SUPPLEMENTARY DATA

Supplementary Table 2: Key Resources Table

REAGENT or RESOURCE	SOURCE	IDENTIFIER		
Bacterial and Virus Strains				
Nalidixic acid resistant derivative of S.	32	IR715		
Typhimurium ATCC14028				
S. Typhimurium IR715 phoN::Cm	33	SW284		
E. cloacae isolated from C57BL/6NHsd	This study	Hsd146		
K. oxytoca isolated from C57BL/6NTac	This study	Tac148		
P. vulgaris isolated from C57BL/6NTac	This study	Tac149		
P. mirabilis isolated from C57BL/6NCrl	This study	Crl143		
E. coli #1 isolated from C57BL/6NCrl	This study	Crl141		
E. coli #2 isolated from C57BL/6NCrl	This study	Crl142		
E. coli isolated from C57BL/6NHsd	This study	Hsd145		
E. coli Nissle 1917 wild-type strain (O6:K5:H1)	34	EcN		
E. coli Nissle 1917 cydAB mutant	19	YL219		
E. coli zxx::RP4 2-(Teť::Mu) (Kan ^r ::Tn7) λpir	35	S17-1 λpir		
<i>E. coli</i> K-12 strain TOP10; F^- mcrA Δ (mrr hsdRMS	Invitrogen	One Shot® TOP10		
<i>m</i> crBC) Φ80 <i>la</i> cZΔM15 <i>la</i> cX74 <i>re</i> cA1 <i>araD</i> 139		Chemically		
Δ(ara - leu)7697 galU galK rpsL endA1 nupG		Competent E. coli		
		(Cat# C404010)		
Chemicals, Peptides, and Recombinant Proteins				
PCR SuperMix High Fidelity	Invitrogen	Cat # 10790020		
Critical Commercial Assays				
PowerSoil DNA Isolation	MoBio	Cat# 12888-50		
QIAquick PCR Purification Kit	Qiagen	Cat# 28106		
Gibson Assembly Master Mix	NEB	Cat #E2611L		
Zymoclean Gel DNA Recovery kit	Zymogen	Cat #D4001		
Qubit dsDNA HS Assay Kit	Invitrogen	Cat# Q32854		
TOPO cloning kit	Invitrogen	Cat# K456001		
Deposited Data				
Raw and analyzed 16S rDNA Illumina sequencing	This study	SRA accession		
data		number:		
		SRP148888		
Raw and analyzed 16S rDNA Sanger sequencing	This study	Genbank		
data		accession number:		
		MH759762-		
		MH759768		
Experimental Models: Organisms/Strains				
Female wild-type VAF B6 mice	Charles River	Strain code: 027;		
	Laboratories	C57BL/6Crl		
Female wild-type SPF B6 mice	Envigo	C57BL/6Hsd		
Female wild-type MPF B6 mice	Taconic Biosciences	C57BL/6NTac		
Female wild-type SPF B6 mice	The Jackson	Stock # 000664,		
	Laboratories	C57BL/6J		

Female wild-type SPF B6 mice	The Jackson	Stock # 005304,
	Laboratories	C5/BL/6NJ
Germ-free Swiss Webster mice	Baumler Lab,	Tac:SW
	University of	
	California, Davis,	
	USA	
Oligonucleotides		
Illumina 16S rRNA sequencing primer forward:	36	515F
AATGATACGGCGACCACCGAGATCTACAC		
NNNNNNNTATGGTAATTGT		
GTGCCAGCMGCCGCGGTAA		
Illumina 16S rRNA sequencing primer reverse:	36	806R
CAAGCAGAAGACGGCATACGAGAT		
NNNNNNAGTCAGTCAGCC		
GGACTACHVGGGTWTCTAAT		
Full longth 16S rDNA forward soquencing primer:	37	62E
		036
Full longth 16S rPNA roverse sequencing primer:	37	1387D
		1307 1
Primor for cloning E, coli cvd/B gonos (5'	This study	EcNcomp Ewd
	This study	Echcomp Fwu
Drimon for eleging E and surfAD region (El	This study	
Primer for cloning <i>E. coll cydAB</i> genes (5-	i nis study	ECINCOMP Rev
GIGGGIGITAC -3')		
Recombinant DNA		
pWSK129::Ω cassette	30	pCAL61
pWSK29::Ω cassette	30	pCAL62
pCR2.1-TOPO	Invitrogen	Cat# K4500-01
pCR2.1-TOPO containing 16S gene insert from	This study	pEV176
<i>E. cloacae</i> Hsd146		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV178
<i>E. cloacae</i> Tac148		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV179
<i>E. cloacae</i> Tac149		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV173
E. cloacae Crl143		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV171
E. cloacae Crl141		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV172
E. cloacae Cri142		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV176
E. cloacae Hsd145		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV216
E. coli Nissle 1917		
pCR2.1-TOPO containing 16S gene insert from	This study	pEV218
S. Typhimurium IR715	-	
pWSK129 containing E. coli Nissle 1917 cydAB	This study	pBMM17
genes		

Software and Algorithms		
Excel for Mac 2011	Microsoft	www.microsoft.co m/Buy/Excel
Excel for Windows 2010	Microsoft	www.microsoft.co m/Buy/Excel
Prism V7.0	Graph Pad	https://www.graph pad.com/scientific- software/prism/
Snapgene 4.1.5 for macOS	Snapgene	http://www.snapge ne.com/products/s napgene/about_sn apgene/
NIH nucleotide BLAST	National Center for Biotechnology Information	https://blast.ncbi.nl m.nih.gov/Blast.cgi
MEGA (version 7 for macOS)	Kumar S, 2016 (https://academic.ou p.com/mbe/article/3 3/7/1870/2579089)	http://www.megaso ftware.net/
R version 3.4.3	R Core Team (2013)	http://cran.us.r- project.org/
DADA2 R Package (1.6)	39	https://benjjneb.git hub.io/dada2/index .html
QIIME V1.91	40	http://qiime.org/inst all/install.html
QIIME V2.0	40	https://qiime2.org/
Greengenes Database version 13_8	41	http://greengenes. secondgenome.co m/
Ribosomal Database Project Release 11	42	https://rdp.cme.ms u.edu/
Linear discriminant analysis (LDA) effect size (LEfSe)	43	http://huttenhower. sph.harvard.edu/g alaxy

Supplementary Figures

Supplementary Figure 1: Vendors are a dominant source of variation in lethal morbidity during *Salmonella* infection. Related to Figure panels 1a-c. (a-I) Mice from Charles River Laboratories (C57BL/6NCrI) (a, e and i), Harlan (C57BL/6NHsd) (b, f and j), Taconic Farms (C57BL/6NTac) (c, g and k) or Jackson Laboratories (C57BL/6J) (d, h, and I) were challenged with 10⁹ (a-d), 10⁷ (e-h) or 10⁵ CFU of *S*. Typhimurium per animal (i-I). Lethal morbidity was monitored at the indicated time points after challenge. The experiment was repeated one year apart (*n* is given in Supplementary Figure 2) and results from both trials (trial 1, solid lines; trial 2, dashed lines) are included in the same figure panel for comparison. Results of a statistical analysis are provided in **Supplementary Table 1**.

Supplementary Figure 2: Vendors are a dominant source of variation in intestinal colonization during *Salmonella* **infection. Related to Figure panels 1d-f.** (a-l) Mice from Charles River Laboratories (C57BL/6NCrl) (a, e and i), Harlan (C57BL/6NHsd) (b, f and j), Taconic Farms (C57BL/6NTac) (c, g and k) or Jackson Laboratories (C57BL/6J) (d, h, and l) were challenged with 10⁹ (a-d), 10⁷ (e-h) or 10⁵ CFU of S. Typhimurium per animal (i-l). Fecal shedding of *S*. Typhimurium was quantified at the indicated time points after challenge. The experiment was repeated one year apart and results from both trials (trial 1, closed circles and solid lines; trial 2, open circles and dashed lines) are included in the same figure panel for comparison. Trend lines represent geometric means and each dot represents data from one animal (*n*). LOD, limit of detection. Results of a statistical analysis are provided in **Supplementary Table 1**.

Supplementary Figure 3: Genetic variation between C57BL/6 substrains is not a dominant source of phenotypic variation during *Salmonella* **infection. Related to Figure panel 1h.** (af) Two C57BL/6 substrains (C57BL/6J and C57BL/6NJ) from Jackson Laboratories were challenged with 10⁵ (a and d), 10⁷ (b and e) or 10⁹ CFU (c and f) of *S*. Typhimurium per animal. (a-c) Development of lethal morbidity over time was recorded. (e-f) Fecal shedding of *S*. Typhimurium was quantified at the indicated time points after challenge. Trend lines represent geometric means and each dot represents data from one animal (*n*). Results of a statistical analysis are provided in **Supplementary Table 1**.

Supplementary Figure 4: Germ-free mice receiving a fecal microbiota transplant phenocopy the variation in *S*. Typhimurium intestinal colonization observed in donor mice. Related to Figure panels 2a-e. (a-l) Germ-free Swiss Webster mice received fecal microbiota transplants from Charles River mice (C57BL/6NCrl) (a, e and i), Harlan mice (C57BL/6NHsd) (b, f and j), Taconic mice (C57BL/6NTac) (c, g and k) or Jackson mice (C57BL/6J) (d, h, and l). Mice were then challenged with 10⁹ (a-d), 10⁷ (e-h) or 10⁵ CFU of *S*. Typhimurium per animal (i-l). Fecal shedding of *S*. Typhimurium was quantified at the indicated time points after challenge (open circles and dotted lines). For comparison, fecal shedding of the respective donor mice challenged with the same dose of *S*. Typhimurium (closed circles and solid lines) from the experiment shown in Extended Data Figure 3 were included in each figure panel. Trend lines represent geometric means and each dot represents data from one animal. (m) Fraction of ex-germ-free SW mice developing intestinal carriage at different *S*. Typhimurium challenge doses. Results of a statistical analysis are provided in **Supplementary Table 1**.

Supplementary Figure 5: The relative abundance of *Clostridiales* **is not a source of phenotypic variation in** *Salmonella* **susceptibility. Related to Figure panel 2g.** (a) Fecal pellets were collected from Charles River mice (C57BL/6NCrl), Harlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6J) and subjected to 16S profiling. (b) Germ-free Swiss Webster (SW) mice received a pooled fecal microbiota transplant (FMT) from Charles River mice (C57BL/6NCrl), Harlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NCrl), Harlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NCrl), Harlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6NHsd), Marlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6NCrl), Harlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6NCrl), Harlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6J) and fecal pellets were collected five days later from each mouse for 16S profiling. (a and b) Graphs show relative taxa abundance at the order level. Each bar represents data from one animal (*n***)**. Results of a statistical analysis are provided in **Supplementary Table 1**.

Supplementary Figure 6: Detection of differences in the microbiota composition by linear discriminant analysis. Related to Figure panel 1i. (a-c) Cladograms show differences in taxa composition between Jackson mice (C57BL/6J) and Charles River mice (C57BL/6NCrl) (a), between Jackson mice (C57BL/6J) and Taconic mice (C57BL/6NTac) (b), or between Jackson mice (C57BL/6J) and Harlan mice (C57BL/6NHsd) (c). Taxa that are more abundant in resistant mice (C57BL/6NCrl, C57BL/6NTac, or C57BL/6NHsd) compared to susceptible mice (C57BL/6J) are shown in green. Taxa less abundant in resistant mice (C57BL/6NCrl, C57BL/6NTac, or C57BL/6NHsd) compared to susceptible mice (C57BL/6NTac, or C57BL/6NHsd) compared to susceptible mice (C57BL/6J) are shown in red.

Supplementary Figure 7: Enterobacteriaceae are keystone species responsible for phenotypic variation. Related to Figure 3. (a) Mice from Jackson Laboratories (C57BL/6J) (red circles) or Charles River (C57BL/6NCrl) (blue circles) were housed normally (closed circles) or were cohoused (open circles). The presence of enteric bacteria in feces was determined by spreading dilutions of fecal homogenates on MacConkey agar plates at the indicated time points. Lines indicate the geometric mean of CFU recovered from feces. (b) Cohoused C57BL/6J mice from panel a were separated from C57BL/6NCrl mice and the presence of *Enterobacteriaceae* in feces was determined at the indicated time points after separation. Lines indicate the geometric mean of CFU recovered for feces. (c) The presence of *Lactobacilli* in feces of uninfected mice from the indicated vendors was determined by spreading dilutions of fecal homogenates on MRS agar plates. Bars represent the geometric mean \pm geomean standard deviation. (d-g) Mice from Jackson Laboratories (C57BL/6J) were mock-treated or received enteric bacteria from the indicated donor mice. Mice were challenged with 10^9 (n = 4) (d), 10^7 (n = 3-4) (e), 10^6 (n = 3-4) (f) or 10^4 (each dot represents data from one animal) (g) CFU of S. Typhimurium per animal and S. Typhimurium shedding with the feces was monitored at the indicated time points after challenge

(d, e, and f) or at four days after challenge (g). (a, b and g) Each dot represents data from one animal (*n*). (d-f) Trend lines represent geometric means ± geomean standard error. (g) Whiskers represent minimum to maximum points and the box extends from the 25th to 75th percentile with median plotted by a line. Bars represent geometric means ± geomean standard deviation. Each dot represents data from a biological repeat (*n*). Results of a statistical analysis are provided in **Supplementary Table 1**. LOD, limit of detection; ns, P > 0.05; *, $P \le 0.05$.

Supplementary Figure 8: Endogenous *Enterobacteriaceae* are keystone species responsible for phenotypic variation. Related to Figure 3. (a) The presence of *Enterobacteriaceae* in feces of uninfected C57BL/6 mice from different vendors was determined by spreading dilutions on MacConkey agar plates. (b) Germ-free Swiss Webster (SW) mice received fecal microbiota transplants(ex-germ-free SW mice) from the indicated donor mice and the presence of *Enterobacteriaceae* in feces was determined by spreading dilutions on MacConkey agar plates. (a-b) A line indicated the geometric mean. (c-d) Mice from Jackson Laboratories (C57BL/6J) were mock-treated or received *Enterobacteriaceae* from the indicated time points after challenge with 10^5 CFU per animal. Whiskers represent minimum to maximum points and the box extends from the 25th to 75th percentile with median plotted by a line. (d) Fraction of mice developing intestinal carriage after challenge with different S. Typhimurium doses (*n* = 4-11

per dose). (e) 16S rRNA gene sequences of *S*. Typhimurium strain IR715, *E. coli strain* Nissle 1917 and *Enterobacteriaceae* isolated from mice (C57BL/6NCrl, C57BL/6NHsd or C57BL/6NTac) were compared using a maximum likelihood model. (f and g) Mice from Jackson Laboratories (C57BL/6J) were inoculated with the indicated *Enterobacteriaceae*. (f) The presence of *Enterobacteriaceae* in feces prior to challenge was determined by spreading dilutions on MacConkey agar plates (n = 3). Bars represent the geometric mean ± geomean standard deviation. (g) Mice were challenged with *S*. Typhimurium and shedding of the pathogen with the feces was determined four days later. Lines indicate the geometric mean. (a, b, c, f and g) Each dot represents data from one animal, thus indicating the number (n) of repeats. LOD, limit of detection; ns, P > 0.05; *, $P \le 0.01$; ***, $P \le 0.001$; ****, $P \le 0.0001$.

Supplementary Figure 9: *Enterobacteriaceae* attenuate growth of *S*. Typhimurium in feces under aerobic conditions *in vitro*. Related to Figure 3. (a-c) Fecal pellets collected from Charles River mice (C57BL/6NCrl), Harlan mice (C57BL/6NHsd), Taconic mice (C57BL/6NTac) or Jackson mice (C57BL/6J) were homogenized. Homogenates were inoculated with *S*. Typhimurium and pathogen growth determined after aerobic incubation (a) or anaerobic incubation (b) for 24 hours (n = 3 per replicate). (c) Homogenates were sterile filtered and pathogen growth determined after aerobic incubation for 24 hours (n = 3 per replicate). (d and e) Fecal pellets collected from Jackson mice (C57BL/6J) were homogenized and mock-treated or inoculated with the indicated *Enterobacteriaceae* isolates. Each homogenate was then infected with *S*. Typhimurium and pathogen growth determined after aerobic incubation for 24 hours (d) or after anaerobic incubation for 24 hours (n = 3 per replicate) (e). (d and e) A red dotted line indicates pathogen growth in mock-treated fecal homogenates. (f) Fecal pellets collected from Jackson mice (C57BL/6J) were homogenized, sterile filtered and inoculated with the indicated mixtures of *S*. Typhimurium and *E. coli* Nissle 1917 strains. The competitive index (CI) was calculated after growth for 24 hour in a hypoxia chamber with 0.8% oxygen. (a-f) Data represent geometric means \pm geomean standard deviation. Each dot represents data from a biological repeat (*n*). Results of a statistical analysis are provided in **Supplementary Table 1**. LOD, limit of detection; ns, *P* > 0.05; *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.005.