Study	Year	Aim	Type of study	Intervention	Metrics	Sample	Results/Conclusions
[90]	2014	To evaluate the	Proof-of-	Manipulation of	Not described.	Interventional	The LMC is a feasible,
		implementation	concept and	images in		radiology suite.	portable and low-cost
		of a low-cost	prototype	interventional			alternative to other
		device for	feasibility	radiology.			touchless PACS
		touchless PACS	testing.				interaction systems.
		control in an					A decrease in the need
		interventional					for re-intervention was
		radiology suite.					reported, but no
		To demonstrate					explanation was given
		that interaction					of how it was
		with gestures can					measured.
		decrease the					
		duration of the					
		procedures, the					
		risk of re-					
		intervention, and					
		improve					
		technical					
		performance.					
[83]	2014	To present the	Proof-of-	Manipulation of	Average	2 general	The average training
		first experience	concept.	CT and MRI	training time.	surgeons, 1	time was 5 minutes.
		of using new		images.		urologist, 3	The system is very
		systems for				orthopedic	cost-effective, efficient
		image control in				surgeons and 2	and prevents
		the operating				surgeons	contamination during
		room: the LMC					surgery.
		and OsiriX.					First experience of
							using the LMC to
							control CT and MRI
							images during surgery.
[126]	2014	To validate the	Comparative	Peg transferring	Time to	10 researchers.	The results allowed
		possibility of	study of the	task and	complete the		the authors to confirm
		performing	Sigma.7	answering a	task.		that fine tracking of
		precise	electro-	questionnaire.	Satisfaction		the hand could be
		telesurgical tasks	mechanical	The success rate	questionnaire.		performed with the
		by means of the	device and the	of peg transfers.			LMC.
		LMC.	LMC.				The observed
							performance of the
							optical interface
							proved to be
							comparable to that of

Table 2. Summary of included studies evaluating the LMC.

							traditional electro-
							mechanical devices.
[105]	2014	To describe a	Proof-of-	Manipulation of	Not described.	Not described.	It is possible to
		piece of software	concept.	radiological			implement gesture
		for image		images.			control of medical
		processing with					devices with low-cost,
		OsiriX using					minimal resources.
		finger gestures.					The device is very
							sensitive to surface
							dirt and this affects
							performance.
							The device favors the
							occlusion
							phenomenon.
[52]	2014	To evaluate two	Experiment.	Manipulation of	Comparison of	4 trained	Neither system has the
		contactless hand		robots in	the two	surgeons.	high level of accuracy
		tracking systems,		surgery.	systems' range,		and robustness that
		the LMC and MK,			static		would be required for
		for their potential			positioning		controlling medical
		to control			error, trajectory		robots.
		surgical robots.			accuracy of		
					single finger		
					and hand		
					motions, and		
					latency.		
[132]	2014	To evaluate the	Proof-of-	Manipulation of	2D interaction	A 90-minute	The user cases should
		LMC for simple	concept and	medical	on entering a	conference on	be carefully classified
		2D interaction	prototype	information and	value.	computer science	and the most
		and the action of	testing.	operating room		and untrained	appropriate gestures
		entering a value.		lights.		users.	for each application
							should be detected and
							implemented.
							Optimal lighting
							conditions for the LMC
							have still not been
							evaluated since
							unwanted light with
							deterioration of the IR
							light emitted may lead
							to a reduction in the
							recognition rate.
[63]	2014	To compare the	Observational	Manipulation of	Comparison of	11 radiologists	After a practice time of
		average time	study.	angiographic	the average	who observed a	30 minutes, the
		required by the		images.	time required	simulated clinical	average operation time

		conventional			with a mouse	case.	by the finger method
		method using a			and the LMC.		was significantly
		mouse and an					shorter than that by
		operating					the mouse method.
		method with a					
		finger-motion					
		sensor.					
[14]	2014	To develop a	Prototype user	Manipulation of	Not described.	2 surgeons.	The system performed
		workstation that	testing.	radiological		A case series of	very well.
		allows		images.		11 dental surgery	Its low cost favors its
		intraoperative				procedures.	incorporation into
		touchless control					clinical facilities of
		of diagnostic and					developing countries,
		surgical images					reducing the number
		in dentistry.					of staff required in
							operating rooms.
[106]	2014	To propose an	Prototype user	Manipulation of	Time to	12 participants.	Users were able to
		interface to	testing.	ultrasound	complete the		significantly improve
		control hand		images.	task.		their performance
		gestures and			Questionnaire		with practice.
		gestures with			with Likert-		
		hand-held tools.			type scale.		
		In this approach,					
		hand-held tools					
		can become					
		gesture devices					
		that the user can					
		use to control the					
		images.					
[85]	2014	To develop a	Proof-of-	Manipulation of	Not described.	15 patients with	A 3D model of liver
		software	concept.	CT and real-time		liver cancer and	and pancreatic tumors
		application for		elastography		10 patients with	was successfully
		the manipulation		images.		pancreatic	implemented with a
		of a 3D				cancer.	hands-free interaction
		pancreatic or					device suitable for
		liver tumor					sterile environments
		model by using					and for aiding
		CT and real-time					diagnostic or
		elastography					therapeutic
		data.					interventions.
[127]	2014	To present a new	Proof-of-	Manipulation of	Not described.	2 surgical robots	The device provided
		gesture	concept.	robots in		in a virtual	satisfactory accuracy
		recognition		surgery.		simulator.	and speed.
		system for					It requires a more

		manipulating two					complete API.
		surgical robots in					
		a virtual					
		simulator.					
[108]	2014	To propose a	User testing.	Manipulation of	Not described.	2 users.	User feedback was
		web-based	Pilot study.	radiological			positive.
		interface to		images.			Users reported fatigue
		retrieve medical					with prolonged use of
		images using					gestures.
		gestures.					Additional studies are
							required to validate
							the interface.
[91]	2015	To describe the	Proof-of-	Manipulation of	Not described.	Not described.	Gesture-based imaging
		use of the LMC	concept.	images in			control may lead to
		for image		interventional			increased efficacy and
		manipulation		radiology.			safety with decreased
		during hepatic					radiation exposure
		transarterial					during hepatic
		chemoembolizati					transarterial
		on and internal					chemoembolization
		radiotherapy					procedures.
		procedures.					
[53]	2015	To compare two	Two-strand	Manipulation of	Utility.	42 participants:	Marginal to average
[53]	2015	To compare two commercial	Two-strand sequential	Manipulation of CT images.	Utility. Usability.	42 participants: radiologists,	Marginal to average acceptability of the
[53]	2015	To compare two commercial motion sensors	Two-strand sequential observational	Manipulation of CT images.	Utility. Usability. Speed.	42 participants: radiologists, surgeons and	Marginal to average acceptability of the two devices.
[53]	2015	To compare two commercial motion sensors (MK and the	Two-strand sequential observational study.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy.	42 participants: radiologists, surgeons and interventional	Marginal to average acceptability of the two devices. MK was found to be
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to	Two-strand sequential observational study. Qualitative and	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT	Two-strand sequential observational study. Qualitative and quantitative	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms	Two-strand sequential observational study. Qualitative and quantitative descriptive	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate.
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility,	Two-strand sequential observational study. Qualitative and quantitative descriptive field study	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed,	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi-	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications,
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to ensure successful
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to ensure successful implementation in
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to ensure successful implementation in clinical areas.
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire.	Manipulation of CT images. Manipulation of	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists. 14 students.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to ensure successful implementation in clinical areas. Using the system,
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance. To evaluate a new method for	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire. Observational study.	Manipulation of CT images. Manipulation of radiological	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists. 14 students. 6 images.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to ensure successful implementation in clinical areas. Using the system, several processes can
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance.	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire. Observational study. User testing	Manipulation of CT images. Manipulation of radiological images in	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists. 14 students. 6 images.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to ensure successful implementation in clinical areas. Using the system, several processes can be performed quickly
[53]	2015	To compare two commercial motion sensors (MK and the LMC) to manipulate CT images, in terms of their utility, usability, speed, accuracy and user acceptance. To evaluate a new method for image manipulation	Two-strand sequential observational study. Qualitative and quantitative descriptive field study using a semi- structured questionnaire. Observational study. User testing and proof-of-	Manipulation of CT images. Manipulation of radiological images in dentistry.	Utility. Usability. Speed. Accuracy. User acceptance.	42 participants: radiologists, surgeons and interventional radiologists. 14 students. 6 images.	Marginal to average acceptability of the two devices. MK was found to be more useful and easier to use, but the LMC was more accurate. Further research is required to establish the design specifications, installation guidelines and user training requirements to ensure successful implementation in clinical areas. Using the system, several processes can be performed quickly with finger

		sensor.					Using gestures was
							significantly superior
							to using a mouse in
							terms of time.
[110]	2015	To develop a new	Observational	Manipulation of	Time required	14 students.	The operation time
		system for	study.	radiological	to view a series	25 images.	with the LMC was
		manipulating		images in	of images.		significantly shorter
		images using a		dentistry.			than with the
		motion sensor.					conventional method
							using a mouse.
[123]	2016	To design a	Letter to the	None.	Not described.	Not described	If it can be shown that
		virtual 3D online	editor.				3D online
		environment for					environments
		motor skills					mediated by natural
		learning in MIS					user interfaces enable
		using exercises					motor skills learning in
		from the MISR-					MIS, a new field of
		VR.					research and
		The environment					development in the
		is designed in					area of surgical
		Unity, and the					simulation will be
		LMC is used as					opened up.
		the device for					
		interaction with					
		the MIS forceps.					
[78]	2016	Patent for	Patent.	None.	Not described.	Not described	Representing, on an
		accurate 3D					output display, 3D
		instrument					positions and
		positioning.					orientations of an
							instrument while
							medical procedures
[04]	2016		II	Maariaa latian a G	Not do contlo d	Decention of a	are being performed.
[94]	2016	10 describe the	User testing.	Manipulation of	Not described.	Resection of a	The learning curve
		configuration for		images during a		meningioma and	only took 30 minutes.
		using the LMC III		surgical		sarcoma surgery.	disaduantaga waa tha
		imago		procedure.			lack of standardization
		manipulation					of the gestures the
		during a surgical					I MC is a low-cost
		nrocedure					reliable and easily
		procedure.					nersonalized device
							for controlling images
							in the surgical
							environment.
							chi vii onniciit.

[124]	2016	To develop skills	User testing.	Description of	Not described.	Not described.	Simulation and new
		in students and		the virtual			gesture recognition
		professionals		environment.			technologies open up
		using computer					new possibilities for
		simulation					the generation of
		technologies					computer-mediated
		based on hand					procedures for medical
		gesture capture					training.
		systems.					
[111]	2016	To present a	User testing	8 tasks	A Likert scale	12 participants	Gesture recognition is
		gesture-	(pilot and	manipulating CT	and a usability	(biomedical	robust, although there
		controlled	main).	images.	questionnaire.	engineers,	is potential for
		projection				medical students	improvement.
		display that				and radiologists).	The gesture training
		enables a direct					times are less than 10
		and natural					minutes, but vary
		physician-					considerably between
		machine					study participants.
		interaction					
		during CT-based					
		interventions.					
[112]	2016	To develop an	User testing.	Manipulation of	User	30 students and	The anatomy learning
		anatomy learning		220 anatomical	satisfaction	lecturers from an	system using the LMC
		system using the		images.	questionnaire	anatomy	was successfully
		LMC.			based on a	department.	developed and it is
					Likert scale.		suitable and
							acceptable as a
							support tool in an
							anatomy learning
							system.
[77]	2016	To study the	Experiment.	Three static	Static long	1 user.	The LMC had
		possibility of		experiments and	precision, static		acceptable precision
		tracking		one dynamic	short precision,		for tracking
		laparoscopic		experiment.	static distance,		laparoscopic
		instruments			and dynamic		instruments in a box
		using the LMC in			distance		trainer.
		a box trainer.			precision.		
[69]	2016	To assess the	Construct	Passing a thread	Time to	3 experts and 10	The LMC is able to
		potential of the	validity,	through pegs	complete the	novices.	track the movement of
		LMC to track the	concurrent	using the eoSim	task, path		hands using
		movement of	validity.	simulator.	distance, speed,		instruments in a MIS
		hands using MIS	Comparative		acceleration,		box simulator.
		1		1		1	

			InsTrac.		smoothness,		demonstrated.
					and distance		Concurrent validity
					between the		was only
					instruments.		demonstrated for time
							and instrument path
							distance.
							A number of
							limitations to the
							tracking method used
							by LMC have been
							identified.
[128]	2016	To explore the	Comparative	16 resections of	Percentage of	3 neurosurgeons.	Users were able to
		use of the LMC in	study between	simulated	tumor resection		achieve a very similar
		endonasal	the LMC and	pituitary gland	and procedure		percentage of
		pituitary surgery	the Phantom	tumors using a	duration.		resection and
		and to compare it	Omni.	robot			procedure duration
		with the		manipulated by			using the LMC.
		Phantom Omni.		the Phantom			
				Omni and by the			
				LMC.			
[113]	2016	To try to interact	Prototype user	Rotation,	Not described.	1 user.	It is feasible to build
		with medical	testing.	panning, scaling			this system and
		images via a web		and selection of			interaction can be
		browser using		slices of a			carried out in real
		the LMC.		reconstructed			time.
				3D model based			
				on CT or MRI.			
[54]	2017	To analyze the	User study.	Simulating a	Task	10	Novel input modalities
		value of two	Comparative	diagnostic	completion	neuroradiologists	have the potential to
		gesture input	study.	neuroradiologica	time, perceived		carry out single tasks
		modalities (the		l vascular	task difficulty,		more efficiently than
		Myo armband		treatment with	and subjective		clinically established
		and the LMC)		two frequently	workload.		methods.
		versus two		used interaction			
		clinically		tasks in an			
		established		experimental			
		methods (task		operating room.			
		delegation and					
		joystick control).					
[64]	2017	To investigate the	Face and	Three basic	Time, path	2 groups of	This study provides
		potential of a	construct	tasks: camera	length, and	surgeons (28	evidence of the
		virtual reality	validity.	navigation,	errors.	experts and 21	potential use of the
		simulator for the		instrument		novices).	LMC for assessing
		assessment of		navigation, and			basic laparoscopic

		basic		two-handed			skills. The proposed
		laparoscopic		operation.			system allows the
		skills, based on					dexterity of hand
		the LMC					movements to be
							evaluated.
[55]	2017	To evaluate the	Pilot user	Two	A Likert scale to	3 surgeons	Natural user interfaces
		feasibility of	study.	hepatectomies	rate comfort,		are feasible for directly
		using three		and two partial	user		interacting, in a more
		different gesture		nephrectomies	friendliness,		intuitive and sterile
		control sensors		on an	physical effort,		manner, with
		(MK, the LMC and		experimental	intuitiveness,		preoperative images
		the Myo		porcine model.	accuracy,		and integrated
		armband) to			initialization,		operating room
		interact in a			speed and		functionalities during
		sterile manner			disconnection.		MIS.
		with					The combination of the
		preoperative					Myo armband and
		data as well as in					voice commands
		settings of an					provided the most
		integrated					intuitive and accurate
		operating room					natural user interface.
		during MIS.					
[70]	2017	To evaluate the	Construct	Surgical knot	Path length.	11 participants.	The study showed
						1 1	5
		LMC as a tool for	validity study.	tying and	number of	1 1	100% accuracy in
		LMC as a tool for the objective	validity study.	tying and manual transfer	number of movements and	1 1	100% accuracy in discriminating
		LMC as a tool for the objective measurement	validity study.	tying and manual transfer of objects.	number of movements and total time.		100% accuracy in discriminating between expert and
		LMC as a tool for the objective measurement and assessment	validity study.	tying and manual transfer of objects.	number of movements and total time.		100% accuracy in discriminating between expert and novice performances.
		LMC as a tool for the objective measurement and assessment of surgical	validity study.	tying and manual transfer of objects.	number of movements and total time.		100% accuracy in discriminating between expert and novice performances.
		LMC as a tool for the objective measurement and assessment of surgical dexterity among	validity study.	tying and manual transfer of objects.	number of movements and total time.		100% accuracy in discriminating between expert and novice performances.
		LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different	validity study.	tying and manual transfer of objects.	number of movements and total time.		100% accuracy in discriminating between expert and novice performances.
		LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels.	validity study.	tying and manual transfer of objects.	number of movements and total time.		100% accuracy in discriminating between expert and novice performances.
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an	validity study.	tying and manual transfer of objects. Four ellipsoid	number of movements and total time. Task speed and	16 novice users	100% accuracy in discriminating between expert and novice performances. An easy-access
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and	validity study. Concurrent and construct	tying and manual transfer of objects. Four ellipsoid practice	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created,
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy simulator based	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a surgical training
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy simulator based on the LMC, and	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a surgical training assessment tool.
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy simulator based on the LMC, and to compare it to	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a surgical training assessment tool. This system can be
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy simulator based on the LMC, and to compare it to the NeuroTouch	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a surgical training assessment tool. This system can be used for planning
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy simulator based on the LMC, and to compare it to the NeuroTouch for its usability	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a surgical training assessment tool. This system can be used for planning procedures using
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy simulator based on the LMC, and to compare it to the NeuroTouch for its usability and training	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a surgical training assessment tool. This system can be used for planning procedures using patient datasets.
[71]	2017	LMC as a tool for the objective measurement and assessment of surgical dexterity among users at different experience levels. To design an affordable and easily accessible endoscopic third ventriculostomy simulator based on the LMC, and to compare it to the NeuroTouch for its usability and training effectiveness.	validity study. Concurrent and construct validity study.	tying and manual transfer of objects. Four ellipsoid practice targeting tasks and 36 ventricle targeting tasks.	number of movements and total time. Task speed and accuracy.	16 novice users and 2 expert neurosurgeons	100% accuracy in discriminating between expert and novice performances. An easy-access simulator was created, which has the potential to become a training tool and a surgical training assessment tool. This system can be used for planning procedures using patient datasets.

		LMC as a novel	study between	peg	A novel		control, manipulability
		control device to	the LMC and	manipulations	spatiotemporal		is not as good as it is
		manipulate the	the electro-	during a training	trajectory		with contact-based
		RAVEN-II robot.	mechanical	task with a	clustering.		control.
			Sigma.7.	contact-based			Complete control of
				device (Sigma.7).			the surgical
							instruments is feasible.
							This work is promising
							for the development of
							future human-machine
							interfaces dedicated to
							robotic surgical
							training systems.
[80]	2018	To evaluate the	Multisite,	The study group	Self-assessment	95 residents from	Immersive virtual
		effect of using	single-blind,	used the virtual	scores for	7 dental schools.	reality experiences
		virtual reality	parallel,	reality surgery	trainee		improve the
		surgery on the	randomized	application. The	confidence		knowledge and self-
		self-confidence	controlled trial.	control group	using a Likert		confidence of the
		and knowledge of		used similar	scale and an		surgical residents.
		surgical residents		content in a	objective		
		(the LMC and		standard	assessment of		
		Oculus Rift).		presentation.	cognitive skills.		
[65]	2018	To develop and	Face and	A pre-	Realism,	7 consultant oral	The results confirmed
		validate a novel	content	intervention	usability,	and maxillofacial	the clinical
		training tool for	validity.	questionnaire to	efficacy and	surgeons.	applicability of virtual
		Le Fort I		understand	applicability to		reality for delivering
		osteotomy based		training needs	orthognathic		training in
		on immersive		and a post-	surgical		orthognathic surgery.
		virtual reality		intervention	training.		
		(the LMC and		feedback			
		Oculus Rift).		questionnaire.			
[95]	2018	To investigate the	Proof-of-	Ventriculocysto-	Learning curve.	21 patients with	The head-mounted
		feasibility and	concept in the	cisternostomy.	Operation time.	ventricular	display system is
		practicability of a	operating	Ventriculostomy.	Surgeon fatigue.	diseases.	feasible, practical,
		low-cost	room.	Tumoral biopsy.	Comfort with	1 neurosurgeon.	helpful, and relatively
		multimodal head-			the device.		cost efficient in
		mounted display					neuroendoscopic
		system in					surgery.
		neuroendoscopic					
		surgery (the LMC					
		and Oculus Rift).					

CT: Computed Tomography

MRI: Magnetic Resonance Imaging

14. Rosa GM, Elizondo ML. Use of a gesture user interface as a touchless image navigation system in dental

surgery: Case series report. Imaging Sci Dent 2014 Jun;44(2):155-60. PMID: 24944966

- 52. Kim Y, Kim PCW, Selle R, Shademan A, Krieger A. Experimental evaluation of contact-less hand tracking systems for tele-operation of surgical tasks. In: 2014 IEEE International Conference on Robotics and Automation (ICRA) 2014; p. 3502–9. doi: <u>10.1109/ICRA.2014.6907364</u>
- 53. Hughes, Nestorov N, Healy N, Sheehy N, O'Hare N. Comparing the utility and usability of the Microsoft Kinect and Leap Motion sensor devices in the context of their application for gesture control of biomedical images. In: European Congress of Radiology. Vienna; 2015. doi: <u>10.1594/ecr2015/B-1192</u>
- Hettig J, Saalfeld · Patrick, Luz M, Becker M, Skalej M, Hansen C. Comparison of gesture and conventional interaction techniques for interventional neuroradiology. Int J CARS 2017;12:1643–53. PMID: 28120179
- 55. Sánchez-Margallo FM, Sánchez-Margallo JA, Moyano-Cuevas JL, Pérez EM, Maestre J. Use of natural user interfaces for image navigation during laparoscopic surgery: initial experience. Minim Invasive Ther Allied Technol 2017 Oct 3;26(5):253–61. PMID: 28349758
- 63. Ogura T, Sato M, Ishida Y, Hayashi N, Doi K. Development of a novel method for manipulation of angiographic images by use of a motion sensor in operating rooms. Radiol Phys Technol 2014;7(2):228–34. PMID: 24609904
- 64. Lahanas V, Loukas C, Georgiou K, Lababidi H, Al-Jaroudi D. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller. Surg Endosc 2017 Dec 2;31(12):5012–23. PMID: 28466361
- 65. Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. An innovative virtual reality training tool for orthognathic surgery. Int J Oral Maxillofac Surg 2018 Sep 1;47(9):1199–205. PMID: 29398172
- 69. Partridge RW, Brown FS, Brennan PM, Hennessey IA, Hughes MA. The LEAP™ gesture interface device and Take-Home laparoscopic simulators: A study of construct and concurrent validity. Surg Innov. 2016;23(1):70–7. PMID: 26178693
- 70. Sun X, Byrns S, Cheng I, Zheng B, Basu A. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery. J Med Syst 2017 Feb;41(2):24. PMID: 28000118
- 71. Wright T, de Ribaupierre S, Eagleson R. Design and evaluation of an augmented reality simulator using leap motion. Healthc Technol Lett 2017 Oct;4(5):210–5. PMID: 29184667
- 77. Oropesa I, de Jong TL, Sánchez-González P, Dankelman J, Gómez EJ. Feasibility of tracking laparoscopic instruments in a box trainer using a Leap Motion Controller. Measurement 2016;80:115–24. doi: https://doi.org/10.1016/j.measurement.2015.11.018
- 78. Beck P. Accurate Three-dimensional Instrument Positioning [Internet]. US; 2016. p. 1–26. Available from: http://www.freepatentsonline.com/20160354152.pdf
- 80. Pulijala Y, Ma M, Pears M, Peebles D, Ayoub A. Effectiveness of Immersive Virtual Reality in Surgical Training—A Randomized Control Trial. J Oral Maxillofac Surg 2018 May 1;76(5):1065–72. PMID: 29104028
- Bizzotto N, Costanzo A, Bizzotto L, Regis D, Sandri A, Magnan B. Leap Motion Gesture Control With OsiriX in the Operating Room to Control Imaging: First Experiences During Live Surgery. Surg Innov 2014;21(6):655–6. PMID: 24742500
- 85. Streba CT, Gheonea IA, Streba L, Sandulescu LD, Saftoiu A, Gheone DI. Sa1976 Virtual Palpation Model -Combining Spiral CT and Elastography Data: a Proof-of-Concept Study. Gastroenterology 2014;146(5):S-344-S-345. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016508514612452
- Bercu Z, Patil V, Patel R, Kim E, Nowakowski F, Lookstein R, et al. Leap Motion Controller implementation for touchless PACS integration in the interventional radiology suite. Cardiovasc Intervent Radiol. 2014;37(Suppl. 1). doi: <u>https://doi.org/10.1007/s00270-013-0835-4</u>
- 91. Bercu ZL, Patil V V., Patel RS, Kim E, Nowakowski, S. F., Lookstein RA, Fischman AM. Use of hands free gesture-based imaging control for vessel identification during hepatic transarterial chemoembolization and selective internal radiotherapy procedures. J Vasc Interv Radiol. 2015;26(2 Supplement):S186–7. doi: https://doi.org/10.1016/j.jvir.2014.12.499
- 94. Di Tommaso L, Aubry S, Godard J, Katranji H, Pauchot J. [A new human machine interface in neurosurgery: The Leap Motion(®). Technical note regarding a new touchless interface]. Neurochirurgie 2016 Jun;62(3):178–81. PMID: 27234915
- 95. Xu X, Zheng Y, Yao S, Sun G, Xu B, Chen X. A low-cost multimodal head-mounted display system for neuroendoscopic surgery. Brain Behav 2018 Jan;8(1):e00891. PMID: 29568688
- 105. Ebert LC, Flach PM, Thali MJ, Ross S. Out of touch A plugin for controlling OsiriX with gestures using the leap controller. J Forensic Radiol Imaging 2014;2(3):126–8. doi: https://doi.org/10.1016/j.jofri.2014.05.006
- 106. Rossol N, Cheng I, Rui Shen, Basu A. Touchfree medical interfaces. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2014 Jan;2014:6597–600. PMID: 25571508
- 108. Widmer A, Schaer R, Markonis D, Müller H. Gesture interaction for content--based medical image retrieval. In: ACM International Conference on Multimedia Retrieval. Glasgow; 2014. doi: <u>10.1145/2578726.2578804</u>
- 109. Ogura T, Sato M, Kadowaki Y, Yasumoto Y, Okajima M, Tsutsumi S, et al. Development of a new method for manipulation of dental images using a motion sensor in dentistry. In: European Congress of

Radiology [Internet]. Vienna, Austria: European Congress of Radiology 2015. doi: <u>http://dx.doi.org/10.1594/ecr2015/C-0251</u>

- 110. Sato M, Ogura T, Yasumoto Y, Kadowaki Y, Hayashi N, Doi K. Development of an image operation system with a motion sensor in dental radiology. Radiol Phys Technol 2015 Jul;8(2):243–7. PMID: 25896229
- 111. Mewes A, Saalfeld P, Riabikin O, Skalej M, Hansen C. A gesture-controlled projection display for CTguided interventions. Int J Comput Assist Radiol Surg 2016 Jan;11(1):157–64. PMID: 25958060
- 112. Nainggolan FL, Siregar B, Fahmi F. Anatomy learning system on human skeleton using Leap Motion Controller. In: 2016 3rd International Conference on Computer and Information Sciences (ICCOINS) IEEE; 2016; p. 465–70. doi: 10.1109/ICCOINS.2016.7783260
- 113. Virag I, Stoicu-Tivadar L, Crisan-Vida M. Gesture-based interaction in medical interfaces. In: 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI) IEEE; 2016; p. 519–23. doi: 10.1109/SACI.2016.7507339
- 123. Alvarez-Lopez F, Maina MF, Saigí-Rubió F. Natural User Interfaces: Is It a Solution to Accomplish Ubiquitous Training in Minimally Invasive Surgery? Surg Innov 2016 Aug;23(4):429-30. PMID: 27009688
- 124. Juanes JA, Gómez JJ, Peguero PD, Ruisoto P. Digital Environment for Movement Control in Surgical Skill Training. J Med Syst 2016 Jun;40(6):133. PMID: 27091754
- 126. Despinoy F, Sánchez A, Zemiti N, Jannin P, Poignet P. Comparative Assessment of a Novel Optical Human-Machine Interface for Laparoscopic Telesurgery. In Springer, Cham; 2014; p. 21–30. doi: https://doi.org/10.1007/978-3-319-07521-1_3
- 127. Vargas HF, Vivas OA. Gesture recognition system for surgical robot's manipulation. In: 2014 XIX Symposium on Image, Signal Processing and Artificial Vision IEEE; 2014; p. 1–5. doi: <u>10.1109/STSIVA.2014.7010172</u>
- 128. Travaglini TA, Swaney PJ, Weaver KD, Webster III RJ. Initial Experiments with the Leap Motion as a User Interface in Robotic Endonasal Surgery. In: Robotics and mechatronics : proceedings of the 4th IFToMM International Symposium on Robotics and Mechatronics IFToMM International Symposium on Robotics and Mechatronics (4th : 2015 : Poitiers, France) 2016. p. 171–9. PMID: 26752501
- 129. Despinoy F, Zemiti N, Forestier G, Sánchez A, Jannin P, Poignet P. Evaluation of contactless humanmachine interface for robotic surgical training. Int J Comput Assist Radiol Surg 2018 Jan 15;13(1):13– 24. PMID: 28914409
- 132. Mauser S, Burgert O. Touch-free, gesture-based control of medical devices and software based on the leap motion controller. Stud Health Technol Inform 2014;196:265–70. PMID: 24732520