Supplementary information

Land management strategies can increase oil palm plantation use by some terrestrial mammals in Colombia

Lain E. Pardo^{1,2}*, Mason J. Campbell², Michael V. Cove³, Will Edwards², Gopalasamy Reuben Clements⁴,⁵ and William F. Laurance²

*lepardov@gmail.com

¹ School of Natural Resource Management, Nelson Mandela University, George Campus, Madiba Drive 6560, South Africa

² Centre for Tropical Environmental and Sustainability Science (TESS), College of Science and Engineering, James Cook University, Cairns, Queensland, 4878 Australia.

³ Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, 27695, USA

⁴Department of Biological Sciences, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia

⁵ Rimba, Jalan Kiara 5, 50480 Kuala Lumpur, Malaysia

Fig S1. Detection probability(p) for most common species across oil palm dominated landscapes in Colombian Llanos. Error bars indicate confidence intervals.

Table S1. Model selection (Δ AICc <2) evaluating the effect of habitat type (hab) on habitat use probabilities (Ψ) and detection probabilities (p) for selected mammal species*. Habitat type is a binary variable where 0=forest (intercept) and 1= oil palm plantation (β), a negative value of the corresponding β coefficient suggest preference for forest and vice versa.

					β (SE)
Model	AIC	Δ AICc	AIC w	k	Oil palm
Giant anteater					
Ψ(.),p(hab)	526.26	0	0.501	3	
Ψ(hab),p(hab)	526.32	0.06	0.4862	4	2.12 (2.60)
Lesser anteater					
Ψ(hab),p(hab)	391.21	0	0.4979	4	-1.64 (0.97)
Ψ(.),p(hab)	391.32	0.11	0.4713	3	
Nine-banded armadillo					
Ψ(.),p(hab)	242.34	0	0.6103	3	
Ψ(hab),p(hab)	243.25	0.91	0.3872	4	-2.31 (1.15)
Naked-tailed armadillo					
Ψ(hab),p(.)	110.55	0	0.7612	3	-26.48 (#)
Crab-eating fox					
Ψ(.),p(hab)	365.87	0	0.9965	3	
Jaguarundi					
Ψ(.),p(.)	170.78	0	0.5548	2	
Ψ(hab),p(.)	171.22	0.44	0.4452	3	27.03 (#)
Ocelot					
Ψ(.),p(.hab)	294.61	0	0.9998	3	
Crab-eating raccoon					
Ψ(.),p(.)	124.6	0	0.4516	2	
Ψ(.),p(hab)	125.76	1.16	0.2529	3	
White-tailed deer					
Ψ(.),p(.)	190.76	0	0.3984	2	
Ψ(.),p(hab)	191.27	0.51	0.3087	3	
Ψ(hab),p(.)	192.25	1.49	0.1891	3	0.79 (0.95)
Capybara					
Ψ(hab),p(.)	166.95	0	0.5784	3	-1.69 (0.95)
Ψ(hab),p(hab)	168.66	1.71	0.246	4	-1.61 (0.96)
Spiny rat					
Ψ(hab),p(hab)	260.92	0	0.5125	4	-4.20 (1.22)
Ψ(.),p(hab)	261.59	0.67	0.3666	3	. ,
Common opossum					
Ψ(hab),p(hab)	404.11	0	0.969	4	-3.62 (1.10)

Notes: \triangle AICc = difference in AIC values between each model with the lowest AIC model (best model); AIC ω = Akaike weight.; k = number of parameters in the model; SE: standard error. Habitat type, a binary covariate with 0 =

forest (intercept) and 1= oil palm (beta). # = high standard error, so species-specific occupancy estimates are imprecise. However, direction of the effect is not affected (Hines et al 2006). Only species with sufficient data to conduct modeling are shown (i.e. at least 4 detections per habitat). Refer to naïve occupancy in Table 1 for rare species and scientific names.