## Science Translational Medicine

www.sciencetranslationalmedicine.org/cgi/content/full/11/481/eaav4319/DC1

## Supplementary Materials for

## Targeting the NF-KB signaling pathway in chronic tendon disease

Adam C. Abraham, Shivam A. Shah, Mikhail Golman, Lee Song, Xiaoning Li, Iden Kurtaliaj, Moeed Akbar, Neal L. Millar, Yousef Abu-Amer, Leesa M. Galatz, Stavros Thomopoulos\*

\*Corresponding author. Email: sat2@columbia.edu

Published 27 February 2019, *Sci. Transl. Med.* **11**, eaav4319 (2019) DOI: 10.1126/scitranslmed.aav4319

## This PDF file includes:

Fig. S1. Gene expression of cultured tendon fibroblasts in response to varying doses of IL-1 $\beta$ . Fig. S2. Multiplex ELISA of cultured tendon fibroblasts in response to 10 ng of IL-1 $\beta$  over the 72-hour period.

Fig. S3. H&E- and Toluidine blue–stained section of tendons and tendon entheses of WT,  $IKK\beta KO^{Scx}$ , and  $IKK\beta CA^{Scx}$  mice.

Fig. S4. µCT results for treadmill overuse model.

Fig. S5. µCT results for acute injury and repair model.

Fig. S6. Gene expression of cultured human tendon fibroblasts in response to IL-1 $\beta$  and IKK $\beta$  inhibitor.

Fig. S7. Schematic of how IKK $\beta$ /NF- $\kappa$ B drives chronic tendinopathy.

Table S1. Semiquantitative histological assessment of supraspinatus tendons in WT, IKK $\beta$ KO<sup>Scx</sup>, and IKK $\beta$ CA<sup>Scx</sup> mice.



Fig. S1. Gene expression of cultured tendon fibroblasts in response to varying doses of IL-1 $\beta$ . Fibroblasts were isolated from tail tendons from wildtype (WT, n = 10), tendon-specific IKK $\beta$  knockout (IKK $\beta$ KO<sup>Scx</sup>, n = 6), and constitutively active IKK $\beta$  (IKK $\beta$ CA<sup>Scx</sup>, n = 5) mice. Gene expression is normalized to *GAPDH*. Data are shown as mean  $\pm$  SD. Statistically significant differences were calculated using two-way ANOVA (genotype, dose) with Tukey's post-hoc test.



Fig. S2. Multiplex ELISA of cultured tendon fibroblasts in response to 10 ng IL-1 $\beta$  over the 72-hour period. Fibroblasts were isolated from tail tendons from wildtype (WT, n = 5), tendon-specific IKK $\beta$  knockout (IKK $\beta$ KO<sup>Scx</sup>, n = 5), and constitutively active IKK $\beta$  (IKK $\beta$ CA<sup>Scx</sup>, n = 5) mice. Bars represent mean + SD. Statistically significant differences were calculated using two-way ANOVA (genotype, treatment) with Tukey's post-hoc test. Datasets without reported *P*-values were not compared due to undetectable baseline cytokine concentrations in WT controls.



Fig. S3. H&E- and Toluidine blue–stained section of tendons and tendon entheses of WT, IKK $\beta$ KO<sup>Sex</sup>, and IKK $\beta$ CA<sup>Sex</sup> mice. Black arrowheads: spindle shaped tendon fibroblasts indicated, white arrowheads: enthesis chondrocytes; metachromasia demonstrating fibrocartilage interface can be seen below the dashed line in Toluidine Blue-stained sections.



Fig. S4.  $\mu$ CT results for treadmill overuse model. 10-week-old mice were subjected to a chronic overuse protocol with 1 week of progressive training followed by 4 weeks of downhill running. Control mice were permitted normal cage activity. The humeral head was scanned at an energy of 55 kVP, intensity of 145  $\mu$ A, and a resolution of 12.3  $\mu$ m. Data are shown as mean  $\pm$  SD with individual points representing biologically independent samples.



Fig. S5.  $\mu$ CT results for acute injury and repair model. 10-week-old mice were subjected to a unilateral acute injury of the supraspinatus tendon and immediate repair followed by 2 weeks of recovery. Sham operations were performed on contralateral limbs. The humeral head was scanned at an energy of 55 kVP, intensity of 145  $\mu$ A, and a resolution of 12.3  $\mu$ m. Data are shown as mean  $\pm$  SD with individual points representing biologically independent samples. Statistically significant differences were calculated using One-way ANOVA (genotype, treatment) with Fisher's LSD post-hoc test \*\* - *P* < 0.01.



Fig. S6. Gene expression of cultured human tendon fibroblasts in response to IL-1 $\beta$  and IKK $\beta$  inhibitor. Data are shown as mean  $\pm$  SD with individual points representing biologically independent samples. Statistically significant differences were calculated using One-way ANOVA (treatment) with Fisher's LSD post-hoc test.



**Fig. S7. Schematic of how IKKβ/NF-κB drives chronic tendinopathy.** Schematic illustrating how injury-induced pro-inflammatory cytokines cause tendon fibroblasts to suppress tissue anabolism and increase matrix catabolism and cytokine production. NF-κB signaling within the tendon stromal and immune compartment increases during initial phases of healing. Constitutive activation of IKKβ (IKKβCA<sup>Scx</sup>) chronically degrades the rotator cuff by synthesizing degenerative enzymes and pro-inflammatory cytokines. Fibroblasts without IKKβ (IKKβKO<sup>Scx</sup>) remain agnostic to proinflammatory cytokines, maintain matrix production, and keep total NF-κB signaling lower. Dotted lines represent basal expression.

**Table S1. Semi-quantitative histological assessment of supraspinatus tendons in WT, IKKβKO<sup>Scx</sup>, IKKβCA<sup>Scx</sup> mice. Mast Cells, PMN Acute Inflammatory Cells, Monocytes: # of samples where present.** 

|                                 | WT $(n = 8)$ | IKKβKO <sup>Sex</sup> ( $n = 4$ ) | IKKβCA <sup>Sex</sup> $(n = 4)$ |
|---------------------------------|--------------|-----------------------------------|---------------------------------|
| Mast Cells                      | 1 of 8       | 3 of 4                            | 1 of 4                          |
| PMN                             | 0 of 8       | 0 of 4                            | 0 of 4                          |
| Monocytes                       | 8 of 8       | 4 of 4                            | 4 of 4                          |
| <b>Total Inflammatory Cells</b> | 1.00 (1,1)   | 1.00 (1,1)                        | 2.00 (2,2)                      |
| Total Cellularity               | 1.13 (1,2)   | 1.75 (1,3)                        | 3.00 (3,3)                      |