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Critical dynamics and current-voltage characteristics 
Here we study the critical dynamics close to Jc for an array of planar defects in more detail. A snapshot of 
the order parameter and supercurrent amplitude density is presented in Figure S1. Here, we set the field 
to B = 0.1Hc2 and applied a current J slightly larger than critical current Jc, J = 1.0001Jc. The depinning 
process defining the critical current occurs via a collective avalanche process across the sample in a narrow 
channel in the direction of the Lorentz force (normal to the planar defects). Single vortex motion never 
occurs; instead, if a vortex depins from one planar defect, vortices from the neighboring defect also need 
to depin to either free space for the vortex or fill its vacant position. This collective depinning effectively 
increases the pinning force of the system. The same collective behavior occurs for other types of pinning 
landscapes, which are optimized for highest possible Jc, e.g., for ordered columnar defects (see Ref. [29] in 
the main text) or disordered nanorods extended along the direction of the applied magnetic field (Ref. 
[26] in the main text). A similar but somewhat less pronounced effect was observed for randomly placed 
spherical particles (Ref. [24] in the main text).  

  

Figure S 1. Snapshot of (a) the squared order parameter amplitude |ψ(r)|2 and (b) supercurrent amplitude |j(r)|2 for 
the periodic planar defect configuration in the dynamic/dissipative regime with applied current slightly larger than 
the critical current at magnetic field B = 0.1Hc2. The regions occupied by planar defects always have the suppressed 
order parameter (black horizontal planes in panel a) and zero supercurrent (blue planes in panel b). The 
superconductor regions between planar defects have mostly larger order parameter (shown in red and white) 
interrupted by depinned vortices. Depinning events have distinct, collective behavior, i.e., all vortices depin 
simultaneous in a certain region spanning through the system almost normal to the planar defects. Due to 
geometrical constraints of the defects and strong vortex-vortex interaction, vortices do not bend much, which is 
seen in the depth projection of the system. The corresponding vortex dynamics is shown in Movies S1–S3 for 
magnetic fields B = 0.1Hc2, 0.2Hc2, and 0.3Hc2. 
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The above scenario allows us to conclude that due to the system-spanning clusters of collectively 
depinning vortices in pinning landscape with very large critical currents, the dynamic transition to the 
dissipative state tends to be more pronounced and sharper than sub-optimal configurations showing 
single vortex depinning, as confirmed by the current-voltage (J–E) curves shown in Figure S2a.  

  

Figure S 2. Current-voltage (J–E) curves 
for the planar defect pinning 
landscape, which is optimal for field B = 
0.1Hc2, in different applied magnetic 
fields. In this regime each curve shows 
an extremely sharp drop (more than 6 
orders of magnitude) at the 
corresponding critical current (black 
square) determined by the finite 
voltage criteria Ec = 10–3E0 (dashed 
line). Voltage levels below 10–8E0 
cannot be resolved due to numerical 
noise. b. Order parameter amplitude at 
B = 0.05Hc2 and current slightly below 
the critical current, J = 0.9999Jc 
showing the superconducting state, see 
also Movie S4. c. Order parameter 
amplitude at B = 0.05Hc2 and current 
slightly above critical current, J = 
1.0001Jc shows suppressed 
superconductivity with localized 
superconducting regions, see also 
Movie S5. 

 

Here, the various J–E curves are associated with different applied magnetic fields, B, for the same pinning 
landscape, which was optimized for maximum Jc at B = 0.1Hc2. Each curve displays a sharp transition with 
relative voltage drop of at least 10–6 around its critical current shown by a star in the data for B = 0.1Hc2 
and black squares for other B values. Note that for lower magnetic fields (B ≲ 0.05Hc2), the 
superconducting state with pinned vortices at J < Jc (Figure S2b) transits directly to a dissipative state 
consisting of only localized superconducting regions for J > Jc (Figure S2c), which cannot pass a 
supercurrent through the system, hence bypassing the dissipative superconducting state.  

Such sharp transitions allow, in particular, the use of a finite-voltage criterion to determine Jc with rather 
high threshold electric field, Ec, as shown by the horizontal dashed line in Figure S2a. This threshold field 
can be 6 to 9 orders of magnitude larger than the 1 μV criterion typically used in experiments, which 
dramatically reduces the computation time for a single Jc estimation. 
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List of movies 
 

   
movie-S1.mp4  for  B = 0.1Hc2 movie-S2.mp4  for  B = 0.2Hc2 movie-S3.mp4  for  B = 0.3Hc2 

Vortex dynamics in the pinning landscape containing planar defects optimized for a magnetic field of 0.1Hc2 in different 
applied magnetic fields, 0.1Hc2, 0.2Hc2, and 0.3Hc2. The two panels in the movie clips show the squared order parameter 
amplitude |ψ(r)|2 and supercurrent amplitude |j(r)|2 for applied current slightly larger than critical current and low 
temperature (low Langevin noise) regime. 
 
 

  
movie-S4.mp4  for  B = 0.05Hc2 movie-S5.mp4  for  B = 0.05Hc2 

Movie clips show the squared order parameter amplitude |ψ(r)|2 and supercurrent amplitude |j(r)|2 in the 
superconductor with a pinning landscape consisting of planar defects optimized for magnetic field 0.1Hc2. The applied 
field is 0.05Hc2. The current slightly below the critical current, J = 0.9999Jc, generates a superconducting state with 
pinned vortices (left). The current slightly above critical current, J = 1.0001Jc, shows suppressed superconductivity with 
localized superconducting regions (right). 
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Time-Dependent Ginzburg-Landau model 
To model vortex dynamics in the superconductor, we solve the dimensionless TDGL equation,  

(∂t + iμ)ψ = ε(r)ψ − |ψ|2ψ + (∂r − iA)2ψ + ζ(r, t), 

for the complex order parameter ψ(r, t) in the infinite-λ limit. We evolve a system of size 64ξ × 64ξ × 8ξ 
with grid spacing of 0.5ξ and quasi-periodic boundary conditions in each direction. Here, μ = μ(r) is the 
electric scalar potential, A the vector potential associated with the external magnetic field B = curl A, and 
ζ(r, t) is the temperature-dependent δ-correlated Langevin term. The unit of length is the superconducting 
coherence length ξ = ξ(T) at a given temperature T, the unit of magnetic field is the upper critical field, Hc2 
= Hc2(T) = ħc/2eξ2, the unit of the current density, 

J = (33/2/2) {Im[ψ*(∂r – iA)ψ] – ∂rμ}, 

is the depairing current, Jdp = Jdp(T), and the unit of electric field is E0 = (33/2/2)Jdp/σ, where σ is the normal-
state conductance. 

For the samplings shown in Figure 3 in the main text and Figures S4–S8 as well as for the conventional 
optimization in Figure 3a in the main text we use a system of size 128ξ × 128ξ × 128ξ. In the scenario shown 
in Figure 4c of the main text we used a 32ξ × 32ξ × 32ξ simulation box. 

In order to determine the critical current density, Jc, we utilize a finite-electrical-field criterion. Technically, 
we adjust the applied external current to reach certain electrical-field level across the system. By targeting 
a small threshold electrical-field level Ec = 10–3E0 and averaging over steady state long enough we obtain a 
critical current, see Refs. [25, 35] in the min text for details. 

In simulations we parametrize real temperature, T, and critical temperature map, Tc(r) using two 
dimensionless quantities: linear term coefficient,  

ε(r) = [Tc(r) – T] / [Tc,b – T],  

and noise-level coefficient, Tf ∝ T, in Langevin term, ζ(r, t). 

We model non-superconducting inclusions with a reduced critical 
temperature, Tc,i, inside each defect ellipsoid, resulting in a suppressed 
Ginzburg-Landau order parameter inside these inclusions. Typically, we use 
almost zero Tc,i corresponding to the suppressed order parameter in the 
entire inclusion region. Technically, we set a very negative coefficient 
before linear term, εi = (Tc,i – T)/(Tc,b – T) = –30, where we set 1 – T/Tc,b = 1/31 is the critical temperature 
in the bulk superconductor and T = Tc,b is a system temperature. In the plots below we compare this 
situation to weaker pinning centers having εi = –1 corresponding to Tc,i = 2T – Tc,b. 

The temperature-induced noise is modelled by the additive Langevin term, ζ(r, t), in the TDGL equation 
with correlator ⟨ζ*(r, t) ζ(r’, t’)⟩ = Tf δ(r – r’) δ(t – t’), see Ref. [35] in the min text for details. In the plots 
below, we compare the low-temperature regime, T = 0 K, modeled by low Langevin-term coefficient Tf = 
10–5 to the high-temperature regime, T = 77 K, having high Langevin coefficient Tf = 0.28.  

 
Figure S 3. Sketch of a critical 
temperature map. 
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Sampling 

Planar vs. Columnar defects at 0 K 

In order to understand why the planar defects give a larger critical current compared to columns with 
circular cross section, we consider an isolated cylindrical defect of elliptical cross-section defined by main 
axes a and b. We apply an average current density J along a and a magnetic field along the cylinder. The 
local current density at the depinning point (at the extremal points of the defect boundary along b) is Jl = 
J(a + b)/a; for columnar defects with circular cross-section Jl = 2J, while for planar defects this value is twice 
smaller, Jl = J. It means that for defect, the depinning force is expected to be roughly twice larger for planar 
defect for the same average current density. In the case of an ordered pattern of defects the situation is 
more complicated.  

In Figures S4–S6 we provide a sampling set of Jc for the hexagonal lattice made of columnar defects with 
cross-section a and b for a/b ratios ranging from planar defects (a → ∞) to cylindrical columns (a = b). 
Figures S7–S8 demonstrate the influence of the randomness in the defect placement. All plots are for a 
current applied in x direction and magnetic field of B = 0.1Hc2 directed along the z axis.  

 

 
Figure S 4. Critical current Jc for walls in xz plane as a function of associated lattice constant l (proportional to the 
distance between walls l = 2d/31/2) for different wall thickness b in the cases of strong (εi = – 30, left) and weak (εi = 
– 1, right) pinners. A small Langevin noise coefficient is used corresponding to near-zero temperatures. 
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Figure S 5. Critical current Jc for hexagonal lattice of columnar defects with elliptical cross-section ab (a is in x 
direction, b is in y direction) as a function of lattice constant l for a = 4ξ and different b in the cases of strong (εi = 
–  30, left) and weak (εi = –  1, right) pinners. A small Langevin noise coefficient is used corresponding to near-zero 
temperatures. 
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Circular-shaped columnar defects ordered in hexagonal lattice at 0 K and 77 K 

 
Figure S  6. Critical current Jc for hexagonal lattice of columnar defects with circular cross-section of dimeter d as a 
function of lattice constant l for different d in the cases of strong (εi = – 30, left) and weak (εi = – 1, right) pinners. 
Both are shown for two different temperatures: small Langevin noise coefficient (Tf = 10–5) corresponding to near-
zero temperatures (top row) and larger noise coefficient (Tf = 0.28) corresponding to 77 K (bottom row). 
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Elliptically-shaped columnar defects ordered in hexagonal lattice at 0 K and 77 K 

 
Figure S 7. Critical current Jc for hexagonal lattice of columnar defects with elliptical cross-section ab (a is in x 
direction, b is in y direction) as a function of a for lattice constant l = 8.5ξ and different b. Some randomness, r, is 
added to the x and y positions of the defects, i.e. δx, δy = [– r, …, r]. Shown for a perfect hexagonal lattice with r = 0 
(top row), lattice with intermediate randomness having r = 2ξ (medium row), and uncorrelated placement of defects 
corresponding to r = ∞ (bottom row). Strong (εi = – 30, left column) and weak (εi = – 1, right column) pinners. A small 
Langevin noise coefficient is used (Tf = 10–5) corresponding to near-zero temperatures. 
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Figure S 8. The same as in Figure S7 but for larger Langevin noise coefficient (Tf = 0.28) corresponding to 77 K. 
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Details of numerical simulations 
We have implemented the time-dependent Ginzburg-Landau (TDGL) solver on General Purpose Graphics 
Processing Units (GP GPUs) using the CUDA framework and used Python for the evolutionary algorithm 
and job control on specialized computational clusters. The results of the evolution of different types were 
obtained on Titan, a Cray XK7 supercomputer at Oak Ridge Leadership Computing Facility running NVIDIA 
Kepler GPUs. We parallelized the computations running 16–256 pinning landscapes in one generation. 

We also used the high-performance GPU clusters GAEA at Northern Illinois University and Cooley at the 
Argonne Leadership Computing Facility for extrapolation, analysis, and visualizing the results. 


