**Supplemental Information** 

## $\alpha$ 1ACT is essential for survival and early cerebellar programming

## in a critical neonatal window

Xiaofei Du<sup>1</sup>, Cenfu Wei<sup>1</sup>, Daniel Parviz Hejazi Pastor<sup>1</sup>, Eshaan R. Rao<sup>1</sup>, Yan Li<sup>2</sup>, Giorgio Grasselli<sup>3,6</sup>, Jack Godfrey<sup>1</sup>, Ann C. Palmenberg<sup>4</sup>, Jorge Andrade<sup>2,5</sup>, Christian Hansel<sup>3</sup>, Christopher M. Gomez<sup>1,\*</sup>



Figure S1. Integrated RNA-seq and ChIP-seq analysis of  $\alpha$ 1ACT DEGs and verification in pc12 cells, related to Figure 1.

# Figure S1. Integrated RNA-seq and ChIP-seq analysis of $\alpha$ 1ACT DEGs and verification in pc12 cells, related to Figure 1.

(A) Representative  $\alpha$ 1ACT binding profiles of 4 selected target genes (*Fgfr3, Gfra2, Hcn4,* and *G0s2*) from whole-genome ChIP-Seq analysis (upper) and corresponding RNA-Seq reads expressions (lower). In ChIP-Seq analysis peaks in blue represent pc12 cell line expressing pcDNA3 while those in red represent pc12 cell lines expressing  $\alpha$ 1ACT. In RNA-seq analysis pc12- pcDNA3 peaks are displayed within dashed rectangle above and pc12- $\alpha$ 1ACT peaks displayed within solid line rectangle below, with all 3 biological replicates overlaid with each other.

(B) <u>Left</u> Differentially-expressed genes (DEGs) from RNA-Seq as days in culture. <u>Right</u>  $\alpha$ 1ACT-targeted DEGs as days in culture.

(C) RNA-seq/ChIP-seq integration analysis. Venn diagrams of potential putative targeted genes of α1ACT across 6hr, 24hr, 3d, and 10d. There are 21 persistent DEGs across the 4 time points.
 (D) Top enriched gene ontologies GOs based on 21 commonly identified potentially α1ACT-regulated DEGs.

(E) Scatter plots of RNA-seq DEGs in log2 normalized count per million (CPM) expression values in pc12 cell lines expressing  $\alpha$ 1ACT compared to samples expressing pcDNA3 at 4 time points respectively.

(F) Fold changes from RNA-Seq compared to fold changes from qRT-PCR for 39 RNA-Seq identified persistent DEGs, where genes marked in red are those also identified as  $\alpha$ 1ACT target genes using ChIP-Seq.

(G) The heat map of 1272 RNA-Seq DEGs (rows) across the 4 time points (columns) in the pc12 cell lines expressed with  $\alpha$ 1ACT and pcDNA3 control samples, where 3 replicates were used in the experiment.

(H) Heat map of log2 normalized CPM expression values of 21 persistent DEGs apparently regulated by  $\alpha$ 1ACT across 4 time points in biological replicates of pc12 cell line samples expressing  $\alpha$ 1ACT and EV. Gene dendrogram tree drawn based on hierarchical clustering.



# Figure S2. Time-dependent regulation of neurodevelopment and neuronal differentiation clusters by $\alpha$ 1ACT, related to Figure 1.

(A, B, and C) Functional interaction network visualization of top modules/clusters of highly correlated DEGs across time point from 6 to 24hr, 24hr to 3d, and 3d to 10d, where genes enriched in top selected GO in D) with respect to different GO clusters are highlighted with corresponding colors. The aqua green category represents uncategorized genes.

(D) Top enriched GOs based on RNA-Seq identified DEGs across time point from 6 to 24hr, 24hr to 3d, and 3d to 10d.

(E) Top enriched GOs based on RNA-Seq identified DEGs and ChIP-Seq/RNA-Seq integrated genes at 4 different time points, where up- and down- indicates dynamic transcriptome regulation by α1ACT.



Figure S3. Reintroduction of  $\alpha$ 1ACT to Purkinje cells restores survival, improves motor function, and rescues normal growth of KIKO mice, related to Figure 2.

# Figure S3. Reintroduction of $\alpha$ 1ACT in Purkinje cells restores survival, improves motor function, and recovers normal growth of KIKO mice, related to Figure 2.

(A) The expression of  $\alpha$ 1ACT is inhibited by 6 days of doxycycline (Dox) treatment, but it is recovered after discontinuation of Dox treatment for 10 Days. Cytoplasmic proteins were extracted from cerebellum and were used to assess the expression of  $\alpha$ 1ACT by western blot. (B) <u>Left</u> Motor impairment of KIKO mice on treadmill is rescued by  $\alpha$ 1ACT expression. At 1 month, KIKO:PC- $\alpha$ 1ACT mice had significantly improved function in gait speed and time spent on treadmill compared to KIKO mice (n=100,p<0.001). <u>Middle and Right</u> Impaired rotarod and openfield performance of KIKO mice at 1 month is rescued by  $\alpha$ 1ACT expression. (n=30, p<0.001).

(C) Motor impairment of KIKO mice in open field is corrected by expression of  $\alpha$ 1ACT. Open field recordings were performed on littermate Ctr, KIKO, KIKO:PC- $\alpha$ 1ACT mice at different ages. The differences in motor function were more prominent between KIKO and KIKO:PC- $\alpha$ 1ACT mice aged between 1-month and 9-months. There was no significant motor function difference between Ctr and KIKO:PC- $\alpha$ 1ACT mice.

Values are represented as mean±SEM. \*p<0.05, \*\*p<0.01; \*\*\*p<0.001. (n=30, P<0.001).



Figure S4.  $\alpha$ 1ACT-regulated DEG mRNAs and proteins were restored by expressing  $\alpha$ 1ACT in cerebellum of KIKO mouse during perinatal period, related to Figure 4.

# Figure S4. $\alpha$ 1ACT-regulated DEG mRNAs and proteins were restored by expressing $\alpha$ 1ACT in cerebellum of KIKO mouse during perinatal period, related to Figure 4.

(A) Expression of  $\alpha$ 1ACT target genes: *Fgfr3*, *Gfra2*, *Penk*, *Hcn4*, *Scl18a3*, *Syn2*, *G0s2*, *Astn2*, and *Elmod1* were determined comparing between Ctr, KIKO and KIKO:PC- $\alpha$ 1ACT mice with/without prenatal Dox treatment at indicated ages (n=10) Normalized to the mRNA of KIKO mice at p15. (B and C) Western blot (B) and Quantitation (C) in cerebellum of Ctr, KIKO and KIKO:PC- $\alpha$ 1ACT mice with and without prenatal DOX treatment at P20 day old for Fgfr3, Gfra2, Hcn4, Scl18a3, Syn2, Nrcam, L1cam and G0s2 with normalization to GAPDH (Cyt) and NaKATPase (Mem) (n=10). (D)  $\alpha$ 1ACT impact on cerebellar gene expression wanes with age in mouse. Representative target gene Fgfr3 and Scl18a3 expression in the cerebellum of mice at the different ages. Expression was determined by qRT-PCR comparing between Ctr, KIKO and KIKO:PC- $\alpha$ 1ACT mice with/without different DOX treatment starting time +1/+18M, +3/+18M, and +6/+18M at indicated ages (n=10). (E) Correlation coefficient of target gene protein expression with PC marker calbindin (upper) and climbing fiber marker vGlut2 (lower).

Values are represented as mean±SEM. \*p<0.05, \*\*p<0.01; \*\*\*p<0.001.



Figure S5. Absence of  $\alpha$ 1ACT in cerebellum of KIKO mice impairs cerebellar Purkinje cell morphology and electrophysiology, related to Figure 5.

# Figure S5. Absence of α1ACT in cerebellum of KIKO mice impairs cerebellar Purkinje cell morphology and electrophysiology, related to Figure 5.

(A) Calbindin and vGlut2 staining of sagittal cerebellar sections from Ctr, KIKO, KIKO:PC- $\alpha$ 1ACT littermates at p20. The scale bar represents 100 $\mu$ m.

(B) Quantification of the relative height of dendritic tree (upper), and the density of the PC dendritic tree (lower) were diminished in KIKO, but restored in KIKO:PC-α1ACT mice.

(C) Representative immunostaining of CFs and PC dendrites using anti-vGlut2 (red) and anticalbindin (green) antibodies in Ctr, KIKO, and KIKO:PC- $\alpha$ 1ACT mice with/without DOX-1/+1M at age of 17 days. The scale bar represents 25 $\mu$ m.

(D) Quantification of CF synapses. Immature CF synaptic contacts of KIKO mice are normalized by  $\alpha$ 1ACT at p17. Bar graphs show the relative intensity of CF puncta in PC soma (left) and the relative height of CFs (right) in KIKO mice compared to those in Ctr and KIKO:PC- $\alpha$ 1ACT mice with/without DOX-1/+1M at p17(n=10,p<0.05).

(E) Mean values and representative traces of PF innervation (PF-EPSC at increasing intensities of stimulation; traces at 55  $\mu$ A of intensity).

(F) Paired-pulse ratio of PF-EPSC at increasing inter-pulse intervals (traces at 20 ms);

Values are represented as mean±SEM. \*p<0.05, \*\*p<0.01; \*\*\*p<0.001



# Figure S6. α1ACT is conserved from Zebrafish to Human and secondary proteins in *CACNA1C*, *CACNA1H* genes, related to Figure 6.

(A) Western blot analysis of  $\alpha$ 1ACT from mouse, zebra fish and human.

(B) M-fold analysis for the secondary structure of zebrafish CACNA1A mRNA.

(C) VGCC phylogenetic tree.

(D) Schematic representation of the constructs with CACNA1A IRES plus sequence of  $\alpha$ 1ACT and a stop codon before N-terminus of  $\alpha$ 1ACT.

(E) <u>Left</u> *in vivo*, Western blot analysis of HEK293 cells transiently transfected with truncated C-terminally Flag tagged  $\alpha$ 1A. <u>Right</u> *in-vitro* transcription and translation of truncated C-terminally Flag tagged  $\alpha$ 1A, which generates the C-terminal proteins,  $\alpha$ 1ACT.

(F and G) Secondary structure of CACNA1C and CACNA1H mRNA by M-Fold.



Figure S7. Rotarod data of indicated treatment groups of mice at different ages, related to Figure 3.

Values are represented as mean±SEM. \*p<0.05, \*\*p<0.01; \*\*\*p<0.001.

# Table S1. Fold changes of RNA-Seq and fold changes of qRT-PCR in pc12 cells for 39 RNA-Seq identified persistent DEGs, related to Figure 1.

| PC12    | e        | Shr        |         | 24hr       | 30       | d        |        | 10d        |
|---------|----------|------------|---------|------------|----------|----------|--------|------------|
| Cells   |          |            |         |            |          |          |        |            |
|         | qRT-PCR  | RNA-seq    | RT-PCR  | RNA-seq    | RT-PCR   | RNA-seq  | RT-PCR | RNA-seq    |
| A4galt  | 0.75     | 0.5702595  | 0.6817  | 0.5922017  | 1.7421   | 1.505421 | 1.621  | 1.548662   |
| Astn2   | 1.237    | 1.043549   | 1.5481  | 1.674815   | 2.0679   | 2.289126 | 2.29   | 2.169615   |
|         |          |            |         |            |          |          | 1.0509 |            |
| B4galt6 | 0.267    | 0.3362908  | 0.4895  | 0.3919837  | 1.7345   | 1.370645 | 04     | 1.250904   |
| Cdh2    | 0.67     | 0.6137105  | 0.7463  | 0.7364938  | 1.4179   | 1.674179 | 1.16   | 1.527916   |
| Cnksr2  | 0.3312   | 0.3391275  | -0.2786 | 0.4165389  | 1.03141  | 1.363141 | 1.25   | 1.312725   |
| Dbc1    | 0.93512  | 0.8359292  | 0.9398  | 1.099338   | 1.4583   | 1.612583 | 1.0143 | 1.573443   |
| Dusp4   | 0.894    | 0.6316289  | 0.6649  | 0.6786954  | 1.8914   | 1.428914 | 1.3152 | 1.474305   |
|         |          |            |         |            |          |          | 1.1400 |            |
| Efnb2   | 0.9733   | 0.6684167  | 0.7352  | 0.7439235  | 2.0643   | 2.242586 | 5      | 1.414005   |
|         |          |            |         |            |          |          | 1.2885 |            |
| Elmod1  | 0.489    | 0.5582946  | 0.6374  | 0.629837   | 1.346344 | 1.346344 | 22     | 1.288522   |
| Fgfr3   | 0.932    | 0.4180547  | 0.604   | 0.3967142  | 1.97665  | 1.297665 | 1.0165 | 1.293055   |
|         |          |            |         |            |          |          | 1.7205 |            |
| G0s2    | 0.26     | 0.3598383  | 0.421   | 0.4499513  | 1.321143 | 1.221143 | 5      | 1.272055   |
|         |          |            | 1.27906 |            |          |          | 1.6327 |            |
| Gfra2   | 1.6      | 1.273488   | 9       | 1.279069   | 2.7308   | 2.127608 | 2      | 1.903272   |
|         |          |            |         |            |          | 0.096499 |        | 0.0240986  |
| Gldn    | -3.3     | -3.320905  | -2.6197 | -3.8281    | 0.649    | 99       | 0.036  | 4          |
| Hcn4    | 2.34     | 1.891413   | 1.4019  | 1.471019   | 3.68398  | 3.268398 | 2.32   | 2.473258   |
|         |          |            |         |            |          |          | 1.5445 |            |
| Kcnh1   | -1.036   | 1.626352   | -0.573  | 1.051973   | 1.049209 | 1.749209 | 5      | 1.654455   |
| L1cam   | 0.579    | 0.3806072  | 0.49393 | 0.390393   | 1.626    | 1.23526  | 1.263  | 1.296842   |
| Lpcat2  | 0.51023  | 0.5610234  | 0.4309  | 0.4313009  | 1.09875  | 1.209875 | 1.2482 | 1.248268   |
|         | -        |            |         |            |          |          |        |            |
|         | 0.257327 |            | -       |            |          | 0.670863 |        |            |
| Maged2  | 3        | -0.2673273 | 0.44086 | -0.4308786 | 0.8637   | 7        | 0.7332 | 0.7833229  |
|         |          |            |         |            |          | 0.607230 | 0.6173 |            |
| Mdga1   | -1.02    | -0.9640492 | -0.8236 | -0.8309336 | 0.6302   | 2        | 662    | 0.6173662  |
|         |          |            |         |            |          |          | 1.1294 |            |
| Mgmt    | 0.6114   | 0.6131507  | 0.4583  | 0.446258   | 1.//01/  | 1.2//01/ | /      | 1.412947   |
|         | -        | 1 01 221 6 | 2 2642  | 2 200754   | 0.426    | 0.1/5060 | 0 2222 | 0 40000000 |
| Mmp13   | 1.012316 | -1.912316  | -2.3643 | -2.268754  | 0.136    | 3        | 0.2323 | 0.1989323  |
| Nmnat2  | 0.6446   | 0.3666446  | 0.351/  | 0.3628397  | 1.54878  | 1.254878 | 1.0234 | 1.266934   |
| Nsg2    | 0.5152   | 0.4142965  | 0.3652  | 0.352953   | 1.0189   | 1.250189 | 1.164  | 1.383754   |
|         |          |            |         |            |          | 0.478696 | 0.7851 |            |
| Ntn1    | -1.0369  | -1.053992  | 0.1154  | -0./931574 | 0.7869   | 4        | 23     | 0.4/85123  |
| Odat    | 0.40     | 0.004.0000 | 0.5005  | 0 5 47000  | 0.0007   | 0.708655 | 0.0470 | 0 7000075  |
|         | -0.42    | -0.3918093 | -0.5665 | -0.547988  | 0.8367   | 2        | 0.6478 | 0.7339275  |
| Olfm2   | 1.1345   | 1.305065   | 0.392   | 0.9319932  | 2.443    | 2.665744 | 2.434  | 2./46516   |

|         | 0.196216 |            |         |            |          |          | 1.1036 |           |
|---------|----------|------------|---------|------------|----------|----------|--------|-----------|
| Osbpl5  | 1        | 0.2962161  | 0.2924  | 0.2842042  | 1.095192 | 1.295192 | 8      | 1.310368  |
|         |          |            |         |            |          |          | 1.1252 |           |
| Papss2  | 1.13     | 1.105238   | 1.0243  | 1.12465    | 2.59186  | 2.359186 | 1      | 1.612521  |
|         |          |            |         |            |          | 0.749488 | 0.7544 |           |
| Pdlim5  | 0.678    | -0.3583117 | 0.3976  | -0.4074455 | 0.94885  | 5        | 489    | 0.7544489 |
|         |          |            |         |            |          |          | 1.7216 |           |
| Penk    | 1.27     | 1.098139   | 1.085   | 1.148067   | 2.89     | 2.495001 | 5      | 2.172165  |
|         |          |            |         |            |          |          | 3.4039 |           |
| Ppyr1   | 2.00389  | 2.109389   | 1.1738  | 1.222278   | 2.143    | 2.465131 | 8      | 3.340398  |
|         |          |            |         |            |          |          | 2.4921 |           |
| Ptger3  | 1.989172 | 1.689172   | 1.479   | 1.503262   | 3.68632  | 3.088662 | 5      | 2.249215  |
|         |          |            |         |            |          |          | 4.3020 |           |
| Rbfox1  | 2.128435 | 2.328435   | 2.1637  | 1.994617   | 7.765    | 7.524765 | 65     | 5.302065  |
| RGD156  |          |            |         |            |          |          |        |           |
| 2618    | 1.306012 | 1.206012   | 1.221   | 1.022007   | 2.06706  | 2.206706 | 2.523  | 2.285273  |
|         | -        |            |         |            |          |          |        |           |
|         | 0.408030 |            |         |            |          | 0.720074 |        |           |
| Slc18a1 | 2        | -0.3080302 | -0.3314 | -0.3155318 | 0.7753   | 1        | 0.6294 | 0.8266777 |
| Slc18a3 | 1        | 0.713668   | 0.8721  | 0.7695011  | 2.9893   | 1.709893 | 1.0182 | 1.461182  |
| Sqrdl   | 1.0296   | 0.9296004  | 1.14086 | 1.014086   | 1.96785  | 1.896785 | 1.7598 | 1.74598   |
|         |          |            |         |            |          |          | 1.2304 |           |
| Syn2    | 0.78     | 0.7608895  | 0.75    | 0.7172784  | 2.537345 | 1.537345 | 1      | 1.423041  |
|         | -        |            |         |            |          | 0.580304 | 0.7268 |           |
| Sytl4   | 0.324368 | -0.3477368 | -0.5402 | -0.5392402 | 0.803041 | 1        | 808    | 0.7268808 |

| name             | Sequence                                     |
|------------------|----------------------------------------------|
| C1177M           | aatGGTACCATCGCCTTCTTCATGATGAACATCTTCGTG      |
| C1386M           | aatGGTACCCGCCTGTTCCGGGTCATGCGTCTGGTGAAGCTG   |
| C1731            | aatGGTACCCGACGGGCCATCTCTGGAGATCTCACC         |
| KpnIRpCMV6R      | ttaggtaccccggTCACTTGTCGTCGTCGTCCTTGT         |
|                  |                                              |
| H1343M           | aatAAGCTTgcggagatgatggtgaaggtggtg            |
| H1495M           | aatAAGCTTggccaggccctgatgtcgctg               |
| H1924M           | aatAAGCTTcaaggtgtccgtgtccaggatgctctcgct      |
| FlagXbaIR        | atacTCTAGATCACTTGTCGTCGTCGTCCTTGT            |
|                  |                                              |
| HumanC5883MSTF   | ggaaaggcacgttccgtagtgtgaggatctggag           |
| HumanC5883MSTR   | ctccagatcctcacactacggaacgtgcctttcc           |
|                  |                                              |
| 3309STHumanCF    | ttggcatccagtccagtgcatagaatgtcgtgaagatcttgcg, |
| 3309STHumanCR    | cgcaagatcttcacgacattctatgcactggactggatgccaa  |
|                  |                                              |
| 5235STHumanCF    | gctggaccaggtgtagccccctgcaggt                 |
| 5235STHumanCR    | acctgcagggggctacacctggtccagc                 |
|                  |                                              |
| 6105dblSTHumanHF | ctgcaggaggtggagtagtagacctatggggccg           |
| 6105dblSTHumanHR | cggccccataggtctactactccacctcctgcag           |
|                  |                                              |
| 5898STHumanHF    | gatcgagctggagtaggcgcagggcccc                 |
| 5898STHumanHR    | ggggccctgcgcctactccagctcgatc                 |
| C1177M           | aatGGTACCATCGCCTTCTTCATGATGAACATCTTCGTG      |
| C1386M           | aatGGTACCCGCCTGTTCCGGGTCATGCGTCTGGTGAAGCTG   |
| Efnb2F           | actgcttagtggccgc                             |
| Efnb2R           | ctatagatccaggaca                             |
| NrcamF           | gaccgtgcagaaacggaga                          |
| NrcamR           | tcactggagagcagcacaa                          |
| Fgfr3F           | gctggttagtttgata                             |
| Fgfr3K           | ggtacaaagcctgacagt                           |
| Rbfov1R          | agagetangagetecegage                         |
| Gfra2F           | ggctgatggtgaacateetg                         |
| Gfra2R           | gagtaaccatcacacagagt                         |
|                  |                                              |

## Table S2. Primers used in paper, related to STAR Methods.

 Table S3. Probes used in paper, related to STAR Methods.

| Taqman probes | catalog number | gene name   |
|---------------|----------------|-------------|
|               | Mm01241874_m1  | cacna1a FAM |
|               | Mm0127403_g1   | cacna1a FAM |
|               | Mm00432190_m1  | cacna1a     |
|               | Mm00484537_g1  | G0s2        |
|               | Mm00502443_m1  | Sqrd1       |
|               | Mm00615393_m1  | Nmnat2      |
|               | Mm00491465_s1  | Slc18a3     |
|               | Mm00500896_m1  | Ntn1        |
|               | Mm00433586_m1  | Gfra2 FAM   |
|               | Mm00433294_m1  | Fgfr3       |
|               | Mm99999915_g1  | Gapdh       |
|               | Mm00625163_m1  | Elmod1      |
|               | Mm00625046_m1  | Cnksr2      |
|               | Mm01176086_m1  | Hcn4        |
|               | Mm00476554_m1  | Nsg2        |
|               | Mm00449780_m1  | Syn2        |
|               | Mm03307804_pri | mmu-mir-485 |
|               | Mm00438670_m1  | FEfnb2      |
|               | Mm01303346_m1  | Mdga1 FAM   |
|               | Mm01312650_m1  | Pdlim5 FAM  |
|               | Mm01197820_m1  | Papss2 FAM  |
|               | Mm01349181_m1  | Rab3a       |
|               | Mm00463805_m1  | Sv2b        |
|               | Mm00723761_m1  | Dusp4       |
|               | Mm00616548_m1  | Gldn        |
|               | Mm01316769_m1  | Kcnh1       |
|               | Mm00493049_m1  | L1cam       |
|               | Hs01588138_m1  | CACNA1A FAM |
|               | Hs01588146_m1  | CACNA1A FAM |
|               | Hs01579431_m1  | CACNA1A     |
|               | Hs01579433_g1  | CACNA1A FAM |
|               | Hs00179829_m1  | FGFR3       |
|               | Hs00176393_m1  | GFRA2       |
|               | Hs00975492_m1  | HCN4        |
|               | Hs00268179_s1  | SLC18A3     |
|               | Hs01024740_m1  | ASTN2       |
|               | Hs00274782_s1  | GOS2        |
|               | Hs00989928_m1  | PAPSS2      |
|               | Hs00924151_m1  | NTN1        |
|               | Hs00380505_m1  | ELMOD1      |

| Hs00322752_m1 | Nmnat2 |
|---------------|--------|
| Hs00738960_m1 | GLDN   |
| Hs01109748_m1 | L1CAM  |
| Hs99999903_m1 | АСТВ   |
| Mm01268569_m1 | Kcnma1 |
| Hs01119504_m1 | Kcnma1 |
| Hs99999901_s1 | 18S    |

| Number | Age                     | Sex    | Cerebellar<br>pathology | Ethnicity        |
|--------|-------------------------|--------|-------------------------|------------------|
| 1805   | Term/38 weeks gestation | Male   | none                    | unknown          |
| 1681   | Term/36 weeks gestation | Male   | none                    | unknown          |
| 15607  | 40 weeks gestation      | Female | none                    | unknown          |
| 8715   | 23 years                | Female | none                    | African American |
| 6715   | 24 years                | Male   | none                    | African American |
| 4516   | 20 years                | Male   | none                    | African American |
| 8716   | 50 years                | Female | none                    | African American |
| 1646   | 50 years                | Male   | none                    | Caucasian        |
| 15016  | 53 years                | Male   | none                    | Caucasian        |
| 46356  | 80 years                | Male   | none                    | unknown          |
| 9763   | 81 years                | Female | none                    | unknown          |
| 13110  | 83 years                | Male   | none                    | unknown          |

## Table S4. Cerebellar tissue blocks, related to Figure 4.

## Supplemental Videos, related to Figure 2.

### Movie S1.

## Motor abnormalities are pervasive at in KIKO mice at p18 and at p30, related to Figure 2.

At p18, KIKO mouse (present at lower left corner at the start) continues to display decreased mobility and a wide ataxic gait when compared to an age-matched wildtype mouse. At p30, KIKO mouse (present in middle right at the start) continues to display decreased mobility and a wide ataxic gait when compared to an age-matched wildtype mouse.

#### Movie S2

# Rescue effects of reintroduction of $\alpha$ 1ACT (KIKO:PC- $\alpha$ 1ACT) at p18 and at p30, related to Figure 2.

At p18, KIKO rescue mouse (KIKO:PC- $\alpha$ 1ACT) introduced in the video as the third mouse still has a similar phenotype to the wildtype mouse and improved gait stance and mobility compared to KIKO. At p30, KIKO rescue mouse (KIKO:PC- $\alpha$ 1ACT) introduced in the video as the third mouse still has a similar phenotype to the wildtype mouse and improved gait stance and mobility compared to KIKO.

#### Movie S3

Perinatal (Dox-1/+1M) Dox exposure in KIKO:PC- $\alpha$ 1ACT leads to motor abnormalities at p18 and at p30, related to Figure 2.

At p18, Perinatal Dox induced inhibition of  $\alpha$ 1ACT in rescue mouse (fourth mouse) reverses the rescue phenotype and reintroduces the motor abnormalities of KIKO mice. At p30, Perinatal Dox induced inhibition of  $\alpha$ 1ACT in rescue mouse (fourth mouse) reverses the rescue phenotype and reintroduces the motor abnormalities of KIKO mice.