Study	Year/	Aim	Type of	Intervention	Metrics	Sample	Results/Conclusions
	Device		study				
[82]	2004	To propose an	Prototype	Gesture detection	Time to	16 subjects in a	The preliminary
	Camera	architecture for	user testing.	in computer-	perform the	simulated setting.	results show good
	with CMOS	a real-time		assisted surgery.	tasks.	Video-assisted	usability and rapid
	sensor	multimodal			Questionnaire	surgery.	learning.
		system to			about the		The average time to
		provide a			experience.		click anywhere on the
		touchless user					screen was less than 5
		interface in					seconds.
		surgery.					Lighting conditions
							affected the
							performance of the
							system.
							The surgeon showed
							strong interest in the
							system and
							satisfactorily assessed
							the use of gestures
							within the operating
							room.
[100]	2006	To describe a	Prototype	Manipulation of	Performance	1 user.	The system
	Webcam	vision-based	user testing.	medical data	rate in 4 tasks.		implemented in a
		system that can		(radiology images			sterile environment
		interpret		and selection of			demonstrated
		gestures in real		medical records)			performance rates
		time to		and movement of			between 95% and
		manipulate		objects and			100%.
		objects within a		windows on the			
		medical data		screen.			
		visualization					
		environment.					
[27]	2008	To describe a	Beta testing	A beta test of a	Gesture	10 inexperienced	Gesture recognition
	Canon VC-	vision-based	during a	system prototype	recognition	users.	accuracy was 96%.
	C4 color	gesture capture	surgical	was conducted	accuracy.	1 experienced	For every repeat of
	camera	system that	procedure.	during a live	Task learning.	user.	trials, the task
		interprets	Experiment.	brain biopsy	Excess		completion time
		gestures in real		operation, where	gestures used.		decreased by 28% and
		time to		neurosurgeons	Rotation		the learning curve
		manipulate		were able to	accuracy.		levelled off at the 10th
		medical		0	Beta test		attempt.
		images.		MRI images of the	during a		The gestures were

Table 3. Summary of included studies evaluating other devices.

				patient's brain	biopsy.		learned very quickly
				using the sterile	ыорзу.		and there was a
				hand gesture			significant decrease in
				interface.			the number of excess
				interface.			
							gestures.
							Rotation accuracy was reasonable.
							The surgeons rated the
							system as easy to use,
							with a rapid response,
							and useful in the
							surgical environment.
[26]	2008	To evaluate the		1	Contextual	1 neurosurgical	The system setup time
	Canon VC-	Gestix system.	user testing.	MRI images	interview.	biopsy.	was 20 minutes.
	C4 camera			during a	Individual		The surgeons found
				neurosurgical	interview.		the Gestix system easy
				biopsy.	Subjective		to use, with a rapid
					satisfaction		response, and easy to
					questionnaire.		learn.
							The system does not
							require the use of
							wearable devices.
[56]	2011	Fieldwork	Ethnographic	Manipulation of	Not described.	Angiography suite	The paper discusses
	Interaction	focusing on	study of	radiological		of a large hospital	the implications of the
	with	work practices	minimally	images.		in the United	findings in the work
	gestures in	and	invasive			Kingdom.	environment for
	general	interactions in	image-guided				touchless interaction
		an angiography	procedures				technologies, and
		suite and on	within an				suggests that these will
		understanding	interventiona				be of importance in
		the	l radiology				considering new input
		collaborative	department.				techniques in other
		work practices					medical settings.
		in terms of					
		image					
		production and					
		use.					
[74]	2012	To describe the	Proof-of-	Surgical	Percentage	A simulated	95% of gestures were
	1			instrumentation	gesture	surgical	recognized correctly.
	Commercial	development of	concept.	motranon	0		
	Commercial video	development of Gestonurse, a	concept.	using a robot.	recognition.	environment.	The system was only
		-	concept.		-	environment.	The system was only 0.83 seconds slower
	video	Gestonurse, a	concept.		recognition.	environment.	
	video	Gestonurse, a robotic system	concept.		recognition.	environment.	0.83 seconds slower

							human instrument
							handler.
[57]	2012		Ethnographic		Not described.	A neurosurgery	Alternative ideas, such
	Touchless	and use	study.	observations of		operating room.	as multiple cameras,
	interaction	common		work practices in			are the kind of solution
	systems in	practices in the		neurosurgery.			that these findings
	general	surgical setting					suggest.
		from a					Such reflections and
		proxemics					considerations can be
		point of view to					revealed through
		uncover					careful analysis of the
		implications for					spatial organization of
		the design of					activity and proxemics
		touchless					of particular
		interaction					interaction
		systems.					mechanisms.
		The aim is to					However, it is very
		think of					important to study
		touchlessness					current practice in
		in terms of its					order to speculate
		spatial					about new systems,
		properties.					because they in turn
		What does					may alter practice.
		spatial					
		separation					
		imply for the					
		introduction of					
		the touchless					
		control of					
		medical					
		images?					
[75]	2013	To present a	Experiment.	Recording the	Linear	Not described.	The results showed a
	Webcam	system for		movements of the	triangulation		resolution of 0.616 mm
		tracking the		instrument	method.		on each axis of work,
		movement of		within an			linearity and
		MIS		imaginary cube.			repeatability in motion
		instruments					tracking, as well as
		based on an					automatic detection of
		orthogonal					the 3D position of the
		webcam					tip of the surgical
		system					instruments with
		installed in a					sufficient accuracy.
		physical					The system is a low-

		simulator.					cost and portable
							alternative to
							traditional instrument
							tracking devices.
[55]	2017	To evaluate the	Pilot user	Two	A Likert scale	3 surgeons	Natural user interfaces
	MK, the	feasibility of	study.	hepatectomies	to rate		are feasible for directly
	LMC, the	using three		and two partial	comfort, user		interacting, in a more
	Муо	different		nephrectomies on	friendliness,		intuitive and sterile
	armband	gesture control		an experimental	physical		manner, with
	and voice	sensors (MK,		porcine model.	effort,		preoperative images
	control	the LMC and			intuitiveness,		and integrated
		the Myo			accuracy,		operating room
		armband) to			initialization,		functionalities during
		interact in a			speed and		MIS.
		sterile manner			disconnection		The combination of the
		with					Myo armband and
		preoperative					voice commands
		data as well as					provided the most
		in settings of an					intuitive and accurate
		integrated					natural user interface.
		operating room					
		during MIS.					
[54]	2017	To analyze the	User study.	Simulating a	Task	10	Novel input modalities
	The Myo	value of two	Comparative	diagnostic	completion	neuroradiologists	have the potential to
	armband	gesture input	study.	neuroradiological	time,		carry out single tasks
	and the	modalities (the		vascular	perceived task		more efficiently than
	LMC	Myo armband		treatment with	difficulty, and		clinically established
		and the LMC)		two frequently	subjective		methods.
		versus two		used interaction	workload.		
		clinically		tasks in an			
		established		experimental			
		methods (task		operating room.			
		delegation and					
		joystick					
		control).					
CT. Cor	nputed Tomo	aranhu	1	I	1		1

CT: Computed Tomography

MRI: Magnetic Resonance Imaging

- 26. Wachs J, Stern H, Edan Y, Gillam M, Handler J, Feied C, et al. A gesture-based tool for sterile browsing of radiology images. J Am Med Inform Assoc 2008 Jan;15(3):321–3. PMID: <u>18451034</u>
- 27. Wachs J, Stern H, Edan Y, Gillam M, Feied C, Smithd M, et al. Real-time hand gesture interface for browsing medical images. Int J Intell Comput Med Sci Image Process 2008;2(1):15–25. doi: https://doi.org/10.1080/1931308X.2008.10644149
- Hettig J, Saalfeld · Patrick, Luz M, Becker M, Skalej M, Hansen C. Comparison of gesture and conventional interaction techniques for interventional neuroradiology. Int J CARS 2017;12:1643–53.
 PMID: 28120179
- 55. Sánchez-Margallo FM, Sánchez-Margallo JA, Moyano-Cuevas JL, Pérez EM, Maestre J. Use of natural

user interfaces for image navigation during laparoscopic surgery: initial experience. Minim Invasive Ther Allied Technol 2017 Oct 3;26(5):253–61. PMID: 28349758

- 56. Johnson R, O'Hara K, Sellen A, Cousins C, Criminisi C. Exploring the Potential for Touchless Interaction in Image-Guided Interventional Radiology. In: 29th International Conference on Human Factors in Computing Systems ACM CHI 2011. Vancouver; 2011. p. 3323–32. doi: 10.1145/1978942.1979436
- 57. Mentis H, O'Hara K, Sellen A, Rikin Trivedi R. Interaction proxemics and image use in neurosurgery. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '12). New York: ACM Conference on Computer-Human Interaction; 2012. p. 927–36. doi:<u>10.1145/2207676.2208536</u>
- 74. Jacob M, Li Y-T, Akingba G, Wachs J. Gestonurse: a robotic surgical nurse for handling surgical instruments in the operating room. J Robot Surg. 2012;6(1):53–63. PMID: 27637980
- 75. Pérez F, Sossa H, Martínez R, Lorias D. Video-based tracking of laparoscopic instruments using an orthogonal webcams system. Acad Sci Eng Technol Int J 2013;7(8):440-3. doi: 10.5281/zenodo.1086517
- 82. Grange S, Terrence W, Fong T, Baur C. M/ORIS: A medical/operating room interaction system. In: 6th International Conference on Multimodal Interfaces (ICMI) ACM. ACM; 2004. p. 159–66. doi:10.1145/1027933.1027962
- 100. Wachs J, Stern H, Edan Y, Gillam M, Feied C, Smith M, et al. A Real-Time Hand Gesture Interface for Medical Visualization Applications. In: Tiwari A, Roy R, Knowles J, Avineri E, Dahal K, editors. Applications of Soft Computing, volume 36 of Advances in Intelligent and Soft Computing. Springer Berlin Heidelberg.; 2006. p. 153–62. doi: <u>https://doi.org/10.1007/978-3-540-36266-1_15</u>