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Below we provide additional information and figures to support and extend the results of the main text. 

SI 1. Sediment dating and age-depth modeling 

The chronology for the MUT sediment sequence was constrained by sixteen 210Pb activity determinations 

(down to 6.7 cm depth) and three accelerator mass spectrometry (AMS) radiocarbon dates derived from 

terrestrial plant macrofossils for the deeper section of the core (Ilyashuk et al. 2015). Lead-210 activity was 

analyzed by extracting the grand-daughter 210Po and counting it in an alpha spectrometer (Flynn, 1968) in the 

University of Gdańsk, Poland. The 210Pb-based ages of recent sediments were calculated by applying the 

constant rate of supply (CRS) model to the unsupported 210Pb inventory (Appleby and Oldfield 1978). AMS 

radiocarbon dating was carried out at the Poznan Radiocarbon Laboratory (Poland) and the Beta Analytic 

Radiocarbon Dating Laboratory (Miami, FL, USA).	Given that large chronological uncertainties can arise 

under translation of 14C ages into calendar years if 14C dates are calibrated individually (Blaauw et al. 2011), 

all dates were calibrated simultaneously, taking into account their stratigraphic order. Stratigraphically 

constrained 14C calibration was performed on-line using the OxCal Bayesian software (Bronk Ramsey 2009, 

2010) by applying the Northern Hemisphere terrestrial IntCal13 calibration curve (Reimer et al. 2013). The 

age-depth relationships (Fig. S1) were established by means of Poisson mediated deposition model (P 
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Sequence) that supposes the essentially random nature of the deposition process (Bronk Ramsey 2008). A 

reasonable value for the k parameter, which is defined by the number of the deposition events per unit depth, 

was chosen to be of 5, taking into account fine-grained sediment deposition in the lake and fine sampling 

resolution (0.22-cm slicing) of the sequence. Ages were interpolated to each sample depth based a second-

order polynomial regression between median values of posterior probabilities at each chronological tie point, 

assuming that polynomial fitting will result in a smoother age-depth curve, avoid large shifts in modeled 

sediment accumulation, compared to linear interpolation, and thereby provide a better approximation of the 

true sediment accumulation history in the lake. As with all age-depth models, each interpolated value 

represents one of a range of possible values for its depth and our interpretations must be considered within 

this context. According to the age-depth model, an average temporal resolution is ca. 4.8 years per sample in 

the sediment sequence. Every sample was analyzed at the top 11.5 cm of the core (resulting in the temporal 

resolution of the core interval of ~4‒5 years), and every other one at the lower part (resulting in the temporal 

resolution of the interval of ~10 years). 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1 The Bayesian age-depth model (P Sequence, 

k = 5) for the MUT sediment drawn through the 
210Pb-CRS ages and posterior distributions of 

calibrated 14C dates. The uncertainty envelope (in 

blue) represents the 95.4% confidence intervals of 

the age model. The distributions of individually 

calibrated dates are shown as grey histograms. The 

complete age-depth curve (thick line) employed in 

the present study is constructed by a second-order 

polynomial fit between median points of the 

modeled ages 
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SI 2. Chironomid analysis 

Subfossil chironomid analysis was performed on 100 sediment samples of 0.22 cm thickness, which were 

processed following the standard procedures for subfossil midges given in Walker (2013). Subsamples were 

deflocculated in 5% KOH for 30 minutes and then sieved with a 100-μm mesh. Chironomid larval head 

capsules were hand-picked out from the remnant in a Bogorov counting tray under a stereomicroscope at 20–

40× magnification and dehydrated in 100% ethanol. Afterwards head capsules were permanently mounted 

ventral side up on microscope slides in Euparal® (Carl Roth Gmbh, Karlsruhe, Germany) mounting medium 

for identification. Chironomids were identified under a compound microscope at 200–400× magnification. 

Chironomid taxonomy followed Brooks et al. (2007) and Andersen et al. (2013). A minimum of 100 

chironomid head capsules were counted and identified in each sample. The chironomid stratigraphy for MUT 

showing the relative abundance (%) of all taxa present in the lake during the past 700 years and established 

zonation is given in the Fig. S2. 

 

Fig. S2 Chironomid diagram for MUT showing the relative abundance (%) of all taxa present in the lake during the past 

700 years. Grey shading shows where x10 exaggeration has been used to improve the legibility of less abundant taxa 
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SI 3. Segmented regression analysis 

Providing a statistical basis for spotting trends in the chironomid-inferred reconstructed temperature record, 

breakpoint years, with confidence intervals (CIs), and separated periods of significant trend change were 

determined by applying a segmented regression approach with the SegReg software (Oosterbaan 2011). In 

the 700-year long record, the analysis identified a significant breakpoint at AD 1783 (95% CI [1754, 1811]) 

(Fig. S3a). Taking into account the CI of the point and chronological uncertainties of the record, the year AD 

1800 is further used as a trend changing point to estimate a multi-centennial (AD 1300‒1800) cooling trend 

in the record (Fig. S3b). A separate segmented regression for the subsequent time interval (AD 1800‒2010) 

revealed a breakpoint at AD 1894 (95% CI [1850, 1938]), where the horizontal stretch (no trend) is followed 

by a sloping line with a significant regression coefficient (Fig. S3c). 

 

Fig. S3 (a) Segmented linear model fitted to the MUT chironomid-inferred temperature record for the time period AD 

1300–2010 with a breakpoint near AD 1800. Separate segmented regression fitting of the record for (b) the time 

interval AD 1300–1800 with no significant breakpoints and (c) the period AD 1800–2010 with a breakpoint in the early 

AD 1890s 
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