
		which temporal bone anatomy is manipulated without using a mouse or keyboard. To provide a teaching tool for patient-specific anatomy.				images.	
[89]	2014	To develop hand recognition software based on MK, linked to an interventional CT, to manipulate images.	Feasibility testing	Manipulation of CT images in surgery.	Efficiency, user satisfaction.	10 interventional radiology procedures. 1 operator.	Tested on 10 procedures, feasibility was 100%. The system also allowed information to be obtained without using the CT system interface or a third party, and without the loss of operator sterility.
[76]	2014	To present a novel method for training intentional and non-intentional gesture recognition.	Experiment.	Performance of a simulated brain biopsy on a mannequin assisted by images manipulated using gestures.	isolated	19 subjects.	Continuous gesture recognition was successful 92.26% of the time with a reliability of 89.97%. Significant improvements in task completion time were obtained through the context integration effect.

					complete the		
					task.		
[52]	2014	To evaluate two	Experiment.	Manipulation of	Comparison of	4 trained	Neither system has the
		contactless hand		robots in	the two	surgeons.	high level of accuracy
		tracking systems,		surgery.	systems' range,		and robustness that
		the LMC and MK,			static		would be required for
		for their			positioning		controlling medical
		potential to			error,		robots.
		control surgical			trajectory		
		robots.			accuracy of		
					single finger		
					and hand		
					motions, and		
					latency.		
[122]	2014	To use a	Proof-of-	Augmented	Temporal	Not described.	The system eliminates
		projector for	concept.	reality in	efficiency of		the need for the
		visualization and		surgery.	the different		surgeon to look at a
		to provide			parts of the		location other than the
		intuitive means			algorithm.		surgical field. It
		for direct					therefore removes
		interaction with					distractions and
		the information					enhances his or her
		projected onto					performance.
		the surgical					It not only provides the
		surface, using MK					surgeon with medical
		to capture the					data during the
		interaction zone					intervention, but also
		and the					allows interaction with
		surgeon's actions					such information by
		on a deformable					using gestures.
		surface.					
[10]	2014	To present an	Ethnographic	Manipulation of	Not described.	Endovascular	With touchless
		ethnographic	study.	radiological		suite of a large	interaction, the visual
		study of a system		images.		hospital.	resources were
		based on MK					embedded and made
		developed to					meaningful in the
		allow touchless					collaborative practices
		control of					of surgery.
		medical images					The importance of
		during vascular					direct and dynamic
		surgery.					control of the images
		The study aims					by the clinicians in the
		to go beyond					context of talks and in
		demonstrating					the context of other

technical	artofact use is
	artefact use is discussed.
feasibility in	discussed.
order to	
understand the	
collaborative	
practices that	
emerge from its	
use in this	
context.	
[133]2014To evaluate aPrototype userManipulation ofEffectiveness.15 parti	icipants. Major problems were
system for testing. an operating Efficiency.	encountered during
manipulating an table. User	gesture recognition
operating table satisfaction.	and with obstruction
using gestures.	by other people in the
	interaction area due to
	the size and layout of
	the operating room.
	The system cannot yet
	be integrated into a
	surgical environment.
[67] 2014 To study the Construct Analysis of the Seven metrics 10 expension	rienced Certain types of metric
technical skills of validity study. movements of were analysed and 11 r	
colonoscopists the operator to find endosco	opists. discriminate between
using MK for during a discriminatory	experienced and novice
motion analysis colonoscopy. patterns	operators.
to develop a tool between novice	· · · · · · · · · · · · · · · · · · ·
to guide and	
colonoscopy experienced	
education and to endoscopists.	
select	
discriminative	
motion patterns. [79] 2014 To develop a 3D Inter-rater Measurement Comparison of A female	e MK seems to be a
surface imaging reliability of the surface surface manneq	
system and to study. distances of the distances of the	system for capturing
assess the breast on a breast	3D images of the
accuracy and mannequin. calculated with	breast.
repeatability on a the MK system	There was agreement
female and with a	between the
mannequin. measuring	measurements
tape.	obtained by the system
Inter-rater	and those taken
reliability.	manually with a
	measuring tape.

[120]	2014	To present a new	Proof-of-	Real-time	Rendering	Not described.	Preliminary
		-	concept.	immersive 3D	speed.		experiments show that
		system.	1	surgical	Transmission		this immersive training
		5		training.	rate.		system is portable,
				Education.	Network		effective and reliable.
					transmission		
					rate.		
[93]	2014	To present the	Proof-of-	Manipulation of		30 neurosurgical	OPECT demonstrated
[,0]		development and		MRI images.	the	operations.	high effectiveness,
		clinical testing of	-		performance of	-	simplicity of use and
		a device that	testing.		the device.		precise recognition of
		enables	cooung.		Questionnaire		the individual user
		intraoperative			for the		profile. In all cases,
		control of images			evaluation of		surgeons were satisfied
		with hand			system		with the performance
		gestures during			functionality.		of the device.
		neurosurgical					
		procedures.					
(68]	2015	To test whether	Construct	Analysis of the	Deviation from	11 novice. 9	The motion analysis
(]		an automatic	validity study.	operator's	the vertical	intermediate and	-
		motion analysis	Prospective,	movements	line.	9 experienced	discriminate between
		system could be	comparative	during a	Height above	bronchoscopy	different levels of
		used to explore if	-	bronchoscopy.	the horizontal	operators	experience.
		there is a	o cuuj i	Education.	line.	performed 3	Automatic feedback on
		correlation in			Distance	procedures each	correct movements
		scope			between hands.	1	during self-directed
		movements and				bronchoscopy	training on simulators
		the level of				simulator.	might help new
		experience of the					bronchoscopists learn
		surgeon					how to handle the
		performing the					bronchoscope like an
		bronchoscopy.					expert.
[53]		To compare two	Two-strand	Manipulation of	Utility.	42 participants:	Marginal to average
		commercial	sequential	CT images.	Usability.	radiologists,	acceptability of the two
		motion sensors	observational	0	Speed.	surgeons and	devices.
		(MK and the	study.		Accuracy.	interventional	MK was found to be
		LMC) to	Qualitative and		User	radiologists.	more useful and easier
		manipulate CT	quantitative		acceptance.	_	to use, but the LMC was
		images, in terms	descriptive		-		more accurate.
			field study				Further research is
		usability, speed,	using a semi-				required to establish
		accuracy and	structured				the design
		user acceptance.	questionnaire.				specifications,
		-					installation guidelines
							0

							and user training
							requirements to ensure
							successful
							implementation in
50.61	001 5		D		<u> </u>		clinical areas.
[86]	2015	To develop an	Prototype user	Users tested the		A prototype	The results of usability
		integrated and	testing.	application's	interviews.	system is tested	tests are promising,
		comprehensive		various	Usability	in a live operating	
		operating room		modules.	satisfaction	room at an	integration of these
		information			questionnaire.	Iranian teaching	systems into a
		system				hospital.	complete solution is
		compatible with				30 general	the key. Touchless
		HL7 and DICOM				surgeries.	natural user interfaces
		(MediNav). A					can help to collect and
		natural user					visualize medical
		interface is					information in a
		designed					comprehensive
		specifically for					manner.
		operating rooms					
		based on MK.					
[98]	2015	To propose a	Prototype user	Augmented	4 video and	Simulations of 12	The system showed
		novel system to	testing.	reality in	depth frames,	orthopedic	promising results with
		visualize a		orthopedic	20 X-ray shots.	procedures.	respect to better
		surgical scene in		surgery.	Two-fold cross-	5 participating	surgical scene
		augmented			validation.	clinicians, 3	understanding and
		reality using the			Questionnaire	experienced	improved depth
		different sources			with a Likert	surgeons, 2	perception using
		of information			scale.	fourth-year	augmented reality in
		provided by a C-				medical students.	simulated orthopedic
		arm and MK.					surgery.
[59]	2016	To explore 3D	Ethnographic.	Detection of the	Registration,	Not described.	The paper described a
		perception	Prototype	interaction	detection		supervision system for
		technologies in	testing.	between	accuracy, and		the operating room
		the operating		operating staff	registration		that enables intention
		room.		and the robot.	and accuracy of		tracking. The system
					intention		had low latency, good
					detection.		registration accuracy
							and high tracking
							reliability, which make
							it useful for workflow
							monitoring, tracking
							and avoiding collisions
							between medical
							robots and operating
							robots and operating

							room staff.
[130]	2016	To use MK and	Comparative	Movement of	Data rate (Hz),	1 user.	Although the new
		color markers to	study between	the instrument	static noise,		method had inferior
		track the	MK and the	to position its	static error.		accuracy compared to
		position of MIS	SinaSim trainer.	tip in 81 holes			mechanical sensors, its
		instruments in		of a Plexiglas			low cost and
		real time.		plate on 5			portability make it a
				occasions.			candidate for replacing
							traditional tracking
							methods.
[62]	2016	To compare	Crossover	Interaction	Length of time	30 physicians and	Under the premise that
		three different	randomized	modes were	to complete	senior medical	a mouse cannot be
		interaction	controlled trial	direct	each task.	students	used directly during
		modes for image	with blocked	manipulation	Trajectory log		surgery, gesture-
		manipulation in a	randomization.	using a mouse,	files were used		controlled approaches
		surgery setting:		verbal	to calculate		were shown to be
		1) A gesture-		instructions	performance.		superior to verbal
		controlled		given to a third			instructions for image
		approach using		party, and			manipulation.
		MK; 2) verbal		gesture-			
		instructions to a		controlled			
		third party; and		manipulation			
		3) direct		using MK.			
		manipulation					
		using a mouse.					
[72]	2017	To evaluate the	Construct	Tying of intra-	Time, path	10 MIS novices,	Validity and reliability
		feasibility,	validity,	corporeal MIS	length,	10 intermediate	of the self-developed
		validity, and	concurrent	knots.	maximum	level and 10	sensor and expert
		reliability of the	validity and		speed, average	experts.	model-based MIS
		training system	test-retest		speed, number		training system
		for motion	reliability.		of movements,		'iSurgeon' were
		parameter and	Prospective		number of		established.
		ergonomic	blinded study.		movements per		
		analyses			second, angular		
		between			path.		
		different					
		experience levels					
		of surgeons using					
		the NDI Polaris					
		System and MK					
		camera.					
[96]	2017	To analyze	Exploratory	MK was used to	Patient	10 patients.	This study showed the
		preoperative	study.	acquire 3D	demographics		feasibility of using fast,
		breast volume in		images of the	such as age,		simple and inexpensive

		patients with		patients'	body mass		3D imaging technology
		breast cancer in		breasts before	index (BMI)		for predicting implant
		order to predict		surgery and	and bra size.		size before surgery,
		implant size for		after surgery.	Used implant		although there were
		reconstruction.			sizes.		significant technical
					Mastectomy		challenges in
					specimen		determining breast
					weight.		volume by surface
							imaging.
[55]	2017	To evaluate the	Pilot user	Two	A Likert scale	3 surgeons.	Natural user interfaces
		feasibility of	study.	hepatectomies	to rate comfort,		are feasible for directly
		using three		and two partial	user		interacting, in a more
		different gesture		nephrectomies	friendliness,		intuitive and sterile
		control sensors		on an	physical effort,		manner, with
		(MK, the LMC		experimental	intuitiveness,		preoperative images
		and the Myo		porcine model.	accuracy,		and integrated
		armband) to			initialization,		operating room
		interact in a			speed and		functionalities during
		sterile manner			disconnection.		MIS.
		with					The combination of the
		preoperative					Myo armband and
		data as well as in					voice commands
		settings of an					provided the most
		integrated					intuitive and accurate
		operating room					natural user interface.
		during MIS.					

CT: Computed Tomography

MRI: Magnetic Resonance Imaging

- 5. Ebert LC, Hatch G, Ampanozi G, Thali MJ, Ross S. You Can't Touch This: Touch-free Navigation Through Radiological Images. Surg Innov 2012 Nov 6;19(3):301–7. PMID: 22064490
- 10. O'Hara K, Gonzalez G, Sellen A, Penney G, Varnavas A, Mentis H, et al. Touchless interaction in surgery. Commun ACM 2014 Jan 1;57(1):70–7. doi: <u>10.1145/2541883.2541899</u>
- 13. Strickland M, Tremaine J, Brigley G, Law C. Using a depth-sensing infrared camera system to access and manipulate medical imaging from within the sterile operating field. Can J Surg 2013 Jun 1;56(3):E1–6. PMID: 23706851
- 17. Gallo L, Placitelli AP, Ciampi M. Controller-free exploration of medical image data: Experiencing the Kinect. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS) IEEE 2011 p. 1–6. doi: <u>10.1109/CBMS.2011.5999138</u>
- 19. Jacob MG, Wachs JP, Packer RA. Hand-gesture-based sterile interface for the operating room using contextual cues for the navigation of radiological images. J Am Med Inform Assoc 2013 Jun;20(e1):e183-6. PMID: 23250787
- 30. Ruppert GCS, Reis LO, Amorim PHJ, de Moraes TF, da Silva JVL. Touchless gesture user interface for interactive image visualization in urological surgery. World J Urol 2012;30(5):687–91. PMID: 22580994
- 52. Kim Y, Kim PCW, Selle R, Shademan A, Krieger A. Experimental evaluation of contact-less hand tracking systems for tele-operation of surgical tasks. In: 2014 IEEE International Conference on Robotics and Automation (ICRA) 2014; p. 3502–9. doi: <u>10.1109/ICRA.2014.6907364</u>
- 53. Hughes, Nestorov N, Healy N, Sheehy N, O'Hare N. Comparing the utility and usability of the Microsoft Kinect and Leap Motion sensor devices in the context of their application for gesture control of biomedical images. In: European Congress of Radiology. Vienna; 2015. doi: 10.1594/ecr2015/B-1192
- 55. Sánchez-Margallo FM, Sánchez-Margallo JA, Moyano-Cuevas JL, Pérez EM, Maestre J. Use of natural user interfaces for image navigation during laparoscopic surgery: initial experience. Minim Invasive

Ther Allied Technol 2017 Oct 3;26(5):253–61. PMID: 28349758

- 59. Beyl T, Schreiter L, Nicolai P, Raczkowsky J, Wörn H. 3D Perception Technologies for Surgical Operating Theatres. Stud Health Technol Inform 2016;220:45–50. PMID: 27046552
- 60. Kirmizibayrak C, Radeva N, Wakid M, Philbeck J, Sibert J, Hahn J. Evaluation of gesture based interfaces formedical volume visualization tasks. Int J Virtual Real. 2012;11(2):1–13. Available from: http://ro.uow.edu.au/sspapers/1105/
- 61. Juhnke B, Berron M, Philip A, Williams J, Holub J, Winer E. Comparing the microsoft kinect to a traditional mouse for adjusting the viewed tissue densities of three-dimensional anatomical structures. In: SPIE Proceedings 8673 Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, 2013. p. 86731M–86731M–10. doi: https://doi.org/10.1117/12.2006994
- 62. Wipfli R, Dubois-Ferrière V, Budry S, Hoffmeyer P, Lovis C. Gesture-Controlled Image Management for Operating Room: A Randomized Crossover Study to Compare Interaction Using Gestures, Mouse, and Third Person Relaying. PLoS One 2016;11(4):e0153596. PMID: 27082758
- 67. Svendsen MB, Preisler L, Hillingsoe JG, Svendsen LB, Konge L. Using motion capture to assess colonoscopy experience level. World J Gastrointest Endosc 2014 May 16;6(5):193–9. PMID: 24891932
- Colella S, Søndergaard Svendsen MB, Konge L, Svendsen LB, Sivapalan P, Clementsen P. Assessment of competence in simulated flexible bronchoscopy using motion analysis. Respiration. 2015;89(2):155– 61. PMID: 25591730
- 72. Kowalewski K-F, Hendrie JD, Schmidt MW, Garrow CR, Bruckner T, Proctor T, et al. Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon. Surg Endosc 2017 May;31(5):2155–65. PMID: 27604368
- 73. Henseler H, Kuznetsova A, Vogt P, Rosenhahn B. Validation of the Kinect device as a new portable imaging system for three-dimensional breast assessment. J Plast Reconstr Aesthet Surg 2014 Apr;67(4):483–8. PMID: 24513562
- 76. Jacob MG, Wachs JP. Context-based hand gesture recognition for the operating room. Pattern Recognit Lett 2014 Jan;36:196–203. doi:<u>https://doi.org/10.1016/j.patrec.2013.05.024</u>
- 79. Wheat JS, Choppin S, Goyal A. Development and assessment of a Microsoft Kinect based system for imaging the breast in three dimensions. Med Eng Phys 2014 Jun;36(6):732–8. PMID: 24507690
- 86. Nouei MT, Kamyad AV, Soroush AR, Ghazalbash S. A comprehensive operating room information system using the Kinect sensors and RFID. J Clin Monit Comput 2015 Apr 14;29(2):251–61. PMID: 25017016
- Hötker AM, Pitton MB, Mildenberger P, Düber C. Speech and motion control for interventional radiology: requirements and feasibility. Int J Comput Assist Radiol Surg 2013 Nov;8(6):997–1002.
 PMID: 23580026
- 88. Tan JH, Chao C, Zawaideh M, Roberts AC, Kinney TB. Informatics in Radiology: developing a touchless user interface for intraoperative image control during interventional radiology procedures. Radiographics 2013 Jan;33(2):E61-70. PMID: 23264282
- 89. Iannessi A, Marcy P-Y, Clatz O, Fillard P, Ayache N. Touchless intra-operative display for interventional radiologist. Diagn Interv Imaging 2014 Mar 1;95(3):333–7. PMID: 24176864
- 92. Yoshimitsu K, Muragaki Y, Maruyama T, Saito T, Suzuki T, Ikuta S. Clinical trials of the non-touch intraoperative image controllable interface system using KINECT(TM). IJCARS. 2012;7(Suppl 1):S209-10.
- 93. Yoshimitsu K, Muragaki Y, Maruyama T, Yamato M, Iseki H. Development and initial clinical testing of "OPECT": an innovative device for fully intangible control of the intraoperative image-displaying monitor by the surgeon. Neurosurgery 2014 Mar;10 Suppl 1:46–50; discussion 50. PMID: 24141478
- 96. Pöhlmann STL, Harkness E, Taylor CJ, Gandhi A, Astley SM. Preoperative implant selection for unilateral breast reconstruction using 3D imaging with the Microsoft Kinect sensor. J Plast Reconstr Aesthetic Surg 2017 Aug 1;70(8):1059–67. PMID: 28595842
- 97. Klumb F, Dubois-Ferriere V, Roduit N, Barea C, Strgar T, Ahmed K, et al. Virtual manipulation of medical images with hand gestures in the operating room. IJCARS. 2012;7(Suppl 1):S206-207. doi: https://doi.org/10.1007/s11548-017-1588-3
- 98. Pauly O, Diotte B, Fallavollita P, Weidert S, Euler E, Navab N. Machine learning-based augmented reality for improved surgical scene understanding. Comput Med Imaging Graph 2015 Apr;41:55–60. PMID: 24998759
- 99. Kirmizibayrak C, Yim Y, Wakid M, Hahn J. Interactive visualization and analysis of multimodal datasets for surgical applications. J Digit Imaging 2012 Dec;25(6):792–801. PMID: 2234991
- 101. Jacob M, Cange C, Packer R, Wachs J. Intention, context and gesture recognition for sterile MRI navigation in the operating room. In: Alvarez L, Mejail M, Gomez L, Jacobo J, editors. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, volume 7441 of Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2012. p. 220–7. doi: https://doi.org/10.1007/978-3-642-33275-3 27
- 102. Frame M. A novel system for hands free manipulation of digital X-rays in a sterile environment using consumer electronics and software. IJCARS. 2012;7(Supplement 1):S208. Available from: http://www.caos-international.org/caos-2012/abstracts/024.pdf
- 103. Ebert LC, Hatch G, Thali MJ, Ross S. Invisible touch—Control of a DICOM viewer with finger gestures

using the Kinect depth camera. J Forensic Radiol Imaging 2013 Jan;1(1):10–4. doi <u>https://doi.org/10.1016/j.jofri.2012.11.006</u>

- 104. Ishida Y, Ogura T, Hayashi N, Sato M, Okajima M, Doi K. Development of a New Image Operation System with Hand Movements Using a Kinect Sensor for Angiography. In: Radiological Society of North America 2013 Scientific Assembly and Annual Meeting. Chicago, IL; 2013. Available from: <u>https://www.researchgate.net/publication/266096586 Development of a New Image Operation Sy</u> <u>stem with Hand Movements Using a Kinect Sensor for Angiography</u>
- 114. Placitelli AP, Gallo L. 3D point cloud sensors for low-cost medical in-situ visualization. In: International Conference on Bioinformatics and Biomedicine Workshops (BIBMW), 2011 IEEE. Atlanta, GA, USA: IEEE; 2011. p. 596–7. doi: 10.1109/BIBMW.2011.6112435
- 115. Samosky JT, Wang B, Nelson DA, Bregman R, Hosmer A, Weaver RA. BodyWindows: enhancing a mannequin with projective augmented reality for exploring anatomy, physiology and medical procedures. Stud Health Technol Inform 2012;173:433–9. PMID: 22357032
- 116. Blum T, Kleeberger V, Bichlmeier C, Navab N. Mirracle: An augmented reality magic mirror system for anatomy education. In: IEEE Virtual Reality 2012. Orange County, CA, USA: IEEE Computer Society; 2012. p. 115–6. PMID: 22357032
- 117. Dargar S, Nunno A, Sankaranarayanan G, De S. Microsoft kinect based head tracking for life size collaborative surgical simulation environments (LS-CollaSSLE). Stud Health Technol Inform 2013;184:109–13. PMID: 23400140
- 118. Juhnke B. Evaluating the Microsoft Kinect compared to the mouse as an effective interaction device for medical imaging manipulations. Iowa State University, Graduate Theses and Dissertations; 2013. Available from: https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=4362&context=etd
- 119. Guo X, Lopez LD, Yu Z, Steiner K V, Barner KE, Bauer TL, et al. A portable immersive surgery training system using RGB-D sensors. Stud Health Technol Inform 2013 Jan;184:161–7. PMID: 23400150
- 120. Yang Y, Guo X, Yu Z, Steiner K V, Barner KE, Bauer TL, et al. An immersive surgery training system with live streaming capability. Stud Health Technol Inform 2014 Jan;196:479–85. PMID: 24732560
- 121. Hochman JB, Unger B, Kraut J, Pisa J, Hombach-Klonisch S. Gesture-controlled interactive three dimensional anatomy: a novel teaching tool in head and neck surgery. J Otolaryngol Head Neck Surg 2014 Oct 7;43(1):38. PMID 25286966
- 122. Kocev B, Ritter F, Linsen L. Projector-based surgeon-computer interaction on deformable surfaces. Int J Comput Assist Radiol Surg [Internet]. 2014 Jul 26 [cited 2015 Oct 20];9(2):301–12. PMID: 23888316
- 125. Coles TR, Cao CG, Dumas C. ETrack: An affordable Ergonomic assessment tool for surgical settings. SAGES abstract archives. 2014. Available from: http://www.sages.org/meetings/annualmeeting/abstracts-archive/etrack-an-affordable-ergonomic-assessment-tool-for-surgical-settings/
- 130. Owlia M, Khabbazan M, Mirbagheri MM, Mirbagheri A. Real-time tracking of laparoscopic instruments using kinect for training in virtual reality. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2016 Aug;2016:3945–8. PMID: 28269148
- 133. Schröder S, Loftfield N, Langmann B, Frank K, Reithmeier E. Contactless operating table control based on 3D image processing. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2014;2014:388–92. PMID: 25569978
- 143. Hartmann F, Schlaefer A. Feasibility of touch-less control of operating room lights. Int J Comput Assist Radiol Surg 2013 Mar;8(2):259–68. PMDI:22806717