CF₂H, a Hydrogen Bond Donor

Chanan D. Sessler,[†] Martin Rahm,[‡] Sabine Becker,[†] Jacob M. Goldberg,[†] Fang Wang,[†] and Stephen J. Lippard^{*†}

[†]Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States

[‡]Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, United States

1. Materials and Methods	
2. Synthetic Procedures	
3. NMR Spectroscopy Studies	S9
3.1. Concentration Dependence of NMR Chemical Shifts of 1-CF ₂ H and 1-OH	S9
3.2. Solvent Dependence of the Conformation of 4-NO₂	
3.3. Concentration Dependence of the Conformation of 4-NO₂	S11
4. IR Spectroscopy Studies	
5. Theoretical Calculations	
5.1. Potential Energy Surface Calculations and Conformational Distribution	
5.2. Simulated NMR Spectra	S41
5.3. Simulated IR Spectra	S49
5.4. Optimized Coordinates of Conformers	
5.5. Partitioning Analysis	
6. X-ray Crystallography Studies	S84
6.1. CSD Structure Search and Data Analysis	S84
6.2. Experimental Details of the Crystal Structure Refinement	S88
7. NMR Spectra	S121
8. <i>o</i> -Substituent Effects on the ¹ H NMR Chemical Shift of the CF ₂ H Group	S146

1. Materials and Methods

General

Reagents were purchased from commercial sources and used as received. Anhydrous solvents were purchased from commercial sources and stored in an MBraun dry box. Reaction mixtures were monitored by thin-layer chromatography (TLC) on pre-coated, aluminum-backed silica gel 60 F254 plates. Column chromatography was performed on silica gel 60 (230-400 mesh). *o*-Nitro- α , α -difluorotoluene and *p*-bromo- α , α -difluorotoluene were purchased from commercial sources.

Instrumentation

A ThermoNicolet Avatar 360 spectrometer was used to collect IR spectra and the data were processed with OMNIC software. Melting points were determined using a Stanford Research Systems OptiMelt. NMR spectra were recorded on a 400 MHz Bruker AVANCE-400 NMR spectrometer. ¹H and ¹³C chemical shifts are reported in ppm relative to SiMe₄ ($\delta = 0.00$ ppm). ¹H and ¹³C NMR spectra were referenced internally to residual solvent peaks. ¹⁹F spectra were referenced externally to CFCl₃ (0.00 ppm). Low-resolution EI-MS spectra were obtained with an Agilent 5973N gas chromatograph/mass spectrometer using He carrier gas. High-resolution mass spectra were collected on a Bruker Daltonics APEXIV 4.7 tesla Fourier transform ion cyclotron resonance mass spectrometer with a direct analysis in real time (DART) ionization source at the MIT Department of Chemistry Instrumentation Facility.

2. Synthetic Procedures

o-Nitro-α,α-difluorotoluene (1-CF₂H)

o-Nitro-α-deutero-α,α-difluorotoluene (1-CF₂D)

F F Tetramethylammonium hydroxide pentahydrate (97 mg, 108 mmol), **1-CF₂H** (94 mg, 54 mmol), and D₂O (270 µL, 15 mmol, 99.9 atom%) were mixed in DMSO- d_6 (2.25 mL, 99.9 atom %). The reaction was stirred for 48 h at room temperature. The reaction mixture was acidified with DCl (162 mmol in 10 mL D₂O, 99.9%). The reaction mixture was then extracted with pentane (10 mL × 3). The combined organic phase was washed with brine (10 mL) and dried over MgSO₄. The solvent was removed under vacuum. The crude product was purified by column chromatography using pentane:CH₂Cl₂ (2:1 to 1:1) to give a colorless solid (50 mg, 53%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (H4, d, *J* = 8.1 Hz, 1H), 7.91 (H3, d, *J* = 7.8 Hz, 1H), 7.79 (H1, t, *J* = 7.6 Hz, 1H), 7.72 – 7.64 (H2, m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ –116.1 (t, *J* = 8.4 Hz). IR (CCl₄): v 3115 (vw), 3086 (w), 3068 (w), 3046 (vw), 2967 (vw), 2925 (vw), 2870 (w), 2276 and 2237 (w, CF₂-D), 1977 (vw), 1948 (vw), 1842 (vw), 1538 (vs), 1348 (s), 1282 (m), 1271 (m), 1250 (m), 1209 (m), 1093 (s), 1056 (m), 964 (m).

o-Nitrophenol (1-OH)

¹H NMR (400 MHz, CDCl₃) δ 10.59 (s, 1H), 8.12 (dd, J = 8.5, 1.5 Hz, 1H), 7.59 (ddd, J = 8.7, 7.2, 1.7 Hz, 1H), 7.16 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.00 (ddd, *J* = 8.6, 7.2, 1.3 Hz, 1H). IR (CCl₄): v NO_2 3236 (m, br, O-H), 3108 (vw), 3086 (w), 3071 (w), 3045 (vw), 1959 (w), 1932 (w), 1902 (w), 1622 (s), 1593 (s), 1541 (s), 1477 (s), 1458 (s), 1330 (s), 1253 (m), 1190 (m), 1154 (m), 1133 (m), 1078 (m), 1030 (m).

p-Bromo-a,a-difluorotoluene (2-CF₂H)

¹H NMR (400 MHz, CDCl₃) δ 7.60 (H1,1', d, J = 8.7 Hz, 2H), 7.39 (H2,2', d, J = 8.6 Hz, 2H), 6.61 (H3, t, J = 56.3 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ –111.6 (d, J = 56.3 Hz). IR (CCl₄): 3056 (vw), 2969 (w, CF₂-H), 1607 (m), 1491 (m), 1411 (m), 1370 (m), 1213 (m), Br 1077 (s), 1041 (s), 1015 (m).

p-Bromophenol (2-OH)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.28 (H1,1', m, 2H), 6.77 – 6.68 (H2,2', m, 2H), 4.78 (H3, s, 1H). IR (CCl₄): v 3608 (m, O-H), 3473 (w, br), 3067 (vw), 3031 (w), 1590 (m), 1491 (vw), 1421 (m), 1319 (m), 1260 (s), 1176 (s), 1089 (m), 1070 (m), 1008 (w).

TMSCF₂H

Me Me-Si-CF₂H Мe

TMSCF₂H was prepared according to a literature procedure.¹ TMSCF₃ (12.50 g, 88.00 mmol) was used to give TMSCF₂H as a colorless liquid (4.51 g, 41% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.84 (CF₂*H*, t, ${}^{2}J_{H-F}$ = 46.2 Hz, 1H), 0.17 (Me, s, 9H). 19 F NMR (376 MHz, CDCl₃) δ –139.6 (d,

 $^{2}J_{\text{F-H}} = 46.3 \text{ Hz}$). IR (CCl₄): v 2961 (w), 2899 (w, CF₂-H), 1319 (w), 1253 (m), 1081 (m), 993(m).

TMSCF₂D

Me Me-Si-CF₂D Мe

TMSCF₂D was prepared by a modified literature procedure.¹ Under N₂, NaBD₄ (1.23 g, 29.50 mmol) was mixed with dry diglyme (25 mL) and cooled in an ice bath. TMSCF₃ (12.50 g, 88.00

mmol) was then added dropwise to the mixture. The mixture was stirred for two hours and gradually warmed to room temperature. The reaction mixture was purified by distillation and fractions with boiling points below 80 °C were collected. The distillate was redistilled with a 10-cm Vigreux column, collecting fractions with boiling points of 62-66 °C to give a colorless liquid (3.30 g, 30% yield).¹H NMR (400 MHz, CDCl₃) δ 0.17 (Me, t, ${}^{4}J_{\text{H-F}} = 0.5$ Hz, 9H). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (101 MHz, CDCl₃) δ 123.6 (tt, ${}^{1}J_{\text{C-F}} = 253.0$, ${}^{1}J_{\text{C-D}} = 253.0$ 25.0 Hz), -5.3 (m). ¹⁹F NMR (376 MHz, CDCl₃) δ -140.3 (pseudo t, ²J_{F-D} = 7.3 Hz, 2F). IR (CCl₄): v 2960 (w), 2925(vw), 2901(vw), 2167 (vw, CF₂-D), 1253 (m), 1149 (w), 1132 (w), 1030 (m), 982 (w).

Scheme S1. Synthesis of 2,2-difluoro-1-(aryl)ethan-1-ol (2) and 2,2-difluoro-1-arylethyl triflate (3).

2,2-Difluoro-1-(2-nitrophenyl)ethan-1-ol (3-NO₂)

3-NO₂ was prepared according to a literature procedure.² 2-Nitrobenzaldehyde (453 mg, 3.0 mmol) and TMSCF₂H (745 mg, 6.0 mmol) were mixed in anhydrous DMF (6 mL). CsF (64 mg, 0.4 mmol) was added to the reaction mixture under positive N₂ flow. The mixture was stirred overnight at room temperature. A solution of *n*-Bu₄NF (3.0 mL, 1 M in THF) was then

added and the mixture was stirred for one hour at room temperature. The mixture was then diluted with water (15 mL) and extracted with CH_2Cl_2 (20 mL × 3). The combined organic phase was washed with water (20 mL) and dried over Na₂SO₄. The solvent was removed under vacuum. The crude product was purified by silica gel chromatography using hexanes:EtOAc (5:1 to 4:1) to give a slightly yellow solid (268 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 8.2, 1.1 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.73 (td, J = 7.7, 1.1 Hz, 1H), 7.55 (ddd, J = 7.8, 7.1, 1.4 Hz, 1H), 6.08 (H1, ddd, ² $J_{H1-Fa} = 55.8$, ² $J_{H1-Fb} = 55.1$, ³ $J_{H1-H2} = 2.6$ Hz, 1H), 5.65 (H2, ddt, ³ $J_{H2-Fa} = 16.2$ Hz, ³ $J_{H2-Fb} = 6.0$ Hz, ³ $J_{H1-H2} = 3.0$ Hz, ³ $J_{H1-OH} = 3.0$ Hz, 1H), 2.78 (OH, d, ³ $J_{OH-H2} = 1.9$ Hz, 1H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 148.3, 134.0, 131.3 (dd, ³ $J_{C7-Fa} = 4.9$, ³ $J_{C7-Fb} = 2.5$ Hz), 129.74 (t, $J_{C6-F,through-space} = 1.2$ Hz), 129.72, 124.8, 114.7 (dd, ¹ $J_{C1-Fa} = 246.2$, ¹ $J_{C1-Fb} = 245.4$ Hz), 69.0 (dd, ² $J_{C2-Fa} = 25.0$, ² $J_{C2-Fb} = 22.0$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -125.8 (Fb, ddd, ² $J_{Fb-Fa} = 281.9$, ² $J_{Fb-H1} = 55.1$, ³ $J_{Fb-H2} = 6.3$ Hz, 1F), -133.6 (Fa, ddd, ² $J_{Fa-Fb} = 282.0$, ² $J_{Fa-H1} = 55.9$, ³ $J_{Fa-H2} = 16.3$ Hz, 1F). IR (CCl₄): v 3612 (m, O–H), 3114 (vw), 3085 (w), 3067 (w), 3012, (w, CF₂–H), 2957 (w), 2924 (w), 2858 (w), 1539 (vs), 1353 (m), 1303 (w), 1185 (w), 1138 (m), 1075 (m), 1053 (m). Mp = 53,4-55.4 °C.

2,2-Difluoro-2-deutero-1-(2-nitrophenyl)ethan-1-ol (3-NO₂-D)

3-NO₂-D was prepared as described above for **3-NO₂** using TMSCF₂D and 2nitrobenzaldehyde on a 2.0 mmol-scale to obtain a slightly yellow solid (153 mg, 38% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, ⁴*J*_{H3-H4} = 8.2 Hz, ⁴*J*_{H3-H5} = 1.1 Hz, 1H), 7.92 (d, ³*J*_{H6-H5}

 $= 7.9 \text{ Hz}, 1\text{H}, 7.73 \text{ (td, }{}^{3}J_{\text{H5-H4,6}} = 7.7 \text{ Hz}, \, {}^{4}J_{\text{H5-H3}} = 1.1 \text{ Hz}, 1\text{H}, 7.55 \text{ (dd, }{}^{3}J_{\text{H4-H3}} = 7.8, \, {}^{3}J_{\text{H4-H5}}$ $= 7.1 \text{ Hz}, \, {}^{4}J_{\text{H4-H6}} = 1.4 \text{ Hz}, 1\text{H}, 5.65 \text{ (H2, ddd, }{}^{3}J_{\text{H2-Fa}} = 16.3, \, {}^{3}J_{\text{H2-Fb}} = 6.2 \text{ Hz}, \, {}^{3}J_{\text{H2-OH}} = 4.4 \text{ Hz}, 1\text{H}, 2.74 \text{ (OH, d}, 3 \text{ J}_{\text{OH-H2}} = 4.4 \text{ Hz}, 1\text{H}), 1^{9}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -126.4 \text{ (Fb, ddt, }{}^{2}J_{\text{Fb-Fa}} = 282.4, \, {}^{3}J_{\text{Fb-H2}} = 8.2, \, {}^{2}J_{\text{Fb-D}} = 7.3 \text{ Hz}$

Hz, 1F), -134.3 (Fa, ddt, ${}^{2}J_{\text{Fa-Fb}} = 281.7$, ${}^{3}J_{\text{Fa-H2}} = 16.7$, ${}^{2}J_{\text{Fa-D}} = 8.1$ Hz, 1F). IR (CCl₄): v 3605 (m, br, O–H), 3114 (vw), 3082 (w), 3067 (w), 2954 (w), 2927 (w), 2866 (w), 2250 and 2188 (w, CF₂–D), 1529 (vs), 1346 (m), 1207 (m), 1186 (m), 1123 (m), 1093 (m), 1060 (m).

1-(4-Bromophenyl)-2,2-difluoroethan-1-ol (3-Br)

3-Br was prepared as described above for **3-NO**₂ using TMSCF₂H and 4bromobenzaldehyde on a 0.85 mmol-scale to afford a colorless liquid (133 mg, 67% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (H4,4', m, 2H), 7.31 (H3,3', m, 2H), 5.72 (H1, td, ²*J*_{H1-F} = 56.0 Hz, ³*J*_{H1-H2} = 4.9 Hz, 1H), 4.81 (H2, tt, ³*J*_{H2-Fa,b} = 9.5 Hz, ³*J*_{H1-H2} = 4.2 Hz, ³*J*_{H1-OH} =

4.2 Hz, 1H), 2.41 (O*H*, d, ${}^{3}J_{OH-H2} = 3.8$ Hz, 1H). ${}^{13}C\{{}^{1}H\}$ NMR (101 MHz, CDCl₃) δ 134.8 (C5, t, ${}^{3}J_{C5-F} = 3.2$ Hz), 131.9 (C4,4'), 128.9 (C3,3', t, ${}^{4}J_{C3,3'-F} = 0.8$ Hz), 123.2 (C6), 115.6 (C1, t, ${}^{1}J_{C1-F} = 245.8$ Hz), 73.1 (C2, t, ${}^{2}J_{C2-F} = 24.6$ Hz). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ –127.58 (Fa, dd, ${}^{2}J_{Fa-H1} = 56.1$, ${}^{3}J_{Fa-H2} = 10.4$ Hz, 1F), –127.64 (Fb, dd, ${}^{2}J_{Fb-H1} = 55.8$, ${}^{3}J_{Fb-H2} = 9.6$ Hz, 1F). IR (CCl₄): v 3618 (m, br, O–H), 3481 (w, br), 3085 (vw), 3052 (vw), 3034 (vw), 2972 (w, CF₂–H), 2899 (w), 1900 (w), 1594 (m), 1491 (m), 1403 (m), 1377 (m), 1187 (m), 1115 (m), 1081 (s), 1052 (m), 1012 (m).

1-(4-Bromophenyl)-2,2-difluoroethan-2-deutero-1-ol (3-Br-D)

3-Br-D was prepared as described above for **3-NO**₂ using TMSCF₂D and 4bromobenzaldehyde on a 1.27 mmol-scale to give a colorless liquid (232 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (H4,4', m, 2H), 7.29 (H3,3', m, 2H), 4.81 (H2, td, ³J_{H2-Fa,b} = 10.0 Hz, ³J_{H2-OH} = 3.1 Hz, 1H), 2.45 (OH, d, ³J_{OH-H2} = 3.2 Hz, 1H). ¹⁹F NMR (376

MHz, CDCl₃) δ –128.30 (Fa, dt, ${}^{3}J_{Fa-H} = 9.7$ Hz, ${}^{2}J_{Fa-D} = 8.7$ Hz, 1F), –128.36 (Fb, dt, ${}^{3}J_{Fa-H} = 9.0$ Hz, ${}^{2}J_{Fa-D} = 9.0$ Hz, 1F). IR (CCl₄): v 3618 (m, br, O–H), 3470 (w, br), 3082 (vw), 3050 (vw), 3031 (vw), 2971 (vw), 2892 (w), 2248 and 2183 (w, CF₂–D), 1900 (w), 1593 (m), 1488 (m), 1403 (m), 1213 (m), 1179 (m), 1118 (s), 1067 (s), 1012 (s).

2,2-Difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F)

3-F was prepared as described above for **3-NO**₂ using TMSCF₂H and 2fluorobenzaldehyde on a 1.14 mmol-scale to afford a slightly yellow liquid (150 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (H6, td, ³*J*_{H6-H5} = 7.2 Hz, ⁴*J*_{H6-F(Ar)} = 7.2 Hz, ⁴*J*_{H6-H4} = 1.7 Hz, 1H), 7.37 (H4, dddd, ³*J*_{H4-H3} = 8.2, ³*J*_{H4-H5} = 7.3, ⁴*J*_{H4-F(Ar)} = 5.4, ⁴*J*_{H4-H6} = 1.9 Hz, 1H), 7.22 (H5, td, ³*J*_{H5-H4} = 7.4 Hz, ³*J*_{H5-H6} = 7.4 Hz, ⁴*J*_{H5-H3} =

1.1 Hz, 1H), 7.09 (ddd, ${}^{3}J_{H3-F(Ar)} = 10.5$ Hz, ${}^{3}J_{H3-H4} = 8.3$ Hz, ${}^{4}J_{H3-H5} = 1.1$ Hz, 1H), 5.90 (dddd, ${}^{2}J_{H1-Fa} = 56.1$ Hz, ${}^{2}J_{H1-Fb} = 55.2$ Hz, ${}^{3}J_{H1-H2} = 4.0$ Hz, $J_{H1-F(Ar), \text{ through space}} = 1.0$ Hz, 1H), 5.19 (ddt, ${}^{3}J_{H2-Fa} = 13.0$ Hz, ${}^{3}J_{H2-Fb} = 8.5$ Hz, ${}^{3}J_{H2-H1} = 4.4$ Hz, ${}^{3}J_{H2-OH} = 4.4$ Hz, 1H), 2.47 (d, ${}^{3}J_{OH-H2} = 5.0$ Hz, 1H). ${}^{19}F$ NMR (376 MHz, CDCl₃) δ -118.2 (F(Ar), dddd, $J_{F(Ar)-H2, \text{ through space}} = 13.1$ Hz, ${}^{3}J_{F(Ar)-H3} = 10.4$ Hz, $J_{F(Ar)-Fb, \text{ through space}} = 5.9$ Hz, $J_{F(Ar)-Fa, \text{ through space}} =$ 3.4 Hz, 1F), -127.9 (Fb, dddd, ${}^{2}J_{Fb-Fa} = 283.6$ Hz, ${}^{2}J_{Fb-H1} = 55.2$ Hz, ${}^{3}J_{Fb-H2} = 7.6$ Hz, $J_{Fb-F(Ar), through space} = 5.8$ Hz, 1F), -129.8 (Fa, dddd, ${}^{2}J_{Fa-Fb} = 283.8$ Hz, ${}^{2}J_{Fa-H1} = 56.2$ Hz, ${}^{3}J_{Fa-H2} = 13.4$ Hz, $J_{Fa-F(Ar), through space} = 3.3$ Hz, 1F). ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CDCl₃) $\delta -118.0$ (F(Ar), dd, $J_{F(Ar)-Fb, through space} = 5.9$ Hz, $J_{F(Ar)-Fa, through space} = 3.3$ Hz, 1F), -127.3 (Fb, dd, ${}^{2}J_{Fb-Fa} = 283.7$ Hz, ${}^{3}J_{Fb-F(Ar)} = 5.9$ Hz, 1F), -129.6 (Fa, dd, ${}^{2}J_{Fa-Fb} = 283.7$ Hz, ${}^{3}J_{Fa-F(Ar)} = 3.3$ Hz, 1F). ${}^{13}C{}^{1}H{}$ NMR (101 MHz, CDCl₃) $\delta 160.4$ (C8, d, ${}^{1}J_{C8-F(Ar)} = 247.2$ Hz), 130.7 (C4, d, ${}^{3}J_{C4-F(Ar)} = 8.4$ Hz), 128.7 (C6, dt, ${}^{3}J_{C6-F(Ar)} = 3.5$ Hz, $J_{C6-Fa,b,through space} = 0.8$ Hz), 124.7 (C5, d, ${}^{4}J_{C5-F(Ar)} = 3.5$ Hz), 123.2 (C7, ddd, ${}^{2}J_{C7-F(Ar)} = 13.2$ Hz, ${}^{3}J_{C7-Fa} = 3.9$ Hz, ${}^{3}J_{C7-Fb} = 2.8$ Hz), 115.7 (C3, d, ${}^{2}J_{C3-F(Ar)} = 21.6$ Hz), 115.1 (C1, ddd, ${}^{1}J_{C1-Fa} =$ 245.8 Hz, ${}^{1}J_{C1-Fb}$ 245.0 Hz, $J_{C1-F(Ar), through space} = 2.8$ Hz), 68.2 (C2, ddd, ${}^{2}J_{C2-Fa} = 26.1$ Hz, ${}^{2}J_{C2-Fb} = 23.9$ Hz, ${}^{3}J_{C2}$. F(Ar) = 2.3 Hz). IR (CCl₄): v 3609 (m, br, O–H), 3484 (w, br), 3088 (w), 3070 (w), 3045 (w), 2968 (w), 2921 (w), 2851 (vw), 1617 (m), 1588 (m), 1492 (m), 1453 (m), 1385 (m, br), 1236 (m), 1082 (s), 1050 (s).

2,2-Difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂)

3-NO₂ (102 mg, 0.50 mmol) and 2,6-lutidine (116 μ L, 1.00 mmol) were mixed in anhydrous CH₂Cl₂ (1 mL) under an inert atmosphere. The reaction mixture was cooled to -20 °C before adding triflic anhydride (134 μ L, 0.80 mmol) dropwise. The reaction mixture was stirring for 25 min at -20 °C and was then warmed to room temperature. The crude product was mixed with cold Et₂O (25 mL) and was quickly washed with cold brine (10 mL), cold HCl (2 M, 10 mL), and cold water (10 mL). The organic phase was dried over MgSO₄ and the solvent was removed under

vacuum to give a colorless liquid (156 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (H3, m, 1H), 7.85 (H5, H6, m, 2H), 7.71 (H4, ddd, ³*J*_{H4-H3} = 8.4 Hz, ³*J*_{H4-H5} = 6.2 Hz, ⁴*J*_{H4-H6} = 2.8 Hz, 1H), 6.67 (H2, ddd, ³*J*_{H2-Fa} = 15.6 Hz, ³*J*_{H2-Fb} = 5.6 Hz, ³*J*_{H2-H1} = 1.7 Hz, 1H), 6.25 (H1, ddd, ³*J*_{H1-Fa} = 53.5 Hz, ³*J*_{H1-Fb} = 53.1 Hz, ³*J*_{H1-H2} = 1.7 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -74.3 (CF₃, d, *J*_{CF3-Fb,through space = 4.1 Hz, 3F), -124.5 (Fb, dddq, ²*J*_{Fb-Fa} = 285.7 Hz, ²*J*_{Fb-H1} = 53.7 Hz, ³*J*_{Fb-H2} = 5.6 Hz, *J*_{Fb-C73,through space = 4.1 Hz, 1F), -133.7 (Fa, ddd, ²*J*_{Fa-Fb} = 285.5, ²*J*_{Fa}. H1 = 53.8 Hz, ³*J*_{Fa-H2} = 15.6 Hz, 1F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.3 (C8), 135.0 (C5), 131.7 (C4), 129.6 (C6, t, ⁴*J*_{C6-Fa,b} = 1.4 Hz), 125.9 (C7, d, ³*J*_{C7-Fb} = 5.0 Hz), 125.7 (C3), 118.4 (C9, q, ¹*J*_{C-F} = 319.7 Hz), 111.6 (C1, dd, ¹*J*_{C1-Fa} = 250.6 Hz, ¹*J*_{C1-Fb} = 249.2 Hz), 79.9 (C2, dd, ²*J*_{C2-Fa} = 25.5 Hz, ²*J*_{C2-Fb} 21.2 Hz). IR (CCl₄): v 3114 (vw), 3088 (vw), 3070 (vw), 3050 (vw), 3008 (w, CF₂-H), 2964 (vw), 2924 (w), 2862 (w), 1533 (vs), 1427 (s), 1350 (s), 1247 (s), 1141 (vs), 1093 (s), 1002 (m). DART-HRMS(+) *m/z* calculated for C₉H₁₀F₅N₂O₅S⁺ ([M+NH4]⁺) = 353.0225, found 353.0226.}}

Note 1: The product was unstable at room temperature and was stored immediately after preparation at -80 °C or in liquid nitrogen. The compound was stable for up to a few days at -80 °C and for several weeks at -196 °C. Note 2: H3 is a multiplet consisting a triplet (8.23 ppm, t, J = 0.8 Hz, 0.5H) and a doublet of doublets (8.21 ppm,

J = 1.2, 0.5 Hz, 0.5H). Although this multiplet may be assigned to two species undergoing a very slow exchange

on the NMR timescale, such an assignment is not supported by theoretical calculations, which do not show any high rotational barriers on the PES. We currently cannot provide a conclusive explanation for this observation. This unsolved multiplet, however, does not change the major conclusions of the manuscript.

2,2-Difluoro-2-deutero-1-(2-nitrophenyl)ethyl triflate (4-NO₂-D)

4-NO₂-D was prepared as described above for 4-NO₂ using 3-NO₂-D on a 0.25 mmol-scale to give a colorless liquid (73 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (H3, d, ${}^{3}J_{\text{H3-H4}} = 8.1 \text{ Hz}, 1\text{H}$, 7.85 (H5, H6, m, 2H), 7.71 (H4, ddd, ${}^{3}J_{\text{H4-H3}} = 8.7, {}^{3}J_{\text{H4-H5}} = 6.1,$ ${}^{4}J_{\text{H4-H6}} = 2.7 \text{ Hz}, 1\text{H}$, 6.67 (H2, dd, ${}^{3}J_{\text{H2-Fb}} = 15.5 \text{ Hz}, {}^{3}J_{\text{H2-Fa}} = 5.5 \text{ Hz}, 1\text{H}$). ${}^{19}\text{F}$ NMR (376) MHz, CDCl₃) δ -74.3 (CF₃, d, J_{CF3-Fb,through space = 4.1 Hz, 3F), -125.3 (Fb, ddtq, ²J_{Fb-Fb} =} 285.8 Hz, ${}^{3}J_{\text{Fb-H2}}$ 5.5 Hz, ${}^{2}J_{\text{Fb-D}}$ = 8.8 Hz, $J_{\text{Fb-CF3 through space}}$ = 4.2 Hz, 1F), -134.3 (Fa, ddt, ${}^{3}J_{\text{Fa-Fb}} = 282.6 \text{ Hz}, {}^{3}J_{\text{Fa-H2}} = 15.9 \text{ Hz}, {}^{3}J_{\text{Fa-D}} = 8.2 \text{ Hz}, 1\text{F}$). IR (CCl₄): v 3614 (w), 3116 (vw), 3072 (vw), 3051 (vw), 3012 (vw), 2931 (w), 2868 (w), 2260 and 2200 (vw, CF₂-D), 1537 (vs), 1429 (s), 1352 (s), 1248 (s), 1221

(vs), 1142 (s), 1138 (m), 1018 (m), 989 (s), 964 (m). 1-(4-Bromophenyl)-2,2-difluoroethyl triflate (4-Br)

4-Br was prepared as described above for 4-NO₂ using 3-Br on a 0.30 mmol-scale to give a white solid (91 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.56 (H4,4', m, 2H), 7.37 - 7.27 (H3,3', m, 2H), 5.98 (H1, td, ${}^{1}J_{\text{H1-Fa,b}} = 54.2$ Hz, ${}^{2}J_{\text{H1-H2}} = 4.1$ Hz, 1H), 5.68 (H2, td, ${}^{3}J_{\text{H2-Fa,b}} = 9.6$ Hz, ${}^{3}J_{\text{H2-H1}} = 4.1$ Hz, 1H). 19 F NMR (376 MHz, CDCl₃) δ -75.2 (CF₃, pseudo t, J_{CF3} -Fa,b,through space = 1.7 Hz, 3F), -126.9 (Fa, dddq, ${}^{2}J_{Fa-Fb}$ = 293.0 Hz, ${}^{2}J_{Fa-H1}$ = 54.6 Hz, ${}^{3}J_{\text{Fa-H2}} = 10.1$ Hz, $J_{\text{Fa-CF3,through space}} = 2.4$ Hz, 1F), -128.4 (Fb, dddq, ${}^{2}J_{\text{Fb-Fa}} = 292.2$ Hz, ${}^{2}J_{\text{Fb-H1}} = 54.0 \text{ Hz}, {}^{3}J_{\text{Fb-H2}} = 8.9 \text{ Hz}, J_{\text{Fb-CF3,through space}} = 1.1 \text{ Hz}). {}^{13}\text{C}\{{}^{1}\text{H}\} \text{ NMR}$ (101 MHz,

CDCl₃) δ 132.8 (C4,4', s), 129.5 (C3,3', t, ${}^{4}J_{C3,3'-Fa,b} = 0.9$ Hz), 128.6 (C5, t, ${}^{3}J_{C5-Fa,b} = 2.4$ Hz), 125.8 (C6, s), 118.4 (*C*F₃, q, ${}^{1}J_{C-F} = 319.6$ Hz), 112.0 (C1, dd, ${}^{1}J_{C1-Fa \text{ or }Fb} = 249.7$ Hz, ${}^{1}J_{C1-Fa \text{ or }Fb} = 247.6$ Hz), 84.2 (C2, dd, ${}^{2}J_{C2-Fa \text{ or }Fb} = 247.6$ Hz), 84.2 (C2, dd, {}^{2}J_{C2-Fa \text{ or }Fb} = 247.6 Hz), 84.2 (C2, dd, {}^{2}J_{C2-Fa \text{ or }Fb} = 247.6 Hz), 84.2 (C2, dd, {}^{2}J_{C2-Fa \text{ or }Fb} = 247.6 Hz), 84.2 (C2, dd, {}^{2}J_{C2-Fa \text{ or }Fb} = 247.6 Hz), 84.2 (C2, dd, {}^{2}J_{C2-Fa \text{ or $F_{a \text{ or } Fb} = 28.6 \text{ Hz}, ^{2}J_{C2-Fa \text{ or } Fb} = 26.2 \text{ Hz}). \text{ IR (CCl}_{4}): v 2972 (w, CF_{2}-H), 2910 (vw), 1907 (w), 1597 (m), 1491$ (m), 1432 (s), 1388 (m), 1246 (s), 1220 (vs), 1140 (vs), 1099 (s), 1074 (m), 1012 (m).

1-(4-Bromophenyl)-2,2-difluoroethyl-2-deutero triflate (4-Br-D)

4-Br-D was prepared as described above for 4-NO₂ using 3-Br-D on a 0.25 mmol-scale to give a white solid (79 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.63 (H4,4', m, 2H), 7.32 (H3,3', m, 2H), 5.68 (H2, t, ${}^{3}J_{\text{H2-Fa,b}} = 9.5$ Hz, 1H). 19 F NMR (376 MHz, CDCl₃) δ -74.6 $(CF_3, s, 3F)$, -127.1 (Fa, dt, ${}^2J_{Fa-Fb} = 292.3$ Hz, ${}^2J_{Fa-D} = 8.2$ Hz, 1F), -128.6 (Fb, dt, ${}^2J_{Fb-Fa} =$ 292.3 Hz, ${}^{2}J_{\text{Fb-D}} = 8.2$ Hz, 1F). IR (CCl₄): v 2966 (w), 2926 (w), 2854 (vw), 2206 (w, CF₂-D), 1903 (w), 1595 (m), 1492 (m), 1427 (vs), 1248 (s), 1221 (vs), 1144 (vs), 1074 (m), 1014 (m), 972 (s).

2,2-Difluoro-1-(2-fluorophenyl)ethyl triflate (4-F):

4-F was prepared as described above for 4-NO₂ using 3-F on a 0.50 mmol-scale to give a colorless liquid (99 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (H4,6, m, 2H), 7.29 (H5, td, ${}^{3}J_{H5-H4.6} = 7.6$ Hz, ${}^{4}J_{H5-H3} = 1.2$ Hz, 1H), 7.19 (H3, ddd, ${}^{3}J_{H3-F(Ar)} = 10.0$ Hz, d н ${}^{3}J_{\text{H3-H4}} = 8.8 \text{ Hz}, {}^{4}J_{\text{H3-H5}} = 1.1 \text{ Hz}, 1\text{H}), 6.12 (\text{H1, tdd}, {}^{2}J_{\text{H1-Fa,b}} = 54.7 \text{ Hz}, {}^{3}J_{\text{H1-H2}} = 4.2 \text{ Hz},$ $J_{\text{H1-Fd,through space}} = 0.8 \text{ Hz}, 1\text{H}$, 6.06 (H2, td, ${}^{3}J_{\text{H2-Fa,b}} = 9.3 \text{ Hz}, {}^{3}J_{\text{H2-H1}} = 4.3 \text{ Hz}, 1\text{H}$). ${}^{19}\text{F}$ NMR (376 MHz, CDCl₃) δ -75.2 (Fc, t, J_{Fc-Fa,b,through space} = 1.8 Hz, 3F), -116.9 (Fd, dtt, ${}^{3}J_{\text{Fd-H3}} = 9.4 \text{ Hz}, {}^{4}J_{\text{Fd-H4,6}} = 6.1 \text{ Hz}, J_{\text{Fd-Fa,b,through space}} = 3.0 \text{ Hz}, 1\text{F}), -127.7 \text{ (Fa and Fb, m, 2F)}. {}^{19}\text{F}\{{}^{1}\text{H}\} \text{ NMR} (376)$ MHz, CDCl₃) δ -75.2 (Fc, t, J_{Fc-Fa,b,through space} = 1.8 Hz, 3F), -116.9 (Fd, t, J_{Fd-Fa,b,through space} = 3.0 Hz, 1F), -127.73 (Fa, dq, $J_{\text{Fa-Fd,through space}} = 2.8$ Hz, $J_{\text{Fa-Fc,through space}} = 2.2$ Hz, 1F), -127.75 (Fb, dq, $J_{\text{Fb-Fd,through space}} = 3.8$ Hz, $J_{\text{Fb-Fc,through space}} = 2.1$ Hz, 1F). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.3 (C8, d, ¹ $J_{\text{C8-Fd}} = 250.9$ Hz), 133.2 (C4, d, ${}^{3}J_{C2-Fd}$ = 8.5 Hz), 129.4 (C6, m), 125.3 (C5, d, ${}^{4}J_{C1-Fd}$ = 3.7 Hz), 118.4 (C9, q, ${}^{1}J_{C9-Fc}$ = 319.6 Hz), 117.5 (C3, dt, ${}^{2}J_{C3-Fd} = 12.7$ Hz, $J_{C3-Fa,b,through space} = 2.7$ Hz), 116.4 (C7, d, ${}^{2}J_{C7-Fd} = 21.0$ Hz), 111.7 (C1, td, ${}^{1}J_{C1-Fa,b} = 12.7$ Hz, $J_{C3-Fa,b,through space} = 2.7$ Hz), 116.4 (C7, d, ${}^{2}J_{C7-Fd} = 21.0$ Hz), 111.7 (C1, td, ${}^{1}J_{C1-Fa,b} = 12.7$ Hz), 116.4 (C7, d, ${}^{2}J_{C7-Fd} = 21.0$ Hz), 111.7 (C1, td, ${}^{1}J_{C1-Fa,b} = 12.7$ Hz), 116.4 (C7, d, ${}^{2}J_{C7-Fd} = 21.0$ Hz), 111.7 (C1, td, ${}^{1}J_{C1-Fa,b} = 12.7$ Hz), 116.4 (C7, d, ${}^{2}J_{C7-Fd} = 21.0$ Hz), 111.7 (C1, td, ${}^{1}J_{C1-Fa,b} = 12.7$ Hz), 116.4 (C7, d, ${}^{2}J_{C7-Fd} = 21.0$ Hz), 111.7 (C1, td, ${}^{1}J_{C1-Fa,b} = 12.7$ Hz), 110.4 (C1, td, {}^{1}J_{C1-Fa,b} = 12.7 Hz), 110.4 (C1, td, {}^{1}J 248.1 Hz, $J_{C1-Fd,through,space} = 3.0$ Hz), 79.4 (C2, td, ${}^{2}J_{C2-Fa,b} = 28.4$ Hz, $J_{C2-Fd,through,space} = 2.6$ Hz). IR (CCl₄): v 3088 (vw), 3070 (vw), 3046 (vw), 2971 (w, CF₂-H), 2924 (w), 2848 (vw), 1621 (m), 1588 (m), 1492 (m), 1459 (m), 1433 (s), 1247 (s), 1218 (vs), 1145 (vs), 1101 (s), 951 (m).

1-(Benzyloxy)-4-(difluoromethyl)benzene (5-CF₂H):

 CF_2H 5- CF_2H was prepared by treating 4-(benzyloxy)-1-benzaldehyde (2.0 mmol, 424 mg) in anhydrous CH_2Cl_2 (2.0 mL) with (diethylamino)sulfur trifluoride (DAST; 6.8 mmol, 1094 mg, 0.90 mL) in a PTFE vial. A portion of CH_3OH (20 µL) was added as a catalyst and the

reaction was stirred at room temperature overnight. The reaction was quenched carefully with sat. Na₂CO₃(aq). The mixture was extracted with ethyl acetate (20 mL × 3) and the organic phase was dried over MgSO₄. The crude product was purified by silica gel column chromatography (CH₂Cl₂:hexanes = 15:85 to 20:80 to 30:70) to give a white solid (220 mg, 47% yield). Colorless crystals were obtained by slow evaporation from a CH₂Cl₂ and hexanes solution. MP 73.9 – 74.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.33 (m, 7H, Ar-*H*), 7.03 (pseudo d, *J* = 8.9 Hz, 2H, Ar-*H*), 6.60 (t, *J* = 56.7 Hz, 1H, CF₂*H*), 5.11 (s, 2H, CH₂). ¹⁹F NMR (376 MHz, CDCl₃) δ –108.9 (d, *J* = 56.8 Hz, CF₂H). These data are consistent with published results.³

3. NMR Spectroscopy Studies

3.1 Concentration Dependence of NMR Chemical Shifts of 1-CF₂H and 1-OH

The concentration dependence of the NMR chemical shifts of $1-CF_2H$ and 1-OH was investigated in CDCl₃ at concentrations of 1, 5, 20, 100, and 500 mM at room temperature. The chemical shift of the CF₂H proton and the OH proton is independent of concentration from 1 to 100 mM. Slightly upfield shifts were observed at concentrations of 500 mM. This result indicates that hydrogen bonding interactions are predominantly intramolecular at concentrations less than 100 mM.

Figure S1. ¹H NMR spectra of 1-CF₂H (left) and 1-OH (right) in CDCl₃ at different concentrations.

3.2 Solvent Dependence of the Conformation of 4-NO₂

The conformation of **4-NO**₂ was investigated at a concentration of 50 mM in four different solvents, including CCl₄ (ε = 2.22), CDCl₃ (ε = 4.71), CD₃NO₂ (ε = 36.6), and CD₃CN (ε = 35.7).⁴ Although DMF-*d*₇ was also used in NMR studies, the compound decomposed rapidly in DMF-*d*₇ at room temperature. The four solvents were chosen not only because of their different dielectric constants, but are also due to their ability to facilitate various specific interactions, such as hydrogen and halogen bonding. As shown in Figure S2, although the ¹H NMR chemical shift of the CF₂H moiety varies in different solvents, the value, relative to that of the benzylic proton, is almost solvent independent. Other than in CCl₄, the multiplicity of the benzylic proton and the corresponding coupling constants do not change in different solvents. More importantly, the through-space coupling between the CF₃ group and the F^b nucleus is a good indicator of the conformation of **4-NO**₂. The coupling constants are only ca. 30% higher in non-polar solvents than those in highly polar solvents, suggesting only a minor change in conformational distribution. In summary, the conformation of **4-NO**₂ is insensitive to solvents, which in turn suggests that the intramolecular CF₂-H^{...}O bonding is not significantly perturbed by weak intermolecular forces.

Figure S2. ¹H and ¹⁹F NMR spectra of 4-NO₂ in various solvents.

3.3 Concentration Dependence of the Conformation of 4-NO₂

To investigate whether there are significant intermolecular $CF_2H^{...}O$ interactions, we performed NMR studies of **4-NO₂** in CDCl₃ at different concentrations. As illustrated in Figure S3, ¹H and ¹⁹F NMR spectra of **4-NO₂** do not show any noticeable differences at concentrations spanning from 10 mM to 100 mM. These results indicate that **4-NO₂** experiences rather weak intermolecular interactions, if any.

Figure S3. ¹H and ¹⁹F NMR spectra of 4-NO₂ in CDCl₃ at various concentrations.

4. IR Spectroscopy Studies

Spectroscopic studies were performed at a concentration of 100 mM in anhydrous CCl_4 . To identify the CF_2 -H bond stretch, the corresponding CF_2 -D-containing compounds were synthesized.

Figure S4. A) IR spectrum of TMSCF₂H. B) Superimposed IR spectra of TMSCF₂H (black) and TMSCF₂D (red). C) and D) Expansion of superimposed IR spectra of TMSCF₂H (black) and TMSCF₂D (red).

Figure S5. A) IR spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethan-1-ol (3-NO₂). B) Superimposed IR spectra of 3-NO₂ (black) and 3-NO₂-D (red). C) and D) Expansion of superimposed IR spectra of 3-NO₂ (black) and 3-NO₂-D (red).

Figure S6. A) IR spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethan-1-ol triflate (4-NO₂). B) Superimposed IR spectra of 4-NO₂ (black) and 4-NO₂-D (red). C) and D) Expansion of superimposed IR spectra of 4-NO₂ (black) and 4-NO₂-D (red). The IR spectrum of 4-NO₂ is complicated in the region from 2800 to 3200 cm⁻¹; we tentatively assign the peak at 3008 cm⁻¹ to the CF₂-H stretch. Peaks in the IR spectrum of the deuterated analogue 4-NO₂-D at 2260 and 2200 cm⁻¹ were attributed to CF₂-D bond stretches. The two bands are most likely due to Fermi resonance.

Figure S7. A) IR spectrum of 2,2-difluoro-1-(4-bromophenyl)ethan-1-ol (**3-Br**). B) Superimposed IR spectra of **3-Br** (black) and **3-Br-D** (red). C) and D) Expansion of superimposed IR spectra of **3-Br** (black) and **3-Br-D** (red).

Figure S8. A) IR spectrum of 2,2-difluoro-1-(4-bromophenyl)ethan-1-ol triflate (4-Br). B) Superimposed IR spectra of 4-Br (black) and 4-Br-D (red). C) and D) Expansion of superimposed IR spectra of 4-Br (black) and 4-Br-D (red).

Figure S9. A) IR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F). B) Expansion of IR spectrum of 3-F.

Figure S10. A) IR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol triflate (4-F). B) Expansion of IR spectrum of 4-F.

Figure S11. A) IR spectrum of *o*-nitro- α , α -difluorotoluene (1-CF₂H). B) Superimposed IR spectra of 1-CF₂H (black) and 1-CF₂D (red). C) and D) Expansion of superimposed IR spectra of 1-CF₂H (black) and 1-CF₂D (red). Peaks in the IR spectrum of the deuterated analogue 1-CF₂D at 2276 and 2237 cm⁻¹ were attributed to CF₂-D bond stretches. The two bands are probably due to Fermi resonance.

Figure S12. A) IR spectrum of *p*-bromo-α,α-difluorotoluene (2-CF₂H). B) Expansion of IR spectrum of 2-CF₂H.

Figure S13. A) IR spectrum of *p*-bromophenol(**2-OH**). B) Expansion of IR spectrum of **2-OH**. C) IR spectrum of *o*-nitrophenol (**1-OH**). D) Expansion of IR spectrum of **1-OH**.

5. Theoretical Calculations

5.1. Potential Energy Surface Calculations and Conformational Distribution

The conformations of **4-NO**₂ are determined by four critical rotations τ_1 - τ_4 (Figure S14). To identify the conformational distribution of **4-NO**₂, two model compounds, 1-(2-nitrophenyl)-2,2,2-trifluoroethanol triflate and 1-(2-nitrophenyl)ethanol triflate, were chosen to generate potential energy surfaces (PESs) as a function of the τ_1 and τ_2 rotations. Because of the C_{3v} symmetry of the trifluoromethyl and methyl group, the PESs of these two molecules are independent of τ_3 . The rotations τ_1 and τ_2 were scanned from -180° to $+180^\circ$ with an increment of 30° of each step. The conformational distribution about τ_1 and τ_2 was obtained as a 13×13 PES with 169 geometry optimizations. For both model compounds, four local minima were identified (Figures S15 and S16). The search of local minima of **4-NO**₂ was achieved by substituting the CF₃ group with a CF₂H moiety. Further geometry optimization of these structures was performed at the PCM-B3LYP/6-31+G(d,p) level in CHCl₃, which led to very small geometric changes.

Figure S14. Critical rotations determining the conformations of 4-NO₂.

In addition to the τ_1 and τ_2 rotations, two more rotations, τ_3 and τ_4 , were also considered because they govern the formation of intramolecular H-bonding (Figure S14). As such, each local minimum on the PES corresponds to $3 \times 2 = 6$ conformers and, overall, 24 conformers were identified for **4-NO**₂ at the PCM-B3LYP/6-31+G(d,p) level of theory in CHCl₃. Similarly, 12 and 24 conformers were found for **4-Br** and **4-F**, respectively.

Figure S15. A) 3D-PES of 1-(2-nitrophenyl)-2,2,2-trifluoroethanol triflate. B) Contour map of PES of 1-(2-nitrophenyl)-2,2,2-trifluoroethanol triflate. C) Definition of the value of τ_1 and τ_2 .

Conformer	T ₁	T ₂	Energy (hartree)	Relative Energy (kcal/mol)
1	-180	-180	-1773.954430	5.7
2	-150	-180	-1773.956956	4.1
3	-120	-180	-1773.954207	5.8
4	-90	-180	-1773.954631	5.5
5	-60	-180	-1773.953092	6.5
6	-30	-180	-1773.946659	10.5
7	0	-180	-1773.940325	14.5
8	30	-180	-1773.939514	15.0
9	60	-180	-1773.943704	12.4
10	90	-180	-1773.952119	7.1
11	120	-180	-1773.95194	7.2
12	150	-180	-1773.952763	6.7
13	180	-180	-1773.955271	5.1
14	-180	-150	-1773.951265	7.7
15	-150	-150	-1773.949538	8.7
16	-120	-150	-1773.948832	9.2
17	-90	-150	-1773.950176	8.3
18	-60	-150	-1773.947543	10.0
19	-30	-150	-1773.939266	15.2
20	0	-150	-1773.934136	18.4
21	30	-150	-1773.933474	18.8
22	60	-150	-1773.941371	13.9
23	90	-150	-1773.944964	11.6
24	120	-150	-1773.947716	9.9
25	150	-150	-1773.949063	9.0
26	180	-150	-1773.951559	7.5
27	-180	-120	-1773.948285	9.5
28	-150	-120	-1773.948281	9.5
29	-120	-120	-1773.947202	10.2
30	-90	-120	-1773.946529	10.6
31	-60	-120	-1773.942267	13.3
32	-30	-120	-1773.934818	18.0
33	0	-120	-1773.930970	20.4
34	30	-120	-1773.932517	19.4
35	60	-120	-1773.939452	15.1
36	90	-120	-1773.944915	11.6
37	120	-120	-1773.945780	11.1
38	150	-120	-1773.948464	9.4
39	180	-120	-1773.949243	8.9
40	-180	-90	-1773.950552	8.1
41	-150	-90	-1773.948532	9.4
42	-120	-90	-1773.948787	9.2
43	-90	-90	-1773.947245	10.2
44	-60	-90	-1773.940200	14.6
45	-30	-90	-1773.933626	18.7

Table S1. Conformers and energy of 1-(2-nitrophenyl)-2,2,2-trifluoroethanol triflate due to the rotations of τ_1 and τ_2 at the B3LYP/6-31+G(d) level of theory in the gas phase.

46	0	-90	-1773.932493	19.4
47	30	-90	-1773.936722	16.8
48	60	-90	-1773.945055	11.6
49	90	-90	-1773.946855	10.4
50	120	-90	-1773.949172	9.0
51	150	-90	-1773.949787	8.6
52	180	-90	-1773.950439	8.2
53	-180	-60	-1773.951809	7.3
54	-150	-60	-1773.951950	7.2
55	-120	-60	-1773.951877	7.3
56	-90	-60	-1773.948338	9.5
57	-60	-60	-1773.942883	12.9
58	-30	-60	-1773.938209	15.8
59	0	-60	-1773.935795	17.4
60	30	-60	-1773.940390	14.5
61	60	-60	-1773.944141	12.1
62	90	-60	-1773.944141	12.1
63	120	-60	-1773.952768	6.7
64	150	-60	-1773.953185	6.5
65	180	-60	-1773.951953	7.2
66	-180	-30	-1773.954054	5.9
67	-150	-30	-1773.953389	6.3
68	-120	-30	-1773.951283	7.6
69	-90	-30	-1773.949235	8.9
70	-60	-30	-1773.946125	10.9
71	-30	-30	-1773.938765	15.5
72	0	-30	-1773.935972	17.3
73	30	-30	-1773.936845	16.7
74	60	-30	-1773.944938	11.6
75	90	-30	-1773.950917	7.9
76	120	-30	-1773.951231	7.7
77	150	-30	-1773.951500	7.5
78	180	-30	-1773.953025	6.6
79	-180	0	-1773.953195	6.4
80	-150	0	-1773.951407	7.6
81	-120	0	-1773.951797	7.3
82	-90	0	-1773.949738	8.6
83	-60	0	-1773.944600	11.8
84	-30	0	-1773.937035	16.6
85	0	0	-1773.933711	18.7
86	30	0	-1773.938503	15.7
87	60	0	-1773.947402	10.1
88	90	0	-1773.950377	8.2
89	120	0	-1773.950406	8.2
90	150	0	-1773.952055	7.2
91	180	0	-1773.952419	6.9
92	-180	30	-1773.953072	6.5

93	-150	30	-1773.952902	6.6
94	-120	30	-1773.953353	6.3
95	-90	30	-1773.950371	8.2
96	-60	30	-1773.944191	12.1
97	-30	30	-1773.937312	16.4
98	0	30	-1773.937873	16.1
99	30	30	-1773.945210	11.5
100	60	30	-1773.950672	8.0
101	90	30	-1773.953428	6.3
102	120	30	-1773.954511	5.6
103	150	30	-1773.955744	4.8
104	180	30	-1773.953373	6.3
105	-180	60	-1773.957001	4.1
106	-150	60	-1773.956605	4.3
107	-120	60	-1773.955654	4.9
108	-90	60	-1773.955369	5.1
109	-60	60	-1773.949007	9.1
110	-30	60	-1773.944616	11.8
111	0	60	-1773.946157	10.9
112	30	60	-1773.950597	8.1
113	60	60	-1773.955987	4.7
114	90	60	-1773.959452	2.5
115	120	60	-1773.960737	1.7
116	150	60	-1773.960121	2.1
117	180	60	-1773.957721	3.6
118	-180	90	-1773.960310	2.0
119	-150	90	-1773.960079	2.1
120	-120	90	-1773.961526	1.2
121	-90	90	-1773.961307	1.4
122	-60	90	-1773.956995	4.1
123	-30	90	-1773.951909	7.3
124	0	90	-1773.950024	8.4
125	30	90	-1773.953012	6.6
126	60	90	-1773.958747	3.0
127	90	90	-1773.963132	0.2
128	120	90	-1773.963467	0.0
129	150	90	-1773.962203	0.8
130	180	90	-1773.960855	1.6
131	-180	120	-1773.960166	2.1
132	-150	120	-1773.960839	1.6
133	-120	120	-1773.963129	0.2
134	-90	120	-1773.963268	0.1
135	-60	120	-1773.958986	2.8
136	-30	120	-1773.952916	6.6
137	0	120	-1773.949984	8.5
138	30	120	-1773.951588	7.5
139	60	120	-1773.957941	3.5

140	90	120	-1773.961686	1.1
141	120	120	-1773.962409	0.7
142	150	120	-1773.961259	1.4
143	180	120	-1773.960456	1.9
144	-180	150	-1773.957194	3.9
145	-150	150	-1773.960307	2.0
146	-120	150	-1773.962352	0.7
147	-90	150	-1773.960159	2.1
148	-60	150	-1773.956003	4.7
149	-30	150	-1773.951773	7.3
150	0	150	-1773.946634	10.6
151	30	150	-1773.947149	10.2
152	60	150	-1773.951365	7.6
153	90	150	-1773.957210	3.9
154	120	150	-1773.959511	2.5
155	150	150	-1773.957349	3.8
156	180	150	-1773.957919	3.5
157	-180	180	-1773.954430	5.7
158	-150	180	-1773.956956	4.1
159	-120	180	-1773.955252	5.2
160	-90	180	-1773.954631	5.5
161	-60	180	-1773.953092	6.5
162	-30	180	-1773.946659	10.5
163	0	180	-1773.940325	14.5
164	30	180	-1773.939514	15.0
165	60	180	-1773.943704	12.4
166	90	180	-1773.952120	7.1
167	120	180	-1773.951941	7.2
168	150	180	-1773.952763	6.7
169	180	180	-1773.955270	5.1

5.1.2. 1-(2-Nitrophenyl)ethanol Triflate

Figure S16. A) 3D-PES of 1-(2-nitrophenyl)ethanol triflate. B) Contour map of PES of 1-(2-nitrophenyl)ethanol triflate. C) Definition of the value of τ_1 and τ_2 .

Conformer	T ₁	T ₂	Energy (hartree)	Relative Energy (kcal/mol)
1	-180	-180	-1476.223423	6.9
2	-150	-180	-1476.228592	3.6
3	-120	-180	-1476.231242	2.0
4	-90	-180	-1476.228125	3.9
5	-60	-180	-1476.226154	5.2
6	-30	-180	-1476.222149	7.7
7	0	-180	-1476.216475	11.2
8	30	-180	-1476.209385	15.7
9	60	-180	-1476.215635	11.8
10	90	-180	-1476.222620	7.4
11	120	-180	-1476.222752	7.3
12	150	-180	-1476.221730	7.9
13	180	-180	-1476.223423	6.9
14	-180	-150	-1476.228121	3.9
15	-150	-150	-1476.224489	6.2
16	-120	-150	-1476.226592	4.9
17	-90	-150	-1476.224795	6.0
18	-60	-150	-1476.222547	7.4
19	-30	-150	-1476.216920	11.0
20	0	-150	-1476.211864	14.1
21	30	-150	-1476.205804	17.9
22	60	-150	-1476.210945	14.7
23	90	-150	-1476.216570	11.2
24	120	-150	-1476.216914	11.0
25	150	-150	-1476.219040	9.6
26	180	-150	-1476.220404	8.8
27	-180	-120	-1476.227336	4.4
28	-150	-120	-1476.222571	7.4
29	-120	-120	-1476.224617	6.1
30	-90	-120	-1476.223705	6.7
31	-60	-120	-1476.219026	9.6
32	-30	-120	-1476.209519	15.6
33	0	-120	-1476.209701	15.5
34	30	-120	-1476.201807	20.4
35	60	-120	-1476.210231	15.2
36	90	-120	-1476.213426	13.2
37	120	-120	-1476.215943	11.6
38	150	-120	-1476.215206	12.0
39	180	-120	-1476.215833	11.6
40	-180	-90	-1476.224712	6.1
41	-150	-90	-1476.224163	6.4
42	-120	-90	-1476.225504	5.6
43	-90	-90	-1476.223796	6.6
44	-60	-90	-1476.217153	10.8
45	-30	-90	-1476.210859	14.8

Table S2. Conformers of 1-(2-nitrophenyl)-2,2,2-trifluoroethanol triflate due to the rotations of τ_1 and τ_2 at the B3LYP/6-31+G(d) level of theory in the gas phase.

46	0	-90	-1476.209029	15.9
47	30	-90	-1476.205718	18.0
48	60	-90	-1476.212471	13.8
49	90	-90	-1476.214955	12.2
50	120	-90	-1476.216548	11.2
51	150	-90	-1476.216428	11.3
52	180	-90	-1476.217038	10.9
53	-180	-60	-1476.225950	5.3
54	-150	-60	-1476.226446	5.0
55	-120	-60	-1476.226713	4.8
56	-90	-60	-1476.222529	7.4
57	-60	-60	-1476.218315	10.1
58	-30	-60	-1476.214191	12.7
59	0	-60	-1476.203507	19.4
60	30	-60	-1476.203857	19.2
61	60	-60	-1476.210068	15.3
62	90	-60	-1476.214858	12.3
63	120	-60	-1476.216525	11.2
64	150	-60	-1476.217028	10.9
65	180	-60	-1476.218511	10.0
66	-180	-30	-1476.224080	6.5
67	-150	-30	-1476.224136	6.4
68	-120	-30	-1476.222346	7.6
69	-90	-30	-1476.222265	7.6
70	-60	-30	-1476.218499	10.0
71	-30	-30	-1476.212653	13.6
72	0	-30	-1476.198957	22.2
73	30	-30	-1476.203316	19.5
74	60	-30	-1476.208288	16.4
75	90	-30	-1476.212039	14.0
76	120	-30	-1476.216558	11.2
77	150	-30	-1476.218646	9.9
78	180	-30	-1476.215178	12.1
79	-180	0	-1476.223092	7.1
80	-150	0	-1476.220664	8.6
81	-120	0	-1476.220423	8.8
82	-90	0	-1476.222332	7.6
83	-60	0	-1476.216924	11.0
84	-30	0	-1476.208584	16.2
85	0	0	-1476.202311	20.1
86	30	0	-1476.205689	18.0
87	60	0	-1476.211837	14.2
88	90	0	-1476.218403	10.0
89	120	0	-1476.220485	8.7
90	150	0	-1476.217490	10.6
91	180	0	-1476.216594	11.2
92	-180	30	-1476.224766	6.0

93	-150	30	-1476.222912	7.2
94	-120	30	-1476.223599	6.8
95	-90	30	-1476.221878	7.9
96	-60	30	-1476.215832	11.6
97	-30	30	-1476.209310	15.7
98	0	30	-1476.206566	17.5
99	30	30	-1476.211902	14.1
100	60	30	-1476.219577	9.3
101	90	30	-1476.223294	7.0
102	120	30	-1476.222044	7.7
103	150	30	-1476.221959	7.8
104	180	30	-1476.222544	7.4
105	-180	60	-1476.229664	3.0
106	-150	60	-1476.229111	3.3
107	-120	60	-1476.228866	3.5
108	-90	60	-1476.22738	4.4
109	-60	60	-1476.221304	8.2
110	-30	60	-1476.217344	10.7
111	0	60	-1476.212822	13.5
112	30	60	-1476.217938	10.3
113	60	60	-1476.223658	6.7
114	90	60	-1476.225918	5.3
115	120	60	-1476.225855	5.4
116	150	60	-1476.226690	4.8
117	180	60	-1476.225446	5.6
118	-180	90	-1476.232470	1.2
119	-150	90	-1476.232574	1.1
120	-120	90	-1476.232826	1.0
121	-90	90	-1476.232932	0.9
122	-60	90	-1476.229140	3.3
123	-30	90	-1476.224428	6.3
124	0	90	-1476.216275	11.4
125	30	90	-1476.219579	9.3
126	60	90	-1476.225326	5.7
127	90	90	-1476.229430	3.1
128	120	90	-1476.227935	4.1
129	150	90	-1476.226990	4.6
130	180	90	-1476.225922	5.3
131	-180	120	-1476.231846	1.6
132	-150	120	-1476.232271	1.3
133	-120	120	-1476.233657	0.5
134	-90	120	-1476.234390	0.0
135	-60	120	-1476.230824	2.2
136	-30	120	-1476.224643	6.1
137	0	120	-1476.216189	11.4
138	30	120	-1476.218715	9.8
139	60	120	-1476.225255	5.7

140	90	120	-1476.228893	3.4
141	120	120	-1476.227427	4.4
142	150	120	-1476.226369	5.0
143	180	120	-1476.225991	5.3
144	-180	150	-1476.231198	2.0
145	-150	150	-1476.232365	1.3
146	-120	150	-1476.233684	0.4
147	-90	150	-1476.233592	0.5
148	-60	150	-1476.229738	2.9
149	-30	150	-1476.224196	6.4
150	0	150	-1476.214564	12.4
151	30	150	-1476.216118	11.5
152	60	150	-1476.221571	8.0
153	90	150	-1476.226488	5.0
154	120	150	-1476.226482	5.0
155	150	150	-1476.225184	5.8
156	180	150	-1476.225263	5.7
157	-180	180	-1476.229682	3.0
158	-150	180	-1476.231704	1.7
159	-120	180	-1476.231242	2.0
160	-90	180	-1476.230285	2.6
161	-60	180	-1476.228283	3.8
162	-30	180	-1476.222149	7.7
163	0	180	-1476.210412	15.0
164	30	180	-1476.211251	14.5
165	60	180	-1476.217453	10.6
166	90	180	-1476.224058	6.5
167	120	180	-1476.222752	7.3
168	150	180	-1476.221730	7.9
169	180	180	-1476.223423	6.9

5.1.3. Energy and Population of Conformers

To better estimate the relative energy of each conformer, single point energies were calculated at the PCM-M062X/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) level of theory in CHCl₃. The hybrid meta exchange-correlation density functional M06-2X empirically accounts for dispersive interactions and demonstrates high accuracy in main-group thermochemistry.⁶ The free energies were calculated by combining single point PCM-M062X/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) calculations with thermal and entropic corrections obtained at the PCM-B3LYP/6-31+G(d,p) level. Frequency analyses confirmed that all structures were true minima on the potential energy surface. The relative populations of the different conformers in 298 K CHCl₃ solutions were estimated using Boltzmann statistics.

5.1.3.1. 1-(2-Nitrophenyl)-2,2-difluoroethanol Triflate (4-NO₂)

Table S3. Energy and population of conformers of 1-(2-nitrophenyl)-2,2-difluoroethanol triflate (4-NO2).

	PCM-B3LYP/6-31+G(d,p)					PCM-M062X/6-311++G(2d,2p) ^a			
Conformer	Note	Thermal Correction (hartree)	Free Energy (hartree)	Relative Free Energy (kcal/mol)	Pop⁵	Energy (hartree)	Free Energy (hartree) [°]	Relative Free Energy (kcal/mol)	Pop⁵
1-trans-a		0.112272	-1674.612217	0.0	56%	-1674.653592	-1674.541320	0.0	69%
2-trans-a		0.112626	-1674.612069	0.1	39%	-1674.653608	-1674.540982	0.2	30%
3-trans-a		0.112203	-1674.600456	7.4	0%	-1674.642476	-1674.530273	6.9	0%
4-trans-a		0.111510	-1674.600870	7.1	0%	-1674.641174	-1674.529664	7.3	0%
1-trans-b		0.110981	-1674.610702	1.0	1%	-1674.649923	-1674.538942	1.5	0%
2-trans-b		0.111740	-1674.609904	1.5	0%	-1674.650151	-1674.538411	1.8	0%
3-trans-b		0.112625	-1674.599991	7.7	0%	-1674.642145	-1674.529520	7.4	0%
4-trans-b		0.111909	-1674.600377	7.4	0%	-1674.640720	-1674.528811	7.8	0%
1-trans-c		0.111460	-1674.610607	1.0	1%	-1674.649791	-1674.538331	1.9	0%
2-trans-c		0.111278	-1674.610828	0.9	2%	-1674.650151	-1674.538873	1.5	0%
3-trans-c		0.111512	-1674.602392	6.2	0%	-1674.643390	-1674.531878	5.9	0%
4-trans-c		0.111747	-1674.603527	5.5	0%	-1674.643951	-1674.532204	5.7	0%
1-cis-a		0.111385	-1674.602534	6.1	0%	-1674.643048	-1674.531663	6.1	0%
2-cis-a		0.110002	-1674.603595	5.4	0%	-1674.641949	-1674.531947	5.9	0%
3-cis-a	Same as 4-cis-a	0.111241	-1674.602476	6.1	0%	-1674.641833	-1674.530592	6.7	0%
4-cis-a	Same as 3-cis-a	0.111236	-1674.602480	6.1	0%	-1674.641835	-1674.530599	6.7	0%
1-cis-b	Same as 1-cis-c	0.112200	-1674.609211	1.9	0%	-1674.649812	-1674.537612	2.3	0%
2-cis-b	Same as 2-cis-c	0.111122	-1674.610185	1.3	0%	-1674.648737	-1674.537615	2.3	0%
3-cis-b		0.109915	-1674.604159	5.1	0%	-1674.642530	-1674.532615	5.5	0%
4-cis-b		0.111032	-1674.603044	5.8	0%	-1674.642351	-1674.531319	6.3	0%
1-cis-c	Same as 1-cis-b	0.112226	-1674.609186	1.9	0%	-1674.649818	-1674.537592	2.3	0%
2-cis-c	Same as 2-cis-b	0.110843	-1674.610464	1.1	1%	-1674.648745	-1674.537902	2.1	0%
3-cis-c		0.111973	-1674.597897	9.0	0%	-1674.639416	-1674.527443	8.7	0%
4-cis-c		0.111895	-1674.595274	10.6	0%	-1674.637148	-1674.525253	10.1	0%

a. Single point calculation; b. population distribution at 298 K; c. calculated based on single point energy at the PCM-M062X/6-311++G(2d,2p) level with thermal correction at the PCM-B3LYP/6-31+G(d,p) level.

Figure S17. Conformers of 1-(2-nitrophenyl)-2,2-difluoroethanol triflate (**4-NO**₂), relative free energies at the PCM-M062X/6-311++G(2d,2p)//PCM-B3LYP/6-31+G(d,p) level of theory, and population distribution.

Figure S18. Calculated conformational distribution of 1-(2-nitrophenyl)-2,2-difluoroethanol triflate (4-NO₂) at the PCM-M062X/6-311++G(2d,2p)//PCM-B3LYP/6-31+G(d,p) level of theory.

5.1.3.2. 1-(4-Bromo)-2,2-difluoroethanol Triflate (4-Br)

		,		, ,			
	PCM-B3LYP		PCM-M062X/6-31	1++G(2d,2p) ^a			
Thermal Correction (hartree)	Free Energy (hartree)	Relative Free Energy (kcal/mol)	Pop⁵	Energy (hartree)	Free Energy (hartree) [°]	Relative Free Energy (kcal/mol)	Pop⁵
0.100144	-4041.247341	1.1	1%	-4043.728933	-4043.628789	0.9	3%
0.100376	-4041.246631	1.6	0%	-4043.728676	-4043.628300	1.2	1%
0.099897	-4041.238942	6.4	0%	-4043.721209	-4043.621312	5.5	0%
0.099759	-4041.239247	6.2	0%	-4043.720294	-4043.620535	6.0	0%
0.100285	-4041.247327	1.2	1%	-4043.729036	-4043.628751	0.9	3%
0.099899	-4041.247043	1.3	1%	-4043.728057	-4043.628158	1.3	1%
0.101972	-4041.236209	8.1	0%	-4043.720046	-4043.618074	7.6	0%
0.099625	-4041.247316	1.2	1%	-4043.728057	-4043.628432	1.1	1%
0.098969	-4041.249162	0.0	93%	-4043.729120	-4043.630151	0.0	88%
0.099871	-4041.247833	0.8	4%	-4043.728607	-4043.628736	0.9	3%
0.101198	-4041.240206	5.6	0%	-4043.723971	-4043.622773	4.6	0%
0.100355	-4041.241206	5.0	0%	-4043.723145	-4043.622790	4.6	0%
	Thermal Correction (hartree) 0.100144 0.100376 0.099897 0.099759 0.100285 0.099899 0.101972 0.099625 0.098969 0.099871 0.101198 0.100355	PCM-B3LYP Thermal Correction (hartree) Free Energy (hartree) 0.100144 -4041.247341 0.100376 -4041.246631 0.099897 -4041.246631 0.099897 -4041.238942 0.099759 -4041.238942 0.099897 -4041.238942 0.099899 -4041.239247 0.100285 -4041.247327 0.099899 -4041.247043 0.101972 -4041.247043 0.099869 -4041.249162 0.099871 -4041.249162 0.099871 -4041.240206 0.100355 -4041.241206	PCM-B3LYP/6-31+G(d,p) Thermal Correction (hartree) Free Energy (hartree) Relative Free Energy (kcal/mol) 0.100144 -4041.247341 1.1 0.100144 -4041.247341 1.1 0.100376 -4041.246631 1.6 0.099897 -4041.238942 6.4 0.099759 -4041.239247 6.2 0.100285 -4041.247327 1.2 0.099899 -4041.236209 8.1 0.101972 -4041.236209 8.1 0.099869 -4041.247316 1.2 0.099869 -4041.249162 0.0 0.099871 -4041.247833 0.8 0.101198 -4041.240206 5.6 0.100355 -4041.241206 5.0	PCM-B3LYP/6-31+G(d,p) Thermal Correction (hartree) Free Energy (hartree) Relative Energy (kcal/mol) Pop ^b 0.100144 -4041.247341 1.1 1% 0.100376 -4041.246631 1.6 0% 0.099897 -4041.238942 6.4 0% 0.099759 -4041.247327 1.2 1% 0.100285 -4041.247043 1.3 1% 0.100285 -4041.247327 1.2 1% 0.099899 -4041.247316 1.2 1% 0.101972 -4041.247316 1.2 1% 0.099869 -4041.247333 0.8 4% 0.101198 -4041.240206 5.6 0%	PCM-B3LYP/6-31+G(d,p) Thermal Correction (hartree) Free Energy (hartree) Relative Energy (kcal/mol) Pop ^b Energy (hartree) 0.100144 -4041.247341 1.1 1% -4043.728933 0.100376 -4041.246631 1.6 0% -4043.728976 0.099897 -4041.238942 6.4 0% -4043.721209 0.099759 -4041.239247 6.2 0% -4043.720294 0.100285 -4041.247327 1.2 1% -4043.728057 0.101972 -4041.236209 8.1 0% -4043.720046 0.099869 -4041.247316 1.2 1% -4043.728057 0.101972 -4041.24733 0.8 4% -4043.729120 0.099869 -4041.24733 0.8 4% -4043.728057 0.099871 -4041.247833 0.8 4% -4043.728077 0.101198 -4041.240206 5.6 0% -4043.723971 0.100355 -4041.241206 5.0 0% -4043.723145	PCM-B3LYP/6-31+G(d,p) PCM-M062X/6-31 Thermal Correction (hartree) Free Energy (hartree) Relative Free Energy (kcal/mol) Pop ^b Energy (hartree) Free Energy (hartree) ^c 0.100144 -4041.247341 1.1 1% -4043.728933 -4043.628789 0.100376 -4041.246631 1.6 0% -4043.728676 -4043.628300 0.099897 -4041.238942 6.4 0% -4043.721209 -4043.622335 0.100285 -4041.247327 1.2 1% -4043.728057 -4043.628751 0.099899 -4041.247043 1.3 1% -4043.728057 -4043.628158 0.101972 -4041.247043 1.3 1% -4043.728057 -4043.628158 0.101972 -4041.247043 1.3 1% -4043.728057 -4043.628432 0.099869 -4041.247316 1.2 1% -4043.728057 -4043.628432 0.099871 -4041.247833 0.8 4% -4043.728067 -4043.628736 0.101198 -4041.240206 5.6 0% <td< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table S4. Energy and population of conformers of 1-(4-bromo)-2,2-difluoroethanol triflate (4-Br).

a. Single point calculation; b. population distribution at 298 K; c. calculated based on single point energy at the PCM-M062X/6-311++G(2d,2p) level with thermal correction at the PCM-B3LYP/6-31+G(d,p) level.

Figure S19. Conformers of 1-(4-bromophenyl)-2,2-difluoroethanol triflate (4-Br), relative free energies at the PCM-M062X/6-311++G(2d,2p)//PCM-B3LYP/6-31+G(d,p) level of theory, and population distribution.

Figure S20. Calculated conformational distribution of 1-(4-bromophenyl)-2,2-difluoroethanol triflate (**4-Br**) at the PCM-M062X/6-311++G(2d,2p)//PCM-B3LYP/6-31+G(d,p) level of theory.

5.1.3.3. 1-(2-Fluoro)-2,2-difluoroethanol Triflate (4-F)

Table S5. Energy and	d population of conformers	of 1-(2-fluoro)-2,	2-difluoroethanol triflate	(4-F)
----------------------	----------------------------	--------------------	----------------------------	-------

	PCM-B3LYP/6-31+G(d,p)				PCM-M062X/6-311++G(2d,2p) ^a				
Conformer	Note	Thermal Correction (hartree)	Free Energy (hartree)	Relative Free Energy (kcal/mol)	Рор⁵	Energy (hartree)	Free Energy (hartree) [°]	Relative Free Energy (kcal/mol)	Pop⁵
1-trans-a		0.102401	-1569.356763	0.6	5%	-1569.402655	-1569.300254	0.0	23%
2-trans-a		0.103180	-1569.355643	1.3	0%	-1569.402482	-1569.299302	0.6	2%
3-trans-a		0.103350	-1569.347739	6.2	0%	-1569.396224	-1569.292874	4.6	0%
4-trans-a		0.103021	-1569.347816	6.2	0%	-1569.394612	-1569.291591	5.4	0%
1-trans-b		0.103383	-1569.355759	1.2	0%	-1569.402683	-1569.299300	0.6	2%
2-trans-b		0.102905	-1569.355676	1.3	0%	-1569.401946	-1569.299041	0.8	1%
3-trans-b		0.103322	-1569.347209	6.6	0%	-1569.395286	-1569.291964	5.2	0%
4-trans-b		0.103038	-1569.347214	6.6	0%	-1569.393381	-1569.290343	6.2	0%
1-trans-c		0.101973	-1569.357648	0.0	44%	-1569.402405	-1569.300432	-0.1	35%
2-trans-c		0.102839	-1569.356319	0.9	2%	-1569.402276	-1569.299437	0.5	3%
3-trans-c		0.104101	-1569.348911	5.5	0%	-1569.398239	-1569.294138	3.8	0%
4-trans-c		0.103477	-1569.350042	4.8	0%	-1569.397293	-1569.293816	4.0	0%
1-cis-a		0.103179	-1569.353100	2.9	0%	-1569.399971	-1569.296792	2.2	0%
2-cis-a		0.103959	-1569.351897	3.6	0%	-1569.399175	-1569.295216	3.2	0%
3-cis-a	Same as 4-cis-a	0.104669	-1569.343396	9.0	0%	-1569.394196	-1569.289527	6.7	0%
4-cis-a	Same as 3-cis-a	0.104670	-1569.343395	9.0	0%	-1569.394193	-1569.289523	6.7	0%
1-cis-b		0.103911	-1569.352735	3.1	0%	-1569.400345	-1569.296434	2.4	0%
2-cis-b		0.103598	-1569.352477	3.3	0%	-1569.399127	-1569.295529	3.0	0%
3-cis-b		0.103633	-1569.342092	9.8	0%	-1569.390716	-1569.287083	8.3	0%
4-cis-b		0.104129	-1569.341666	10.0	0%	-1569.391467	-1569.287338	8.1	0%
1-cis-c		0.102027	-1569.357678	0.0	47%	-1569.402423	-1569.300396	-0.1	32%
2-cis-c		0.103335	-1569.355956	1.1	1%	-1569.402161	-1569.298826	0.9	1%
3-cis-c		0.103653	-1569.347467	6.4	0%	-1569.396820	-1569.293167	4.4	0%
4-cis-c		0.103105	-1569.348665	5.7	0%	-1569.395854	-1569.292749	4.7	0%

a. Single point calculation; b. population distribution at 298 K; c. calculated based on single point energy at the PCM-M062X/6-311++G(2d,2p) level with thermal correction at the PCM-B3LYP/6-31+G(d,p) level.

Figure S21. Conformers of 1-(2-fluorophenyl)-2,2-difluoroethanol triflate (4-F), relative free energies at the PCM-M062X/6-311++G(2d,2p)//PCM-B3LYP/6-31+G(d,p) level of theory, and population distribution.

Figure S22. Calculated conformational distribution of 1-(2-fluoro)-2,2-difluoroethanol triflate (**4-F**) at the PCM-M062X/6-311++G(2d,2p)//PCM-B3LYP/6-31+G(d,p) level of theory.

5.1.3.4. α,α-Difluorotoluene

The conformations of α , α -diffuorotoluene are determined by the rotation about the Ph–CF₂H bond (Table S6 and Figure S23). The rotations were scanned from 0° to +360° with an increment of 30° of each step. The conformations generated were optimized at the PCM-B3LYP/6-31+G(d) level CHCl₃ using Gaussian 09.⁵ One local minimum was found, which was further optimized at the PCM-B3LYP/6-31+G(d,p) level in CHCl₃.

Фн-сf2-с1-с2 (°)	E (hartree) ^a	E _{rel} (kcal/mol)
0	-470.068923	0.0
30	-470.0683876	0.3
60	-470.0675582	0.9
90	-470.0675213	0.9
120	-470.0675695	0.9
150	-470.0683355	0.4
180	-470.0689228	0.0
210	-470.0683346	0.4
240	-470.0675704	0.9
270	-470.0675216	0.9
300	-470.0675575	0.9
330	-470.0683873	0.3
360	-470.0689255	0.0

Table S6. Energy of conformers of α , α -difluorotoluene.

a. calculated at the PCM-B3LYP/6-31+G(d) level using "loose" optimization convergence criteria.

Figure S23. Torsional itinerary for α , α -difluorotoluene.

5.1.3.5. *o*-Nitro-α,α-difluorotoluene (1-CF₂H)

The conformations of 1-CF₂H are determined by the rotation about the Ar–CF₂H bond (Table S7 and Figure S24). The rotations were scanned from 0° to +360° with an increment of 30° of each step. The generated conformations were optimized at the PCM-B3LYP/6-31+G(d) level CHCl₃ using Gaussian 09.⁵ Because of the cooperative rotation about the Ar–NO₂ bond, three local minima were found, which were further optimized at the PCM-B3LYP/6-31+G(d,p) level in CHCl₃.

Фн-сг2-с1-с2 (°)	E (hartree) ^a	E _{rel} (kcal/mol)
0	-674.571651	0.5
30	-674.571097	0.9
60	-674.572428	0.0
90	-674.569701	1.7
120	-674.565105	4.6
150	-674.568100	2.7
180	-674.567188	3.3
210	-674.568100	2.7
240	-674.564582	5.0
270	-674.569702	1.7
300	-674.572428	0.0
330	-674.572474	0.0
360	-674.571652	0.5

Table S7. Energy of conformers of *o*-nitro- α , α -difluorotoluene (1-CF₂H).

a. calculated at the PCM-B3LYP/6-31+G(d) level using "loose" optimization convergence criteria.

Figure S24. Torsional itinerary for *o*-nitro- α , α -difluorotoluene.
5.1.3.6. Phenol

The conformations of phenol are determined by the rotation about the Ar–OH bond (Table S8 and Figure S25). The rotations were scanned from 0° to $+360^{\circ}$ with an increment of 30° of each step. The generated conformations were optimized at the PCM-B3LYP/6-31+G(d) level CHCl₃ using Gaussian 09.⁵ Only one local minimum was found, which was further optimized at the PCM-B3LYP/6-31+G(d,p) level in CHCl3.

I able bor Ellergy	of comoniers (n phenon.
фн-о-с1-с2 (°)	E (hartree) ^a	E _{rel} (kcal/mol)
0	-307.485201	0.0
30	-307.483831	0.9
60	-307.481003	2.6
90	-307.479432	3.6
120	-307.480710	2.8
150	-307.483626	1.0
180	-307.485212	0.0
210	-307.483642	1.0
240	-307.480708	2.8
270	-307.479434	3.6
300	-307.481003	2.6
330	-307.483823	0.9
360	-307.485221	0.0

Table S8	Energy	of confe	ormare o	fnhanal
I apre 55.	Energy	or contr	ormers o	n phenoi

a. calculated at the PCM-B3LYP/6-31+G(d) level using "loose" optimization convergence criteria.

Figure S25. Torsional itinerary for phenol.

5.1.3.7. *o*-Nitrophenol (1-OH)

The conformations of *o*-nitrophenol are determined by the rotation about the Ar–OH bond (Table S9 and Figure S26). The rotations were scanned from 0° to +360° with an increment of 30° of each step. The conformations generated were optimized at the PCM-B3LYP/6-31+G(d) level CHCl₃ using Gaussian 09.⁵ Two local minima were found, which were further optimized at the PCM-B3LYP/6-31+G(d,p) level in CHCl₃.

φ _{H-O-C1-C2} (°)	E (hartree) ^a	E _{rel} (kcal/mol)
0	-511.991909	8.0
30	-511.990346	8.9
60	-511.986469	11.4
90	-511.984287	12.7
120	-511.991818	8.0
150	-512.000163	2.8
180	-512.004598	0.0
210	-512.000166	2.8
240	-511.991816	8.0
270	-511.986838	11.1
300	-511.986929	11.1
330	-511.989790	9.3
360	-511.992000	7.9

Table S9. Energy of conformers of *o*-nitrophenol (1-OH).

a. calculated at the PCM-B3LYP/6-31+G(d) level using "loose" optimization convergence criteria.

Figure S26. Torsional itinerary for *o*-nitrophenol.

5.1.3.8. Dimerization of o-nitro-a,a-difluorotoluenes (1-CF₂H) and o-nitrophenol (1-OH)

The possible dimerization of **1-CF₂H** and **1-OH** was investigated by geometry optimization at the PCM-B3LYP/6-31+G(d,p) level of theory in CHCl₃ (Table S10). The free energies at the PCM-M062X/6-311++G(2d,2p) level of theory were calculated as a sum of the single point energies at the PCM-M062X/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) level and the thermal and entropic corrections at the PCM-B3LYP/6-31+G(d,p) level. The frequency analysis confirmed that all structures were true minima.

The structure of the dimer of **1-OH** largely resembles that found in X-ray crystallographic studies. Two types of dimers, $(CF_2HNBc)_2$ and $(CF_2HNBc)_2'$, were found for **1-CF_2H**. The former, which has an arrangement similar to the crystal structure, is slightly more stable than the latter. As indicated by the relative energies ΔE , the dimerization of both **1-CF_2H** and **1-OH** is facilitated by attractive hydrogen bonding interactions, ranging from 1 to 3 kcal/mol for two bondings. Noticeably, the very similar values of ΔE of **1-CF_2H** and **1-OH** at both levels of theory suggest that the magnitudes of hydrogen bonding interactions of the NO₂ group with the CF₂H and the OH moieties may be comparable. According to the free energies ΔG for the dimerization of **1-CF₂H** and **1-OH**, these processes are unfavorable in CHCl₃ at room temperature, likely due to the entropic penalty.

		PCM-B3LYP/6-	31+G(d,p)		PCM-M062X/6-311++G(2d,2p) ^a				
Conformer /species	Thermal Correction (hartree)	Free Energy (hartree)	Relative Energy ∆ <i>E</i> (kcal/mol)	Relative Free Energy ∆ <i>G</i> (kcal/mol)	Energy (hartree)	Free Energy (hartree) ^b	Relative Energy Δ <i>E</i> (kcal/mol)	Relative Free Energy Δ <i>G</i> (kcal/mol)	
PhOH	0.075258	-307.423470	-	-	-307.440639	-307.365381	-	-	
1-OH-a	0.074845	-511.941775	0.0	0.0	-511.942316	-511.867471	0.0	0.0	
1-OH-b	0.073821	-511.930088	8.0	7.3	-511.931986	-511.858165	6.5	5.8	
(1-OH-a)₂	0.163048	-1023.871805	-1.0	7.4	-1023.889140	-1023.726092	-2.8	5.6	
PhCF₂H	0.080359	-469.997675	-	-	-470.012546	-469.932187	-	-	
1-CF₂H-a	0.079415	-674.500788	0.0	0.1	-674.504260	-674.424845	0.0	0.0	
1-CF₂H-b	0.079492	-674.496633	2.6	2.7	-674.499857	-674.420365	2.8	2.8	
1-CF₂H-c	0.079343	-674.500880	0.0	0.0	-674.503649	-674.424306	0.4	0.3	
(1-CF ₂ H-a) ₂	0.171262	-1348.991411	-1.4	6.5	-1349.012188	-1348.840926	-2.3	5.5	
(1-CF ₂ H-a) ₂ '	0.172058	-1348.990048	-1.0	7.3	-1349.012212	-1348.840154	-2.3	6.0	

Table S10. Dimerization of *o*-nitro-α,α-difluorotoluenes (1-CF₂H) and *o*-nitrophenol (1-OH).

a. Single point calculation; b. calculated based on single point energy at the PCM-M062X/6-311++G(2d,2p) level and thermal correction at the PCM-B3LYP/6-31+G(d,p) level.

Figure S27. Dimerization of *o*-nitrophenol (**1-OH**) and *o*-nitro- α,α -difluorotoluene (**1-CF₂H**) at the B3LYP/6-31+G(d,p) level. The relative free energy ΔG was calculated at the PCM-M062X/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) level in CHCl₃. A 1.9 kcal/mol correction was applied to account for the concentration change from the gas phase to 1 M in solution.

We further investigated the solvent effects on the dimerization energies (Table S11). Single point energies were calculated at the PCM-M062X/6-311++G(2d,2p)//B3LYP/6-31+G(d,p) level of theory. As expected, the dimerization energies decrease with the increase in solvent dielectric constants, which facilitates the solvation of monomeric species.

Table S11. Dimerization energies of *o*-nitro- α , α -diffuorotoluenes (1-CF₂H) and *o*-nitrophenol (1-OH) in the gas phase and in different solvents.

	Gas (ε = 0.0	0)	Pentane ($\epsilon = 2$	1.84)	Benzene (ε = 2	2.27)	$CHCI_3 (\epsilon = 4.7)$	71)	DMF (ε = 37.22)		Water (ε = 78.36)	
	E (hartree)	ΔE^{a}	E (hartree)	ΔE^{a}	E (hartree)	ΔE^{a}	E (hartree)	ΔE^{a}	E (hartree)	ΔE^{a}	E (hartree)	ΔE^{a}
1-CF₂H-a	-674.497589	0.0	-674.500840	0.0	-674.501786	0.0	-674.504260	0.0	-674.506829	0.0	-674.507052	0.0
1-CF₂H-b	-674.490483	4.5	-674.494995	3.7	-674.496328	3.4	-674.499857	2.8	-674.503592	2.0	-674.503920	2.0
1-CF₂H-c	-674.496578	0.6	-674.500022	0.5	-674.501025	0.5	-674.503649	0.4	-674.506376	0.3	-674.506613	0.3
(1-CF ₂ H-a) ₂	-1349.000802	-3.5	-1349.006372	-2.9	-1349.007986	-2.8	-1349.012188	-2.3	-1349.016518	-1.8	-1349.016892	-1.7
(1-CF₂H-a)₂'	-1349.000669	-3.4	-1349.006261	-2.9	-1349.007899	-2.7	-1349.012212	-2.3	-1349.016748	-1.9	-1349.017146	-1.9
1-OH-a	-511.937180	0.0	-511.939671	0.0	-511.940401	0.0	-511.942316	0.0	-511.944311	0.0	-511.944485	0.0
1-OH-b	-511.921887	9.6	-511.926769	8.1	-511.928204	7.7	-511.931986	6.5	-511.935944	5.3	-511.936289	5.1
(1-OH-a)₂	-1023.880000	-3.5	-1023.884341	-3.1	-1023.885643	-3.0	-1023.889140	-2.8	-1023.892937	-2.7	-1023.893275	-2.7
DMF	-248.479011	-	-248.482500	-	-248.483512	-	-248.486146	-	-248.488846	-	-248.489078	-
Ру	-248.248367	-	-248.250232	-	-248.250793	-	-248.252295	-	-248.253906	-	-248.254048	-
BDfTol	-3043.576746	-	-3043.579023	-	-3043.579684	-	-3043.581416	-	-3043.583223	-	-3043.583380	-
BDfTol-DMF	-3292.064576	-5.5	-3292.068842	-4.6	-3292.070025	-4.3	-3292.073026	-3.4	-3292.076036	-2.5	-3292.076293	-2.4
BDfTol-Py	-3291.832107	-4.4	-3291.835185	-3.7	-3291.836045	-3.5	-3291.838244	-2.8	-3291.840471	-2.1	-3291.840662	-2.0

5.2. Simulated NMR Spectra

To validate the conformations identified by NMR studies, the NMR properties of major conformers in CHCl₃ were computed at the GIAO-PCM-B3LYP/aug-cc-PVTZ//PCM-B3LYP/6-31+G(d,p) level of theory using Gaussian 09.⁵ To obtain scaling factors for achieving accurate computed chemical shifts, we carried out a linear regression analysis of experimental and computational chemical shift values. Similar methods have been exploited to show higher accuracies for ¹H NMR and ¹³C NMR spectroscopy.⁷ By correlating the calculated magnetic shielding tensors and experimental NMR chemical shifts of a series of known compounds as references (Table S12), scaling factors for the ¹H, ¹⁹F NMR, and ¹³C NMR chemical shifts were obtained with satisfactory R² values (Figure S28). On the basis of the scaling factors and the calculated shielding tensors, predicted NMR chemical shifts of individual conformers of **4-NO₂**, **4-Br**, and **4-F** were obtained. With these values in hand, we calculated weighted average chemical shifts according to Eq. (S1).

$$\delta = \sum_{i} P_i \delta_i \qquad \qquad \text{Eq. (S1)}$$

Here, P_i is the population (%) of the *i*th conformer and δ_i is the NMR chemical shift of a specific nucleus of the *i*th conformer. A comparison of predicted and experimental NMR chemical shifts was achieved by linear regression analysis. Other than the ¹³C NMR of **4-Br**, the correlations generally have $R^2 > 0.95$, suggesting the validity of NMR assignments and conformational identifications. The low R^2 value of the ¹³C NMR of **4-Br** mainly arises from the large deviation of the predicted chemical shift of the brominated carbon atom from the experimental value. This result is likely due to the well-known heavy-atom effects, which usually lead to higher errors in calculated ¹³C NMR chemical shifts.⁷ In addition to the major conformers, the chemical shifts of several minor conformers were also calculated. The calculated NMR chemical shifts for the other conformers do not match the experimental data, suggesting that these states are not substantially populated under our experimental conditions.

5.2.1. Establishment of Scaling Factors

Figure S28. Linear regression analyses of computed shielding tensors and experimental NMR chemical shifts of reference compounds.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			¹ H NMR			¹³ C NMR		¹⁹ F	NMR
acetone CH3 2.17^3 29.35 CO 20.71^8 -38.44 CH3 30.9^2 151.69 151.69 <th></th> <th>Atom(s)</th> <th>δ_{exp} (ppm)</th> <th>shielding</th> <th>Atom(s)</th> <th>δ_{exp} (ppm)</th> <th>shielding</th> <th>δ_{exp} (ppm)</th> <th>shielding</th>		Atom(s)	δ _{exp} (ppm)	shielding	Atom(s)	δ _{exp} (ppm)	shielding	δ _{exp} (ppm)	shielding
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	acetone	CH ₃	2.17 ^a	29.35	CO	207.1 ^a	-38.44		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					CH₃	30.9 ^a	151.69		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PhBr		7.50 ^b	23.80		131.4 ^c	37.10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7.24 ^b	23.95		129.9 ^c	45.80		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7.29 ^b	23.98		126.7 ^c	47.57		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						122.4 ^c	50.75		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PhCl			23.87		134.3 ^c	33.63		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				23.91		129.6 ^c	47.55		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				23.99		128.6 ^c	48.84		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						126.6 ^c	51.16		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PhF	3,3'	7.34 ^b	23.85	1	163.0 ^c	9.32	-113.6	290.64
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4	7.14 ^b	24.08	3,3'	123.0 ^c	47.02		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2,2'	7.06 ^b	24.15	4	124.0 ^c	53.23		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					2,2'	115.3 ^c	63.05		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	benzene		7.36 ^a	23.83		128.4 ^a	48.57		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C ₆ F ₆					138.15 ^b	33.95	-162.25 ^b	338.67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CFCI ₃						25.20	0.0 ^b	157.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CF₃H			24.67			53.63	-77.0	255.12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH ₂ Cl ₂		5.30 ^a	25.79		53.5 ^a	107.59		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CHCl ₃		7.26 ^a	23.58		77.4 ^a	69.01		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DMF	COH	8.02 ^a	23.26	CO	162.6 ^a	15.10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		C <i>H</i> ₃(1)	2.88 ^a	28.67	CH₃(1)	36.5 ^ª	145.21		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CH ₃ (2)	2.96 ^a	28.64	CH ₃ (2)	31.5 ^a	153.02		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PhCF ₃	H2,2'	7.60 ^d	23.51	CF ₃	124.3 ^d	43.44	-62.8 ^d	238.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		H3,3',4	7.53 ^d	23.69	C4	131.7 ^d	44.09		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					C1	130.7 ^d	47.24		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					C3	128.7 ^d	48.67		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					C2	125.2 ^d	51.82		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PhCH₃	H2,2',3,3'	7.25 ^a	23.40	C1	137.9 ^a	37.45		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		H4	7.17 ^a	24.09	C2,2'	129.1 ^a	49.04		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CH₃	2.36 ^a	29.13	C3,3'	128.3 ^a	49.29		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					C4	125.3 ^a	51.56		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					CH₃	21.5 ^a	160.67		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PhNO ₂	H2,2'	8.16 ^e	22.69	C1	147.7 ^e	28.22		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		H4	7.68 ^e	23.46	C4	134.3 ^e	40.88		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		H3,3'	7.52 ^e	23.68	C3,3'	128.9 ^e	48.50		
TMSCF ₂ H CF ₂ H 5.84 ^b 25.3 CF ₂ H 122.1 ^b 45.57 -139.6 ^b 320.46 CH ₃ 0.17 ^b 31.42 CH ₃ -5.7 ^b 189.11 (CH ₃) ₄ Si 0.00 ^b 31.65 0.0 ^b 193.08					C2,2'	122.9 ^e	52.73		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TMSCF ₂ H	CF₂H	5.84 ^b	25.3	CF₂H	122.1 ^b	45.57	-139.6 ^b	320.46
(CH ₃) ₄ Si 0.00 ^b 31.65 0.0 ^b 193.08		CH₃	0.17 ^b	31.42	CH ₃	-5.7 ^b	189.11		
	(CH ₃) ₄ Si		0.00 ^b	31.65		0.0 ^b	193.08		
TMSCF ₃ CH ₃ 0.25 ^f 31.30 CF ₃ 131.7 ^f 34.52 -66.1 242.83	TMSCF ₃	CH ₃	0.25 ^f	31.30	CF ₃	131.7 ^f	34.52	-66.1	242.83
CH ₃ -5.2 ^f 188.48					CH₃	-5.2 ^f	188.48		
PhCF ₂ H CF ₂ H 6.70 ⁹ 24.72 -110.8 ^h 279.07	PhCF₂H	CF₂ <i>H</i>	6.70 ^g	24.72				-110.8 ^h	279.07

Table S12. Experimental chemical shifts and computed shielding tensors of reference compounds.

a. Ref.⁸; b. Determined in CDCl₃; c. Ref.⁹; d. Ref.¹⁰; e. Ref.¹¹; f. Ref.¹²; g. Ref.¹³; h. Ref.¹⁴.

Figure S29. Calculated ¹H and ¹⁹F NMR chemical shifts of conformers of $1-CF_2H$ and their correlation with experimental data.

Figure S30. Calculated ¹H and ¹⁹F NMR chemical shifts of 2-CF₂H and their correlation with experimental data.

Figure S31. Calculated ¹H NMR chemical shifts of conformers of 4-NO₂ and their correlation with experimental data.

Figure S32. Calculated ¹³C NMR chemical shifts of conformers of 4-NO₂ and their correlation with experimental data.

Figure S33. Calculated ¹⁹F NMR chemical shifts of conformers of 4-NO₂ and their correlation with experimental data.

Figure S34. Calculated ¹H NMR chemical shifts of conformers of **4-Br** and their correlation with experimental data.

Figure S35. Calculated ¹³C NMR chemical shifts of conformers of **4-Br** and their correlation with experimental data.

Figure S36. Calculated ¹⁹F NMR chemical shifts of conformers of **4-Br** and their correlation with experimental data.

Figure S37. Calculated ¹H NMR chemical shifts of conformers of **4-F** and their correlation with experimental data.

Figure S38. Calculated ¹³C NMR chemical shifts of conformers of 4-F and their correlation with experimental data.

Figure S39. Calculated ¹⁹F NMR chemical shifts of conformers of **4-F** and their correlation with experimental data.

5.3. Simulated IR Spectra

IR frequencies were calculated at the PCM-B3LYP/6-31+G(d,p) level of theory using Gaussian 09.⁵ The default weighting scheme in Gaussian 09 (SSweight) was used for DFT numerical integration calculations. To account for anharmonic effects, a scaling factor of 0.95 was adopted. Selected experimental and calculated vibrational frequencies of the CF₂–H and CF₂–D bonds are listed in Table S13. The predicted $v_{CF2-H/D}$ values of major conformers are in good agreement with experimental results (< 20 cm⁻¹). For the experimental v_{CF2-D} , which shows two bands due to Fermi resonance, the average value of the two bands is given in brackets.

	Table S13. Selected ext	perimental and calculated	vibrational frequence	cies of the CF ₂ -	-H and CF ₂ –D bonds.
--	-------------------------	---------------------------	-----------------------	-------------------------------	----------------------------------

Species	Optimized structure	Calc. v _{CF2-H} (cm ⁻¹)	Calc. v _{CF2-D} (cm ⁻¹)	Scaled Calc. V _{CF2-H} (cm ⁻¹)	Scaled Calc. V _{CF2-D} (cm ⁻¹)	Scaled Calc. v _H -v _D (cm ⁻¹)	Scaled Calc. v _H /v _D (cm ⁻¹)	Exp. v _{CF2-H} (cm ⁻¹)	Exp. v _{CF2-D} (cm ⁻¹)	Exp. v _H -v _D (cm ⁻¹)	Exp. v _H /v _D (cm ⁻¹)
TMSCF₂H		3076	2266	2922	2153	770	1.36	2899	2167	735	1.34
1-CF₂H-a (79%)	2.34	3186	2348	3026	2231	796	1.36	3013	2237, 2276 [2257]	776	1.33
1-CF₂H-b (0%)		3126	2306	2970	2190	780	1.36	3013	2237, 2276 [2257]	776	1.33
1-CF₂H-c (21%)		3192	2354	3032	2236	796	1.36	3013	2237, 2276 [2257]	776	1.33
(CF ₂ HNBa) ₂ (0%)		3190	2352	3030	2234	796	1.36	3013	2237, 2276 [2257]	776	1.33
(CF₂HNBa)₂' (0%)		3195	2355	3035	2237	798	1.36	3013	2237, 2276 [2257]	776	1.33
NO₂-1-trans-a (69%)	254, 108	3167	2335	3009	2219	790	1.36	3008	2200, 2260 [2230]	813	1.35
NO₂-1-trans-b (0%)	All and a second	3138	2315	2981	2199	782	1.36	3008	2200, 2260 [2230]	813	1.35
NO₂-1-trans-c (0%)	A A A A A A A A A A A A A A A A A A A	3130	2309	2974	2193	780	1.36	3008	2200, 2260 [2230]	813	1.35
NO₂-2-trans-a (30%)		3167	2335	3009	2219	790	1.36	3008	2200, 2260 [2230]	813	1.35

NO₂-2-trans-b (0%)	4 AC	3140	2317	2983	2201	783	1.36	3008	2200, 2260 [2230]	813	1.35
NO ₂ -2-trans-c (0%)	A A	3129	2308	2972	2192	780	1.36	3008	2200, 2260 [2230]	813	1.35
Br-1-a (3%)	the second second	3129	2307	2973	2192	781	1.36	2972	2206	766	1.33
Br-1-b (3%)		3139	2315	2982	2199	783	1.36	2972	2206	766	1.33
Br-1-c (88%)		3141	2316	2984	2200	784	1.36	2972	2206	766	1.33
F-1-trans-a (23%)	- AFT	3127/ 3132	-	2970/ 2976	-	-	-	2971	-	-	-
F-1-trans-b (2%)	A CONTRACTOR	3142/ 3132	-	2985/ 2976	-	-	-	2971	-	-	-
F-1-trans-c (35%)	and the second	3133/ 3144	-	2977/ 2987	-	-	-	2971	-	-	-
F-1-cis-a (0%)	-	3125 /3114	-	2969/ 2959	-	-	-	2971	-	-	-
F-1-cis-b (0%)	- Art	3137	-	2980	-	-	-	2971	-	-	-
F-1-cis-c (32%)	Jan Star	3168	-	3010	-	-	-	2971	-	-	-

5.4. Optimized Coordinates of Conformers 5.4.1. Optimized Coordinates of Conformers of 1-(2-Nitrophenyl)-2,2-difluoroethanol Triflate (4-NO₂)

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.631691	2.366933	-0.627212
2	9	0	0.656246	2.367800	-1.999715
3	9	0	-0.361543	3.230854	-0.242860
4	8	0	-0.977031	0.591474	-0.683034
5	6	0	0.310336	0.963610	-0.095323
6	6	0	1.344793	-0.078235	-0.488660
7	6	0	2.443398	-0.444523	0.315361
8	6	0	1.200840	-0.750861	-1.708717
9	6	0	3.343574	-1.443150	-0.064426
10	6	0	2.105082	-1.735645	-2.109477
11	1	0	0.360384	-0.506034	-2.346789
12	6	0	3.177853	-2.086121	-1.287139
13	1	0	4.165263	-1.690276	0.595918
14	1	0	1.965638	-2.229339	-3.065578
15	1	0	3.882724	-2.851352	-1.593557
16	8	0	2.272615	1.364317	1.762192
17	1	0	1.586503	2.739771	-0.255647
18	1	0	0.196919	1.046894	0.984400
19	16	0	-2.290896	0.390257	0.251852
20	8	0	-2.031880	0.839056	1.612639
21	8	0	-3.432628	0.830328	-0.527259
22	7	0	2.709529	0.217359	1.598417
23	8	0	3.364398	-0.390750	2.443652
24	6	0	-2.350763	-1.496972	0.294547
25	9	0	-3.393880	-1.867475	1.037979
26	9	0	-2.485482	-1.977337	-0.941182
27	9	0	-1.223609	-1.967275	0.837274

Center	Atomic	Atomic	c Coordinates (Angstroms)							
Number	Number	Туре	X	Y	Z					
1	6	0	-0.691579	2.581744	0.087975					
2	9	0	-1.111334	2.587462	1.383037					
3	9	0	0.479984	3.300413	0.036974					
4	8	0	0.633560	0.560272	0.355319					
5	6	0	-0.412993	1.166715	-0.446379					
6	6	0	-1.642811	0.281135	-0.549792					
7	6	0	-2.411896	0.443117	-1.712360					
8	6	0	-2.067244	-0.703963	0.355751					
9	6	0	-3.563713	-0.308336	-1.944903					
10	6	0	-3.189487	-1.498230	0.116042					
11	6	0	-3.953975	-1.285931	-1.028704					
12	1	0	-4.137526	-0.143829	-2.850771					
13	1	0	-3.459663	-2.261793	0.836165					
14	1	0	-4.838401	-1.888575	-1.205097					
15	1	0	-1.438422	3.095175	-0.523699					
16	1	0	-0.026888	1.316154	-1.458525					
17	16	0	2.151661	0.431457	-0.235418					
18	8	0	2.214608	0.952516	-1.595276					
19	8	0	3.069034	0.839224	0.810993					
20	6	0	2.249026	-1.451871	-0.353263					
21	9	0	3.442699	-1.769783	-0.857923					
22	9	0	2.110322	-1.992579	0.853349					
23	9	0	1.287027	-1.898607	-1.164259					
24	1	0	-2.090338	1.164391	-2.458424					
25	7	0	-1.368857	-0.978337	1.628999					
26	8	0	-1.080923	-2.153698	1.864983					
27	8	0	-1.164226	-0.038930	2.391137					

			~ ~ ~	1'	· · · ·
Center	Atomic	Atomic	Coor	dinates (Ang:	stroms)
Number	Number	туре	х	¥	Z
1	6	0	0.277449	-1.583644	1.48249
2	9	0	0.339814	-0.989699	2.71878
3	9	0	-0.909100	-2.267804	1.42472
4	8	0	-0.820638	0.361043	0.66358
5	6	0	0.309224	-0.522031	0.37493
6	6	0	1.601264	0.282339	0.35868
7	6	0	2.729924	-0.046007	-0.42052
8	6	0	1.685784	1.442782	1.13743
9	6	0	3.878025	0.749816	-0.43930
10	6	0	2.835509	2.234337	1.14474
11	1	0	0.831201	1.735295	1.73524
12	6	0	3.934044	1.891309	0.35425
13	1	0	4.712064	0.456302	-1.06416
14	1	0	2.866356	3.122055	1.76788
15	1	0	4.828583	2.504551	0.35421
16	8	0	2.014408	-2.192970	-0.94157
17	1	0	1.098401	-2.294640	1.38927
18	1	0	0.137534	-1.027721	-0.57339
19	16	0	-1.698149	0.989486	-0.55135
20	8	0	-2.044936	2.345647	-0.16608
21	8	0	-1.101137	0.658248	-1.83835
22	7	0	2.763953	-1.256278	-1.24997
23	8	0	3.542497	-1.291532	-2.20137
24	6	0	-3.267473	-0.048222	-0.37177
25	9	0	-4.157436	0.395869	-1.26197
26	9	0	-2.988772	-1.328495	-0.61710
27	9	0	-3.759560	0.081102	0.858584

Contor Atomic Atomic Coordinatos (Angstroms)						
Number	Number	Туре	X	Y	Z	
1	6	0	-0.261138	2.235611	0.648438	
2	9	0	-0.486311	1.946326	1.959582	
3	9	0	1.028177	2.703458	0.553122	
4	8	0	0.502275	-0.018415	0.194937	
5	6	0	-0.407706	1.011954	-0.270032	
6	6	0	-1.834032	0.505745	-0.419780	
7	6	0	-2.622216	1.160963	-1.378064	
8	6	0	-2.427062	-0.573483	0.254136	
9	6	0	-3.942208	0.786035	-1.628166	
10	6	0	-3.730491	-0.991963	-0.016588	
11	6	0	-4.499289	-0.297240	-0.947493	
12	1	0	-4.521297	1.325299	-2.370332	
13	1	0	-4.132572	-1.846360	0.515404	
14	1	0	-5.519168	-0.609675	-1.144411	
15	1	0	-0.940605	3.036420	0.344555	
16	1	0	-0.072665	1.350998	-1.254687	
17	16	0	1.540272	-0.733135	-0.845120	
18	8	0	1.424331	-2.168817	-0.668002	
19	8	0	1.468865	-0.092723	-2.153136	
20	6	0	3.169605	-0.218690	-0.032427	
21	9	0	4.149719	-0.890666	-0.641660	
22	9	0	3.361963	1.089005	-0.186146	
23	9	0	3.148753	-0.528421	1.261280	
24	7	0	-1.730536	-1.346162	1.304438	
25	8	0	-1.715028	-2.571453	1.177838	
26	8	0	-1.261988	-0.731850	2.258170	
27	1	0	-2.185395	1.971772	-1.953865	

Center	Atomic	Atomic	Coor	dinates (And	(stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.290841	2.623852	0.872501
2	9	Ō	-0.267341	3.028823	-0.317711
3	9	0	-0.579000	2.999044	1.861689
4	8	0	-0.823485	0.433975	0.765632
5	6	0	0.474519	1.108008	0.926858
6	6	0	1.582600	0.535048	0.060497
7	6	0	2.107070	-0.762042	0.258184
8	6	0	2.135815	1.280187	-0.988238
9	6	0	3.119481	-1.284574	-0.546475
10	6	0	3.170686	0.780149	-1.782107
11	1	0	1.741913	2.262855	-1.213862
12	6	0	3.665586	-0.503949	-1.563119
13	1	0	3.477763	-2.288809	-0.358168
14	1	0	3.575582	1.395939	-2.578291
15	1	0	4.465545	-0.902485	-2.177588
16	8	0	1.681035	-2.871765	1.120013
17	1	0	0.686628	0.877939	1.969981
18	16	0	-1.693931	0.343249	-0.609188
19	8	0	-2.880151	1.175782	-0.495815
20	8	0	-0.850248	0.361785	-1.795741
21	7	0	1.629333	-1.660575	1.329575
22	8	0	1.230330	-1.165243	2.387640
23	6	0	-2.251750	-1.440028	-0.326244
24	9	0	-2.913654	-1.541487	0.824712
25	9	0	-3.057801	-1.773889	-1.338035
26	9	0	-1.194404	-2.253663	-0.313509
27	1	0	1.230988	3.160963	1.018636

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.409870	1.343680	1.692765
2	9	0	0.778515	2.373511	0.868958
3	9	0	-0.830482	1.649870	2.189411
4	8	0	-0.632864	0.168592	-0.128103
5	6	0	0.338655	0.007077	0.947345
6	6	0	1.681458	-0.536053	0.486359
7	6	0	2.107454	-1.719586	1.109203
8	6	0	2.588850	0.060057	-0.413583
9	6	0	3.355187	-2.289651	0.849729
10	6	0	3.847415	-0.483603	-0.665724
11	6	0	4.229953	-1.669556	-0.040201
12	1	0	3.636704	-3.212249	1.346154
13	1	0	4.510351	0.019587	-1.359625
14	1	0	5.203089	-2.099444	-0.251925
15	1	0	-0.071124	-0.703947	1.668340
16	16	0	-1.715637	-1.004338	-0.425762
17	8	0	-1.618493	-1.386939	-1.823353
18	8	0	-1.709910	-1.988240	0.652125
19	6	0	-3.284963	0.034938	-0.253831
20	9	0	-3.234518	1.075116	-1.082761
21	9	0	-4.322397	-0.744211	-0.571911
22	9	0	-3.414433	0.459874	1.001930
23	1	0	1.117166	1.295162	2.524836
24	7	0	2.280560	1.279514	-1.190320
25	8	0	3.132570	2.170218	-1.191454
26	8	0	1.230362	1.312416	-1.824607
27	1	0	1.443307	-2.205948	1.816767

Standard	orientation:
----------	--------------

Center Number	Atomic Number	Atomic Type	Coord	dinates (Ang: v	stroms) Z
1	6	0	0.208506	2.305220	1.180713
2	9	0	-0.420180	2.914525	0.126368
3	9	0	-0.625752	2.438261	2.263193
4	8	0	-0.848070	0.184740	0.665076
5	6	0	0.454067	0.812376	0.937039
6	6	0	1.556836	0.493209	-0.056635
7	6	0	2.477514	-0.562414	0.132099
8	6	0	1.744709	1.296369	-1.190518
9	6	0	3.522756	-0.803885	-0.758109
10	6	0	2.776217	1.051251	-2.100297
11	1	0	1.069042	2.121541	-1.375860
12	6	0	3.666441	0.000275	-1.887017
13	1	0	4.201075	-1.625147	-0.564232
14	1	0	2.877438	1.687095	-2.973460
15	1	0	4.468130	-0.197862	-2.590200
16	8	0	3.431152	-2.010115	1.671678
17	1	0	0.704532	0.399355	1.912545
18	16	0	-1.357581	-0.328767	-0.785591
19	8	0	-1.548013	0.771421	-1.721888
20	8	0	-0.660041	-1.540872	-1.194745
21	7	0	2.387881	-1.487594	1.276069
22	8	0	1.278329	-1.703642	1.770877
23	6	0	-3.057530	-0.834858	-0.130525
24	9	0	-3.736840	-1.341466	-1.164309
25	9	0	-2.933417	-1.760728	0.818126
26	9	0	-3.703258	0.226011	0.350539
27	1	0	1.136972	2.841506	1.394437

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.409629	1.343642	1.692865
2	9	0	0.778668	2.373246	0.868943
3	9	0	-0.830864	1.649980	2.188923
4	8	0	-0.632649	0.168451	-0.128229
5	6	0	0.338646	0.006971	0.947545
6	6	0	1.681423	-0.536104	0.486568
7	6	0	2.107413	-1.719678	1.109356
8	6	0	2.588762	0.060011	-0.413433
9	6	0	3.355081	-2.289804	0.849792
10	6	0	3.847254	-0.483801	-0.665722
11	6	0	4.229775	-1.669773	-0.040262
12	1	0	3.636612	-3.212408	1.346196
13	1	0	4.510154	0.019341	-1.359688
14	1	0	5.202855	-2.099732	-0.252098
15	1	0	-0.071327	-0.704086	1.668396
16	16	0	-1.715571	-1.004152	-0.426162
17	8	0	-1.618608	-1.386060	-1.823950
18	8	0	-1.709925	-1.988528	0.651333
19	6	0	-3.284948	0.034840	-0.253601
20	9	0	-4.322306	-0.744201	-0.572255
21	9	0	-3.414552	0.458938	1.002435
22	9	0	-3.234618	1.075618	-1.081835
23	1	0	1.116633	1.295238	2.525196
24	7	0	2.280771	1.279653	-1.190077
25	8	0	3.133177	2.170009	-1.191187
26	8	0	1.230556	1.313180	-1.824265
27	1	0	1.443256	-2.205969	1.816950

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-0.663944	2.542506	-0.026194
2	9	0	-1.894672	2.751693	-0.584323
3	9	0	-0.752229	2.900720	1.296099
4	8	0	0.996922	0.933797	0.534039
5	6	0	-0.291359	1.054805	-0.165985
6	6	0	-1.283210	0.098176	0.466814
7	6	0	-2.173777	-0.729205	-0.248765
8	6	0	-1.303345	-0.007638	1.864845
9	6	0	-3.044236	-1.610224	0.398621
10	6	0	-2.178696	-0.872263	2.521855
11	1	0	-0.614088	0.594389	2.444194
12	6	0	-3.055592	-1.673552	1.788487
13	1	0	-3.706032	-2.226711	-0.196011
14	1	0	-2.172066	-0.916861	3.605933
15	1	0	-3.742753	-2.345706	2.290963
16	8	0	-1.866094	0.273309	-2.333660
17	1	0	0.061751	3.200617	-0.509162
18	1	0	-0.143500	0.860177	-1.225267
19	16	0	2.345987	0.510131	-0.266957
20	8	0	2.150015	0.635212	-1.704948
21	8	0	3.452729	1.127969	0.439529
22	7	0	-2.240825	-0.731360	-1.720929
23	8	0	-2.680230	-1.741421	-2.272758
24	6	0	2.404664	-1.336293	0.130139
25	9	0	3.483418	-1.855142	-0.456369
26	9	0	2.477163	-1.515765	1.447965
27	9	0	1.305979	-1.930093	-0.344411

		o canaara	0110110401011.		
Center Number	Atomic Number	Atomic Type	Coor X	dinates (Ang Y	stroms) Z
1	6	0	-0.788373	2.494622	0.359820
2	9	0	0.273956	3.360919	0.280665
3	9	0	-1.813668	3.041018	-0.374313
4	8	0	0.699803	0.617069	0.492671
5	6	0	-0.383002	1.173334	-0.314394
6	6	0	-1.494095	0.161218	-0.513923
7	6	0	-2.044889	0.077738	-1.799270
8	6	0	-1.985596	-0.743969	0.445342
9	6	0	-3.052220	-0.838074	-2.110371
10	6	0	-2.960187	-1.693957	0.140366
11	6	0	-3.508504	-1.730515	-1.140503
12	1	0	-3.462036	-0.862401	-3.114597
13	1	0	-3.289890	-2.379208	0.911880
14	1	0	-4.280969	-2.455043	-1.374523
15	1	0	-1.096496	2.407050	1.398667
16	1	0	0.016927	1.443356	-1.294551
17	16	0	2.197835	0.440504	-0.123687
18	8	0	2.278748	1.025601	-1.455479
19	8	0	3.135132	0.752859	0.938231
20	6	0	2.209985	-1.436766	-0.334150
21	9	0	3.400288	-1.794589	-0.817675
22	9	0	2.003130	-2.028242	0.840198
23	9	0	1.251248	-1.794095	-1.193221
24	1	0	-1.670688	0.739582	-2.573946
25	7	0	-1.517650	-0.738237	1.842223
26	8	0	-1.380601	-1.824726	2.403220
27	8	0	-1.327078	0.351621	2.385371

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	туре	Δ	I	
1	6	0	-0.200468	1.653823	-1.519640
2	9	0	-1.279127	1.585691	-2.355379
3	9	0	-0.290570	2.841896	-0.837959
4	8	0	0.908592	0.724195	0.338557
5	6	0	-0.238442	0.464068	-0.542603
6	6	0	-1.512652	0.367485	0.276380
7	6	0	-2.549391	-0.561951	0.047434
8	6	0	-1.671946	1.242075	1.360174
9	6	0	-3.687697	-0.610249	0.856826
10	6	0	-2.810976	1.211950	2.164855
11	1	0	-0.881631	1.949137	1.581128
12	6	0	-3.824639	0.286355	1.911847
13	1	0	-4.452889	-1.345346	0.643319
14	1	0	-2.901243	1.911912	2.989019
15	1	0	-4.714752	0.257266	2.530972
16	8	0	-1.767015	-1.326002	-2.014898
17	1	0	0.712854	1.673392	-2.117768
18	1	0	-0.056386	-0.441032	-1.115805
19	16	0	1.794199	-0.514428	0.910431
20	8	0	2.167463	-0.180873	2.272649
21	8	0	1.195403	-1.788968	0.539203
22	7	0	-2.500799	-1.548315	-1.046345
23	8	0	-3.208105	-2.551875	-0.946331
24	6	0	3.336965	-0.284138	-0.155499
25	9	0	4.212490	-1.238521	0.158977
26	9	0	3.003490	-0.387390	-1.445897
27	9	0	3.873408	0.913370	0.072990

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	туре	х	¥	Z
1	6	0	-0.284623	2.054418	0.91434
2	9	0	0.973649	2.602263	0.88232
3	9	0	-1.166252	3.043246	0.54934
4	8	0	0.563322	-0.093963	0.29247
5	6	0	-0.360602	0.947290	-0.14958
6	6	0	-1.744034	0.387488	-0.42319
7	6	0	-2.390725	0.846344	-1.577742
8	6	0	-2.414507	-0.593866	0.33109
9	6	0	-3.651086	0.375869	-1.95214
10	6	0	-3.654746	-1.105105	-0.05105
11	6	0	-4.283937	-0.605970	-1.19015
12	1	0	-4.123531	0.764751	-2.84800
13	1	0	-4.119499	-1.872926	0.555552
14	1	0	-5.256822	-0.989105	-1.47857
15	1	0	-0.505071	1.733620	1.92928
16	1	0	0.020586	1.382288	-1.076705
17	16	0	1.575455	-0.803921	-0.77082
18	8	0	1.492100	-2.238521	-0.564753
19	8	0	1.449482	-0.187072	-2.08544
20	6	0	3.221133	-0.244068	-0.02518
21	9	0	4.197944	-0.880690	-0.67547
22	9	0	3.364291	1.070740	-0.17893
23	9	0	3.263254	-0.557844	1.26808
24	7	0	-1.862817	-1.135484	1.58493
25	8	0	-2.025057	-2.333802	1.80957
26	8	0	-1.306174	-0.354248	2.359714
27	1	0	-1.889835	1.579498	-2.20185

Center Number	Atomic Number	Atomic Type	Coor X	dinates (Ang: Y	stroms) Z
1	6	0	0.730870	2.430824	1.052029
2	9	0	2.002380	2.807715	1.401139
3	9	0	0.442283	3.015021	-0.159337
4	8	0	-0.750517	0.511599	0.834216
5	6	0	0.662989	0.902739	0.995402
6	6	0	1.609780	0.163195	0.066464
7	6	0	1.797007	-1.235362	0.148933
8	6	0	2.341080	0.834529	-0.921192
9	6	0	2.651752	-1.924630	-0.711140
10	6	0	3.223157	0.159629	-1.768496
11	1	0	2.218506	1.901349	-1.046390
12	6	0	3.379751	-1.221348	-1.668126
13	1	0	2.748038	-2.998402	-0.610933
14	1	0	3.776532	0.721116	-2.513927
15	1	0	4.058464	-1.752216	-2.326891
16	8	0	0.854899	-3.235789	0.847938
17	1	0	0.839103	0.568236	2.016943
18	16	0	-1.647248	0.732198	-0.511138
19	8	0	-2.522386	1.881667	-0.338410
20	8	0	-0.869063	0.537211	-1.725864
21	7	0	1.111703	-2.072053	1.154753
22	8	0	0.856272	-1.583947	2.259851
23	6	0	-2.702816	-0.812956	-0.238556
24	9	0	-3.325021	-0.746116	0.936948
25	9	0	-3.605205	-0.856304	-1.222101
26	9	0	-1.938126	-1.903309	-0.286294
27	1	0	0.031549	2.830404	1.789180

		Standard	orientation:		
Center Number	Atomic Number	Atomic Type	Coor X	dinates (Ang: Y	stroms) Z
1	6	0	-0.416838	-1.501001	1.579203
2	9	0	-1.161985	-1.320557	2.718643
3	9	0	-1.096597	-2.391014	0.794939
4	8	0	0.763435	-0.327684	-0.124896
5	6	0	-0.256505	-0.130183	0.905555
6	6	0	-1.531395	0.532287	0.415141
7	6	0	-1.886812	1.715918	1.079867
8	6	0	-2.445854	0.056597	-0.549835
9	6	0	-3.070686	2.401329	0.801555
10	6	0	-3.641979	0.718867	-0.823420
11	6	0	-3.952967	1.901455	-0.153975
12	1	0	-3.297191	3.318450	1.334949
13	1	0	-4.312135	0.307412	-1.568462
14	1	0	-4.876826	2.421763	-0.382831
15	1	0	0.171897	0.515739	1.674697
16	16	0	1.826671	0.858352	-0.445331
17	8	0	1.815803	1.122849	-1.872329
18	8	0	1.720869	1.920366	0.549456
19	6	0	3.406320	-0.109225	-0.077078
20	9	0	3.458156	-1.206536	-0.829290
21	9	0	4.447107	0.677946	-0.354513
22	9	0	3.433551	-0.446777	1.215127
23	1	0	0.543927	-1.943282	1.850074
24	7	0	-2.208978	-1.143781	-1.375334
25	8	0	-3.156025	-1.898529	-1.541275
26	8	0	-1.108789	-1.290683	-1.881043
27	1	0	-1.217700	2.108366	1.838667

	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.288870	2.143982	-1.405351
2	9	0	-1.519813	2.636908	-1.763174
3	9	0	0.192502	2.930938	-0.391377
4	8	0	0.901091	0.160252	-0.756407
5	6	0	-0.460201	0.671145	-1.005544
6	6	0	-1.486764	0.357105	0.066451
7	6	0	-2.344135	-0.765135	-0.002970
8	6	0	-1.669569	1.220134	1.156480
9	6	0	-3.327410	-1.009319	0.955135
10	6	0	-2.637862	0.974347	2.132455
11	1	0	-1.044989	2.098150	1.249131
12	6	0	-3.468458	-0.140520	2.034969
13	1	0	-3.958780	-1.882594	0.851459
14	1	0	-2.737837	1.661207	2.966275
15	1	0	-4.220949	-0.338656	2.790583
16	8	0	-3.271717	-2.384041	-1.380353
17	1	0	-0.723417	0.156420	-1.927462
18	16	0	1.516647	-0.188841	0.704316
19	8	0	1.654184	0.999118	1.536561
20	8	0	0.943181	-1.414646	1.242368
21	7	0	-2.250127	-1.763049	-1.083448
22	8	0	-1.155487	-1.941307	-1.626363
23	6	0	3.223144	-0.607836	0.005485
24	9	0	3.989452	-0.969590	1.038285
25	9	0	3.137322	-1.614219	-0.861789
26	9	0	3.752991	0.460739	-0.589595
27	1	0	0.389172	2.246858	-2.255177

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	¥	Z
1	6	0	-0.397017	-1.367244	1.65792
2	9	0	-1.157892	-1.142568	2.77885
3	9	0	-1.041444	-2.322821	0.92153
4	8	0	0.752660	-0.261385	-0.11406
5	6	0	-0.272312	-0.035090	0.90464
6	6	0	-1.564409	0.559125	0.37339
7	6	0	-1.963675	1.764471	0.97125
8	6	0	-2.456876	0.000485	-0.56680
9	6	0	-3.168577	2.392697	0.65110
10	6	0	-3.673400	0.604917	-0.88044
11	6	0	-4.028159	1.811293	-0.27836
12	1	0	-3.429361	3.329134	1.13274
13	1	0	-4.325503	0.129771	-1.60336
14	1	0	-4.968308	2.285903	-0.53817
15	1	0	0.137270	0.667281	1.63358
16	16	0	1.854525	0.892350	-0.42250
17	8	0	1.830749	1.201951	-1.84053
18	8	0	1.808296	1.928301	0.60389
19	6	0	3.397499	-0.151765	-0.11093
20	9	0	4.465871	0.615107	-0.33517
21	9	0	3.407106	-0.571032	1.15737
22	9	0	3.414283	-1.199580	-0.93148
23	1	0	0.573951	-1.763501	1.96193
24	7	0	-2.174607	-1.237320	-1.32215
25	8	0	-3.098553	-2.044401	-1.44037
26	8	0	-1.062366	-1.370766	-1.82566
27	1	0	-1.314255	2.220166	1.71186

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	6	0	0.622449	2.394004	-0.880298
2	9	0	-0.242098	3.343952	-0.400905
3	9	0	1.889976	2.780475	-0.539795
4	8	0	-1.004920	0.681056	-0.790101
5	6	0	0.299994	1.043832	-0.219187
6	6	0	1.300717	-0.038916	-0.571343
7	6	0	2.240778	-0.592990	0.320373
8	6	0	1.279390	-0.556181	-1.874244
9	6	0	3.111987	-1.614235	-0.066703
10	6	0	2.157188	-1.562347	-2.278288
11	1	0	0.547182	-0.177744	-2.579225
12	6	0	3.078296	-2.092664	-1.373223
13	1	0	3.811182	-2.011714	0.657950
14	1	0	2.116139	-1.930970	-3.297911
15	1	0	3.765845	-2.874169	-1.677999
16	8	0	2.011210	1.012661	1.994882
17	1	0	0.540919	2.375443	-1.969941
18	1	0	0.196367	1.199601	0.851807
19	16	0	-2.299475	0.439062	0.164038
20	8	0	-2.027606	0.876638	1.525282
21	8	0	-3.459969	0.868581	-0.593871
22	7	0	2.365183	-0.136598	1.715870
23	8	0	2.831759	-0.927671	2.536753
24	6	0	-2.323821	-1.450006	0.178022
25	9	0	-3.347542	-1.851423	0.931769
26	9	0	-2.470661	-1.911473	-1.063708
27	9	0	-1.179451	-1.908459	0.693241

Atomic Number	Atomic Type	Coor X	dinates (Ang Y	stroms) Z			
6	0	-0.789373	2.494960	0.359689			
9	0	0.272284	3.362023	0.280899			
9	0	-1.814879	3.040605	-0.374800			
8	0	0.700306	0.618900	0.492916			
6	0	-0.382888	1.173906	-0.314371			
6	0	-1.493408	0.161091	-0.513804			
6	0	-2.044119	0.077306	-1.799179			
6	0	-1.984584	-0.744281	0.445482			
6	0	-3.051053	-0.838929	-2.110293			
6	0	-2.958795	-1.694667	0.140473			
6	0	-3.507051	-1.731492	-1.140406			
1	0	-3.460816	-0.863437	-3.114536			
1	0	-3.288247	-2.380037	0.911986			
1	0	-4.279253	-2.456309	-1.374407			
1	0	-1.097809	2.407090	1.398426			
1	0	0.016904	1.444077	-1.294538			
16	0	2.197866	0.440654	-0.123935			
8	0	2.278932	1.025463	-1.455836			
8	0	3.135625	0.752356	0.937759			
6	0	2.208862	-1.436665	-0.334111			
9	0	3.399020	-1.795184	-0.817494			
9	0	2.001652	-2.027774	0.840359			
9	0	1.250026	-1.793697	-1.193168			
1	0	-1.670188	0.739240	-2.573907			
7	0	-1.516754	-0.738408	1.842397			
8	0	-1.379720	-1.824864	2.403467			
8	0	-1.326098	0.351474	2.385461			
	Atomic Number 6 9 9 8 6 6 6 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1	Atomic Number Atomic Type 6 0 9 0 9 0 8 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 9 0 9 0 9 0 9 0 1 0 7 0 8 0	Atomic Atomic Atomic Coort Number Type X 6 0 -0.789373 9 0 0.272284 9 0 -1.814879 8 0 0.700306 6 0 -0.38288 6 0 -1.844879 8 0 0.700306 6 0 -1.493408 6 0 -1.493408 6 0 -1.984584 6 0 -2.044119 6 0 -1.984584 6 0 -3.051053 6 0 -3.07051 1 0 -3.460816 1 0 -3.288247 1 0 -1.097809 1 0 -1.097809 1 0 -1.097809 1 0 -1.097809 1 0 2.208822 9 0 3.135625 <	$\begin{array}{c cccc} \mbox{Atomic} & \mbox{Atomic} & \mbox{Coordinates} & \mbox{(Ang} \\ \hline \mbox{Number} & \mbox{Type} & \mbox{X} & \mbox{Y} \\ \hline \mbox{6} & \mbox{0} & \mbox{0}$			

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	6	0	0.215464	1.695220	-1.505438
2	9	0	-0.908583	2.454224	-1.305157
3	9	0	1.298815	2.515234	-1.353952
4	8	0	-0.856457	-0.286210	-0.855667
5	6	0	0.262990	0.575980	-0.451468
6	6	0	1.557974	-0.213798	-0.493237
7	6	0	2.591794	-0.124468	0.461026
8	6	0	1.743053	-1.117648	-1.548347
9	6	0	3.748781	-0.901968	0.368849
10	6	0	2.902789	-1.884977	-1.661355
11	1	0	0.953662	-1.237614	-2.282381
12	6	0	3.910591	-1.776361	-0.701668
13	1	0	4.509806	-0.804315	1.132458
14	1	0	3.012668	-2.568597	-2.496714
15	1	0	4.815484	-2.369084	-0.780511
16	8	0	1.786625	1.776289	1.545137
17	1	0	0.198911	1.321037	-2.532041
18	1	0	0.064396	1.004598	0.526946
19	16	0	-1.702034	-1.108851	0.262777
20	8	0	-2.097557	-2.363176	-0.351706
21	8	0	-1.045920	-1.030007	1.560234
22	7	0	2.516949	0.783240	1.618958
23	8	0	3.201719	0.511032	2.605770
24	6	0	-3.248639	-0.025366	0.342260
25	9	0	-4.111844	-0.595254	1.184778
26	9	0	-2.920648	1.188268	0.786798
27	9	0	-3.797418	0.069728	-0.867885

otandara orrentation.							
Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z		
1	6	0	-0.285029	2.057465	0.911056		
2	9	0	0.973283	2.605409	0.879092		
3	9	0	-1.166316	3.045113	0.542155		
4	8	0	0.564469	-0.092117	0.296586		
5	6	0	-0.359352	0.947415	-0.149905		
6	6	0	-1.742312	0.386833	-0.424332		
7	6	0	-2.386953	0.842429	-1.581291		
8	6	0	-2.414136	-0.592444	0.331466		
9	6	0	-3.646657	0.370892	-1.956628		
10	6	0	-3.653670	-1.104766	-0.051436		
11	6	0	-4.280858	-0.608810	-1.193047		
12	1	0	-4.117435	0.757276	-2.854455		
13	1	0	-4.119509	-1.870879	0.556505		
14	1	0	-5.253231	-0.992770	-1.482098		
15	1	0	-0.506678	1.739510	1.926626		
16	1	0	0.023070	1.380170	-1.077566		
17	16	0	1.573771	-0.808878	-0.764939		
18	8	0	1.491706	-2.242055	-0.548800		
19	8	0	1.443537	-0.201054	-2.083329		
20	6	0	3.221331	-0.243032	-0.027966		
21	9	0	4.196783	-0.881911	-0.678056		
22	9	0	3.362228	1.071155	-0.189349		
23	9	0	3.268200	-0.549707	1.266828		
24	7	0	-1.864527	-1.130325	1.587721		
25	8	0	-2.026493	-2.328088	1.815413		
26	8	0	-1.309681	-0.346582	2.361264		
27	1	0	-1.884960	1.573769	-2.206634		

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.082433	2.686230	0.101875
2	9	0	0.718719	3.362203	-0.781070
3	9	0	-1.275918	3.362593	0.177836
4	8	0	0.866200	0.614560	-0.879143
5	6	0	-0.387008	1.302320	-0.487300
6	6	0	-1.311397	0.422440	0.328394
7	6	0	-2.068538	-0.619860	-0.250060
8	6	0	-1.423321	0.581290	1.715501
9	6	0	-2.885533	-1.456689	0.508000
10	6	0	-2.259921	-0.230781	2.484800
11	1	0	-0.844714	1.345282	2.219021
12	6	0	-2.993414	-1.251294	1.882500
13	1	0	-3.436988	-2.247729	0.015021
14	1	0	-2.326801	-0.064895	3.554764
15	1	0	-3.643608	-1.888241	2.472354
16	8	0	-2.120140	-2.085890	-2.042074
17	1	0	-0.819012	1.487199	-1.468939
18	16	0	2.074939	0.234156	0.134143
19	8	0	3.319014	0.518350	-0.557695
20	8	0	1.801109	0.719877	1.482292
21	7	0	-2.047774	-0.906411	-1.699639
22	8	0	-1.989855	0.038489	-2.491418
23	6	0	1.909924	-1.650632	0.156457
24	9	0	1.946573	-2.122908	-1.087653
25	9	0	2.936134	-2.138868	0.855879
26	9	0	0.764109	-2.006115	0.739910
27	1	0	0.399204	2.713409	1.078156

Standard Offentation.						
Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z	
1	6	0	-0.699096	2.233791	-0.699493	
2	9	0	-0.045883	3.027616	-1.614626	
3	9	0	-2.044684	2.469865	-0.852075	
4	8	0	0.982040	0.466146	-0.726773	
5	6	0	-0.414916	0.768971	-1.077706	
6	6	0	-1.423405	-0.326140	-0.755993	
7	6	0	-1.607429	-1.263567	-1.782500	
8	6	0	-2.227893	-0.494533	0.391203	
9	6	0	-2.514790	-2.319846	-1.677249	
10	6	0	-3.158382	-1.527985	0.500950	
11	6	0	-3.297350	-2.452137	-0.531957	
12	1	0	-2.611951	-3.025571	-2.495508	
13	1	0	-3.751074	-1.604510	1.403575	
14	1	0	-4.010885	-3.263353	-0.436868	
15	1	0	-0.331603	0.784533	-2.166042	
16	16	0	1.576440	-0.081565	0.684282	
17	8	0	1.927013	1.015052	1.573666	
18	8	0	0.867581	-1.262750	1.156586	
19	6	0	3.184472	-0.675884	-0.111527	
20	9	0	3.830033	0.342271	-0.679526	
21	9	0	3.937557	-1.193323	0.863806	
22	9	0	2.933146	-1.616394	-1.023457	
23	1	0	-0.391250	2.544516	0.294395	
24	7	0	-2.118075	0.386125	1.559239	
25	8	0	-3.071516	0.458453	2.332162	
26	8	0	-1.056723	0.998296	1.720488	
27	1	0	-1.025696	-1.161335	-2.693231	

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.034811	2.316001	-0.253481
2	9	0	0.894845	2.725251	-1.173968
3	9	0	-1.153672	3.095757	-0.426180
4	8	0	0.776913	0.028196	-0.625596
5	6	0	-0.432420	0.868764	-0.582414
6	6	0	-1.542169	0.296965	0.279485
7	6	0	-2.544548	-0.564302	-0.219410
8	6	0	-1.641417	0.657669	1.630375
9	6	0	-3.584706	-1.035392	0.581282
10	6	0	-2.666040	0.177149	2.448238
11	1	0	-0.903903	1.320657	2.065959
12	6	0	-3.639484	-0.672514	1.925092
13	1	0	-4.330556	-1.688587	0.146332
14	1	0	-2.697924	0.472378	3.491611
15	1	0	-4.438239	-1.051953	2.553028
16	8	0	-3.646402	-1.314053	-2.116683
17	1	0	-0.717569	0.868387	-1.632698
18	16	0	1.553941	-0.485523	0.700419
19	8	0	1.660130	0.584269	1.689948
20	8	0	1.114469	-1.818956	1.081974
21	7	0	-2.557086	-1.025531	-1.619277
22	8	0	-1.481322	-1.114876	-2.217181
23	6	0	3.229117	-0.660882	-0.159442
24	9	0	4.094872	-1.111020	0.752624
25	9	0	3.140631	-1.531157	-1.162431
26	9	0	3.634407	0.522144	-0.615952
27	1	0	0.373555	2.500029	0.739113

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.020662	2.185922	-0.060294
2	9	0	1.081316	2.780002	-0.636280
3	9	0	-1.057296	3.075174	-0.17726
4	8	0	0.807926	0.081468	-1.051624
5	6	0	-0.373367	0.967393	-0.925743
6	6	0	-1.666939	0.178860	-0.755202
7	6	0	-2.230184	-0.231851	-1.976181
8	6	0	-2.309852	-0.296564	0.410632
9	6	0	-3.354741	-1.052948	-2.051588
10	6	0	-3.422175	-1.138539	0.349769
11	6	0	-3.953124	-1.514451	-0.881368
12	1	0	-3.751880	-1.330693	-3.022146
13	1	0	-3.872149	-1.476015	1.275172
14	1	0	-4.827179	-2.155633	-0.917889
15	1	0	-0.397658	1.372945	-1.938561
16	16	0	1.333787	-0.912065	0.117079
17	8	0	0.890003	-0.444192	1.425196
18	8	0	1.162708	-2.292586	-0.304635
19	6	0	3.170985	-0.502232	-0.062702
20	9	0	3.845139	-1.301957	0.766279
21	9	0	3.565959	-0.719413	-1.316342
22	9	0	3.385450	0.769811	0.266974
23	1	0	0.196176	2.010645	0.988072
24	7	0	-1.921761	0.080804	1.783860
25	8	0	-2.010745	-0.779513	2.65691
26	8	0	-1.587401	1.247936	1.991520
27	1	0	-1.760267	0.095161	-2.898250

5.4.2. Optimized Coordinates of Conformers of 1-(4-Bromophenyl)-2,2-difluoroethanol Triflate (4-Br)

		Standard	orientation:			
Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.278356	2.825465	0.078393	
2	9	0	-1.042093	3.045658	-1.254780	
3	9	0	-2.587114	3.166138	0.314617	
4	8	0	-1.944838	0.587223	-0.433897	
5	6	0	-1.053833	1.357281	0.446620	
6	6	0	0.374281	0.896743	0.295473	
7	6	0	1.133767	0.651084	1.445228	
8	6	0	0.957762	0.724567	-0.967815	
9	6	0	2.464538	0.241353	1.344796	
10	6	0	2.283155	0.308204	-1.080922	
11	1	0	0.378879	0.905903	-1.866828	
12	6	0	3.022698	0.071913	0.079398	
13	1	0	3.048078	0.048252	2.237529	
14	1	0	2.731367	0.169447	-2.058065	
15	1	0	-0.635038	3.490701	0.659681	
16	1	0	-1.388912	1.236443	1.479396	
17	16	0	-3.032886	-0.445894	0.175606	
18	8	0	-3.108297	-0.320506	1.625996	
19	8	0	-4.202489	-0.394747	-0.682613	
20	6	0	-2.166000	-2.082837	-0.196035	
21	9	0	-2.965212	-3.075614	0.200726	
22	9	0	-1.934461	-2.189039	-1.504195	
23	9	0	-1.011464	-2.145949	0.470879	
24	1	0	0.689655	0.770607	2.429473	
25	35	0	4.833776	-0.503891	-0.070937	

	Stanuaru offentation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)		
Number	Number	Туре	Х	Y	Z		
1	6	0	-1.278118	2.825343	0.078602		
2	9	0	-1.041795	3.045691	-1.254544		
3	9	0	-2.586882	3.165983	0.314802		
4	8	0	-1.944587	0.587174	-0.434037		
5	6	0	-1.053635	1.357110	0.446640		
6	6	0	0.374458	0.896539	0.295477		
7	6	0	1.133942	0.650821	1.445220		
8	6	0	0.957958	0.724452	-0.967810		
9	6	0	2.464723	0.241116	1.344783		
10	6	0	2.283358	0.308119	-1.080938		
11	6	0	3.022892	0.071768	0.079377		
12	1	0	3.048257	0.047975	2.237508		
13	1	0	2.731592	0.169452	-2.058082		
14	1	0	-0.634820	3.490511	0.659990		
15	1	0	-1.388763	1.236134	1.479385		
16	16	0	-3.033101	-0.445579	0.175302		
17	8	0	-3.108926	-0.319944	1.625649		
18	8	0	-4.202416	-0.394290	-0.683297		
19	6	0	-2.166473	-2.082774	-0.195808		
20	9	0	-2.965906	-3.075316	0.201115		
21	9	0	-1.934807	-2.189353	-1.503917		
22	9	0	-1.012028	-2.145911	0.471248		
23	1	0	0.689830	0.770293	2.429473		
24	1	0	0.379085	0.905855	-1.866819		
25	35	0	4.834000	-0.503980	-0.070984		

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	6	0	-1.014708	2.428799	0.230295
2	9	0	-0.788086	2.754698	-1.082516
3	9	0	-2.337229	2.695179	0.486009
4	8	0	-1.578358	0.214410	-0.447302
5	6	0	-0.723057	0.949733	0.493117
6	6	0	0.729114	0.575753	0.318363
7	6	0	1.512697	0.338489	1.453586
8	6	0	1.309070	0.479608	-0.954225
9	6	0	2.865192	0.015496	1.329563
10	6	0	2.656569	0.150019	-1.091110
11	1	0	0.710035	0.651313	-1.841776
12	6	0	3.420632	-0.076478	0.054978
13	1	0	3.467513	-0.172076	2.210832
14	1	0	3.102200	0.069096	-2.075846
15	1	0	-0.401571	3.077149	0.861255
16	1	0	-1.049214	0.735538	1.513677
17	16	0	-2.272456	-1.179740	0.000816
18	8	0	-2.070627	-2.143600	-1.066728
19	8	0	-1.974546	-1.477266	1.396620
20	6	0	-4.081487	-0.643102	-0.088317
21	9	0	-4.840719	-1.712093	0.166053
22	9	0	-4.319055	0.299771	0.823950
23	9	0	-4.359151	-0.175438	-1.304405
24	1	0	1.070909	0.394943	2.444425
25	35	0	5.262906	-0.534213	-0.127591

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.023063	2.422854	0.228127
2	9	0	-0.777939	2.770184	-1.075661
3	9	0	-2.348832	2.685854	0.469898
4	8	0	-1.580770	0.221748	-0.493197
5	6	0	-0.735215	0.939085	0.469959
6	6	0	0.719167	0.568903	0.305936
7	6	0	1.491437	0.321487	1.446748
8	6	0	1.312345	0.487063	-0.961428
9	6	0	2.845727	0.002482	1.333487
10	6	0	2.661787	0.160794	-1.087744
11	6	0	3.414403	-0.075951	0.063771
12	1	0	3.439333	-0.192572	2.219055
13	1	0	3.117765	0.090817	-2.068583
14	1	0	-0.418595	3.060048	0.878486
15	1	0	-1.071613	0.708188	1.483440
16	16	0	-2.266222	-1.188850	-0.086774
17	8	0	-2.149240	-2.077468	-1.229222
18	8	0	-1.877803	-1.581178	1.262240
19	6	0	-4.070994	-0.635846	-0.010159
20	9	0	-4.823782	-1.712617	0.228848
21	9	0	-4.228560	0.246895	0.977958
22	9	0	-4.430570	-0.085594	-1.168516
23	1	0	1.039416	0.366983	2.433546
24	35	0	5.259629	-0.527758	-0.104219
25	1	0	0.722344	0.667136	-1.853370

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	6	0	-1.440133	2.762408	0.257925
2	9	0	-1.718397	2.598223	-1.078061
3	9	0	-2.599838	3.192204	0.851402
4	8	0	-2.072935	0.438843	0.728467
5	6	0	-0.997726	1.447771	0.897109
6	6	0	0.395611	0.973074	0.563128
7	6	0	1.086766	0.249629	1.546375
8	6	0	1.035707	1.254935	-0.651962
9	6	0	2.386861	-0.201054	1.324449
10	6	0	2.339388	0.817730	-0.883392
11	1	0	0.523638	1.801290	-1.434981
12	6	0	2.999886	0.090454	0.106214
13	1	0	2.912169	-0.761913	2.088848
14	1	0	2.828309	1.037356	-1.825399
15	1	0	-1.064097	1.606233	1.975775
16	16	0	-2.448010	-0.380640	-0.618952
17	8	0	-3.812630	-0.054589	-1.001900
18	8	0	-1.363539	-0.406759	-1.588723
19	6	0	-2.508424	-2.078896	0.203674
20	9	0	-3.414882	-2.088010	1.182024
21	9	0	-2.848540	-2.974425	-0.727922
22	9	0	-1.309452	-2.389828	0.701226
23	1	0	-0.686494	3.546288	0.365064
24	1	0	0.608937	0.033086	2.497794
25	35	0	4.779168	-0.512338	-0.211593

Center	Atomic	Atomic	Coor	dinates (And	jstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.440411	2.762472	0.257999
2	9	0	-1.718606	2.598429	-1.077990
3	9	0	-2.600155	3.192255	0.851459
4	8	0	-2.073135	0.438865	0.728282
5	6	0	-0.998098	1.447727	0.897102
6	6	0	0.395324	0.973156	0.563146
7	6	0	1.086493	0.249704	1.546369
8	6	0	1.035404	1.255031	-0.651956
9	6	0	2.386596	-0.200962	1.324419
10	6	0	2.339076	0.817832	-0.883411
11	6	0	2.999588	0.090519	0.106165
12	1	0	2.911944	-0.761777	2.088824
13	1	0	2.827989	1.037508	-1.825411
14	1	0	-1.064510	1.606155	1.975777
15	16	0	-2.447916	-0.380916	-0.619132
16	8	0	-3.812633	-0.055299	-1.002039
17	8	0	-1.363441	-0.406687	-1.588894
18	6	0	-2.507698	-2.079078	0.203755
19	9	0	-3.414201	-2.088362	1.182055
20	9	0	-2.847408	-2.974969	-0.727643
21	9	0	-1.308625	-2.389410	0.701414
22	1	0	-0.686753	3.546330	0.365282
23	1	0	0.608674	0.033145	2.497794
24	35	0	4.778942	-0.512087	-0.211577
25	1	0	0.523323	1.801433	-1.434933

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Ү	Z
1	6	0	-1.220846	2.696766	-0.039335
2	9	0	-1.447994	2.399489	-1.358071
3	9	0	-2.400090	3.192606	0.462770
4	8	0	-1.920334	0.481241	0.637129
5	6	0	-0.810790	1.460034	0.760107
6	6	0	0.577174	0.935205	0.481553
7	6	0	1.359195	0.535006	1.575442
8	6	0	1.120317	0.862055	-0.810721
9	6	0	2.655509	0.057917	1.392411
10	6	0	2.417680	0.389432	-1.005250
11	1	0	0.535758	1.157867	-1.673240
12	6	0	3.170851	-0.010191	0.098325
13	1	0	3.251899	-0.251139	2.242802
14	1	0	2.832854	0.334449	-2.004814
15	1	0	-0.877329	1.743196	1.812706
16	16	0	-1.849689	-0.916710	-0.172194
17	8	0	-1.587750	-0.725367	-1.592578
18	8	0	-1.130842	-1.929210	0.590916
19	6	0	-3.697557	-1.260096	0.026526
20	9	0	-3.944448	-2.433956	-0.563588
21	9	0	-4.021934	-1.335136	1.317645
22	9	0	-4.413426	-0.305349	-0.565384
23	1	0	-0.464629	3.484139	0.018329
24	1	0	0.954261	0.591315	2.581598
25	35	0	4.945584	-0.647469	-0.166306

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	У	Z
1	6	0	-1.221085	2.696658	-0.039332
2	9	0	-1.448334	2.399290	-1.358027
3	9	0	-2.400363	3.192344	0.462857
4	8	0	-1.920137	0.480989	0.637522
5	6	0	-0.810785	1.460079	0.760177
6	6	0	0.577214	0.935348	0.481630
7	6	0	1.359169	0.534882	1.575486
8	6	0	1.120406	0.862437	-0.810628
9	6	0	2.655456	0.057769	1.392414
10	6	0	2.417769	0.389794	-1.005199
11	6	0	3.170854	-0.010086	0.098328
12	1	0	3.251820	-0.251501	2.242745
13	1	0	2.832989	0.334994	-2.004753
14	1	0	-0.877355	1.743379	1.812735
15	16	0	-1.849609	-0.916684	-0.172302
16	8	0	-1.587777	-0.724895	-1.592645
17	8	0	-1.130723	-1.929454	0.590416
18	6	0	-3.697449	-1.260131	0.026519
19	9	0	-3.944431	-2.433767	-0.563997
20	9	0	-4.021631	-1.335651	1.317661
21	9	0	-4.413432	-0.305177	-0.564925
22	1	0	-0.464976	3.484141	0.018245
23	1	0	0.954165	0.590978	2.581621
24	1	0	0.535919	1.158468	-1.673121
25	35	0	4.945563	-0.647443	-0.166327

Standard orientation: -----------Atomic Atomic Coordinates (Angstroms)

Center

Center Number

Number	Number	Type	Х	Y	Z
1	6	0	-1.304652	2.863525	-0.094446
2	9	0	-0.545774	3.664820	0.721946
3	9	0	-0.869014	3.059690	-1.378835
4	8	0	-2.026376	0.646861	-0.518252
5	6	0	-1.103948	1.406953	0.345057
6	6	0	0.301115	0.879526	0.219029
7	6	0	1.062360	0.692188	1.378627
8	6	0	0.862362	0.583044	-1.031154
9	6	0	2.371404	0.214486	1.300565
10	6	0	2.166872	0.100310	-1.121556
11	1	0	0.281718	0.717985	-1.936926
12	6	0	2.907318	-0.078581	0.048085
13	1	0	2.956002	0.066666	2.201243
14	1	0	2.597717	-0.133610	-2.088350
15	1	0	-2.346663	3.184991	-0.033739
16	1	0	-1.453498	1.340109	1.377895
17	16	0	-3.150061	-0.335122	0.114800
18	8	0	-3.305681	-0.084357	1.542213
19	8	0	-4.267367	-0.340268	-0.812277
20	6	0	-2.292650	-2.009540	-0.067890
21	9	0	-3.143349	-2.955398	0.334748
22	9	0	-1.963637	-2.213592	-1.342643
23	9	0	-1.195871	-2.041597	0.691271
24	1	0	0.636319	0.912814	2.353092
25	35	0	4.690357	-0.744047	-0.071422

	o canaara	01101104010111		
Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Туре	X	Y	
6	0	-1.304314	2.863245	-0.094985
9	0	-0.545613	3.664973	0.721152
9	0	-0.868631	3.058967	-1.379432
8	0	-2.025384	0.646011	-0.517943
6	0	-1.103220	1.406948	0.345044
6	0	0.301875	0.879737	0.219000

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.304314	2.863245	-0.094985
2	9	0	-0.545613	3.664973	0.721152
3	9	0	-0.868631	3.058967	-1.379432
4	8	0	-2.025384	0.646011	-0.517943
5	6	0	-1.103220	1.406948	0.345044
6	6	0	0.301875	0.879737	0.219000
7	6	0	1.063175	0.692349	1.378553
8	6	0	0.863303	0.583316	-1.031098
9	6	0	2.372159	0.214585	1.300623
10	6	0	2.167756	0.100522	-1.121507
11	6	0	2.908224	-0.078432	0.048149
12	1	0	2.956640	0.066614	2.201336
13	1	0	2.598603	-0.133448	-2.088275
14	1	0	-2.346378	3.184566	-0.034461
15	1	0	-1.452605	1.340175	1.377927
16	16	0	-3.150096	-0.334367	0.115741
17	8	0	-3.303892	-0.084012	1.543439
18	8	0	-4.268464	-0.337458	-0.810062
19	6	0	-2.294685	-2.009570	-0.068656
20	9	0	-3.145894	-2.954896	0.334339
21	9	0	-1.967101	-2.213410	-1.343824
22	9	0	-1.197256	-2.043051	0.689409
23	1	0	0.637208	0.912939	2.353065
24	1	0	0.282873	0.718308	-1.937011
25	35	0	4.690913	-0.744716	-0.071241

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.098017	2.463667	-0.051329
2	9	0	-0.391743	3.302906	0.773418
3	9	0	-0.679074	2.702411	-1.334002
4	8	0	-1.688739	0.224054	-0.492811
5	6	0	-0.799844	1.019120	0.371680
6	6	0	0.636878	0.586542	0.231855
7	6	0	1.420501	0.453172	1.384073
8	6	0	1.204002	0.325372	-1.023232
9	6	0	2.759629	0.071136	1.293239
10	6	0	2.538738	-0.063252	-1.126541
11	1	0	0.604493	0.413062	-1.922448
12	6	0	3.302575	-0.183953	0.035413
13	1	0	3.361941	-0.034731	2.188054
14	1	0	2.974298	-0.270749	-2.097177
15	1	0	-2.158611	2.716430	0.013677
16	1	0	-1.129331	0.915336	1.407951
17	16	0	-2.364519	-1.139633	0.072280
18	8	0	-2.170847	-2.186509	-0.914852
19	8	0	-2.053232	-1.319327	1.484518
20	6	0	-4.172089	-0.605047	-0.041008
21	9	0	-4.935193	-1.615420	0.378426
22	9	0	-4.372312	0.460612	0.740224
23	9	0	-4.480823	-0.300618	-1.300737
24	1	0	0.988421	0.640674	2.362750
25	35	0	5.127763	-0.721177	-0.099571

Standard	orientation:
----------	--------------

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.097336	2.463717	-0.052224
2	9	0	-0.390711	3.303146	0.772030
3	9	0	-0.678209	2.701470	-1.335011
4	8	0	-1.689174	0.224308	-0.492343
5	6	0	-0.799786	1.019279	0.371577
6	6	0	0.636824	0.586208	0.231760
7	6	0	1.421035	0.455233	1.383849
8	6	0	1.203259	0.322725	-1.023135
9	6	0	2.760187	0.073270	1.293025
10	6	0	2.538014	-0.065889	-1.126359
11	6	0	3.302505	-0.184166	0.035407
12	1	0	3.362981	-0.030747	2.187738
13	1	0	2.973082	-0.275232	-2.096824
14	1	0	-2.157825	2.716971	0.012626
15	1	0	-1.129212	0.916131	1.407938
16	16	0	-2.364747	-1.139274	0.073225
17	8	0	-2.170387	-2.186793	-0.913098
18	8	0	-2.054112	-1.317991	1.485741
19	6	0	-4.172302	-0.604943	-0.041243
20	9	0	-4.935491	-1.615395	0.377816
21	9	0	-4.373068	0.460741	0.739822
22	9	0	-4.480384	-0.300597	-1.301145
23	1	0	0.989344	0.644480	2.362356
24	1	0	0.603213	0.408619	-1.922169
25	35	0	5.127717	-0.721283	-0.099520

Standard orientation:							
Center	Atomic	Atomic	Coor	dinates (Ang	stroms)		
Number	Number	Туре	Х	Y	Z		
1	6	0	-1.628566	2.804798	0.283778		
2	9	0	-0.713858	3.780925	0.592569		
3	9	0	-1.718858	2.742101	-1.083790		
4	8	0	-2.265194	0.508289	0.759365		
5	6	0	-1.147153	1.488234	0.900593		
6	6	0	0.228546	0.985262	0.549634		
7	6	0	0.972836	0.390407	1.580069		
8	6	0	0.801575	1.098131	-0.726194		
9	6	0	2.256387	-0.100983	1.349577		
10	6	0	2.087224	0.616296	-0.968005		
11	1	0	0.250365	1.551024	-1.539533		
12	6	0	2.799031	0.016820	0.070895		
13	1	0	2.822710	-0.558671	2.152317		
14	1	0	2.524755	0.706000	-1.955540		
15	1	0	-1.190303	1.645426	1.980324		
16	16	0	-2.644375	-0.410288	-0.517875		
17	8	0	-4.092323	-0.368486	-0.646935		
18	8	0	-1.759655	-0.208234	-1.653994		
19	6	0	-2.228807	-2.095443	0.226568		
20	9	0	-2.902672	-2.273608	1.364387		
21	9	0	-2.583142	-3.035211	-0.653957		
22	9	0	-0.919093	-2.180896	0.465378		
23	1	0	-2.604828	3.105180	0.670211		
24	1	0	0.548939	0.306887	2.576916		
25	35	0	4.559655	-0.633278	-0.257970		

Standard orientation:						
Center	Atomic	Atomic	Coor	dinates (Ang	(Angstroms)	
Number	Number	Туре	Х	У	Z	
1	6	0	-1.355774	2.785342	0.104674	
2	9	0	-0.520505	3.827815	0.320887	
3	9	0	-1.356996	2.545096	-1.220086	
4	8	0	-2.046642	0.536420	0.756456	
5	6	0	-0.959842	1.511326	0.869861	
6	6	0	0.421153	0.939397	0.592889	
7	6	0	1.388587	0.813852	1.615690	
8	6	0	0.794592	0.494974	-0.680862	
9	6	0	2.649821	0.266777	1.381644	
10	6	0	2.065395	-0.027579	-0.933852	
11	6	0	2.995957	-0.145104	0.096286	
12	1	0	3.351080	0.183806	2.203180	
13	1	0	2.315306	-0.350789	-1.939632	
14	1	0	-1.034562	1.777082	1.923434	
15	16	0	-2.437057	-0.316760	-0.586576	
16	8	0	-3.574480	0.296713	-1.252089	
17	8	0	-1.252948	-0.735445	-1.322468	
18	6	0	-3.096278	-1.802171	0.382642	
19	9	0	-4.080817	-1.421854	1.192855	
20	9	0	-3.561220	-2.678325	-0.511208	
21	9	0	-2.114464	-2.360827	1.088168	
22	1	0	-2.343254	3.090057	0.382038	
23	1	0	1.210800	1.134397	2.620948	
24	1	0	0.096016	0.540755	-1.490057	
25	35	0	4.733555	-0.866191	-0.233693	

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Type	Х	Y	Z	
1	6	0	-1.096914	2.463638	-0.052668	
2	9	0	-0.390838	3.303353	0.771885	
3	9	0	-0.677008	2.700897	-1.335230	
4	8	0	-1.689195	0.224424	-0.492416	
5	6	0	-0.799694	1.019264	0.371551	
6	6	0	0.636814	0.585948	0.231882	
7	6	0	1.421073	0.455157	1.383944	
8	6	0	1.203087	0.321913	-1.022977	
9	6	0	2.760208	0.073115	1.293084	
10	6	0	2.537815	-0.066735	-1.126239	
11	1	0	0.602887	0.407511	-1.921945	
12	6	0	3.302423	-0.184668	0.035498	
13	1	0	3.363089	-0.030566	2.187778	
14	1	0	2.972813	-0.276292	-2.096690	
15	1	0	-1.129268	0.916192	1.407862	
16	16	0	-2.364916	-1.139092	0.073233	
17	8	0	-2.170803	-2.186792	-0.913020	
18	8	0	-2.054091	-1.317904	1.485718	
19	6	0	-4.172571	-0.604630	-0.041180	
20	9	0	-4.935656	-1.615053	0.378104	
21	9	0	-4.373331	0.461148	0.739725	
22	9	0	-4.480753	-0.300542	-1.301111	
23	1	0	-2.157429	2.716915	0.011471	
24	1	0	0.989514	0.644726	2.362450	
25	35	0	5.127845	-0.721059	-0.099504	

Br-b4-cis

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.097427	2.463535	-0.052296
2	9	0	-0.391131	3.302898	0.772318
3	9	0	-0.677973	2.701573	-1.334928
4	8	0	-1.689040	0.224027	-0.492669
5	6	0	-0.799815	1.019081	0.371393
6	6	0	0.636849	0.586138	0.231650
7	6	0	1.420992	0.455024	1.383790
8	6	0	1.203399	0.322771	-1.023213
9	6	0	2.760151	0.073101	1.293039
10	6	0	2.538184	-0.065775	-1.126378
11	6	0	3.302583	-0.184153	0.035425
12	1	0	3.362882	-0.031004	2.187782
13	1	0	2.973340	-0.274959	-2.096838
14	1	0	-1.129335	0.915817	1.407710
15	16	0	-2.364846	-1.139393	0.072966
16	8	0	-2.170994	-2.186851	-0.913529
17	8	0	-2.053839	-1.318306	1.485371
18	6	0	-4.172338	-0.604731	-0.041016
19	9	0	-4.935581	-1.615069	0.378230
20	9	0	-4.372771	0.460991	0.740084
21	9	0	-4.480652	-0.300354	-1.300850
22	1	0	-2.157954	2.716677	0.012263
23	1	0	0.989255	0.644202	2.362288
24	1	0	0.603439	0.408750	-1.922292
25	35	0	5.127840	-0.721156	-0.099423

Standard orientation: -----_____ -----Coordinates (Angstroms) X Y Center Atomic Atomic X ź Number Number Туре ------1.214580 -2.522791 2.738963 3.119808 -0.371680 -0.209745 1 6 0 0 2 9 -0.445599 -1.882059 -1.019527 0.368246 3.602075 0.476521 3 9 0 0 4 8 5 6 0 1.324631 6 7 6 0 0.402419 0.835867 0.112655 0 0.678979 1.290810 6 1.006388 2.470176 2.330915 0.443697 3.049430 0.563281 0.256370 -1.123022 1.244218 8 9 10 11 12 13 14 15 16 17 18 19 20 6 6 0 0 -1.182534 -2.045785 0.005280 2.158808 0.133327 0.666574 -0.013078 6 0 1 0 6 0 3.038829 2.794218 -0.952056 -1.394806 1 0 0.133754 1 -0.084378 -2.138026 0 0 2.848312 1.316315 -1.426175 1.213001 1 1 Õ -0.362232 0.057886 -0.432109 -3.116774 -3.383219 -0.020771 1.348289 16 0 8 8 0 -1.043365 0.071844 0 -4.144715 -2.324059 -3.244825 -2.074105 -2.940138 6 0 21 9 Ő 0.498973 -1.886457 22 23 -1.132168 0.931631 2.253507 9 0 -2.441428 -2.046289 9 0 24 25 0 0.682468 0.884946 -0.602853 35 0 4.860144 -0.069105

Standard orientation:

Center	Atomic	Atomic	Coor	dinates (And	(stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.214902	2.739061	-0.371526
2	9	0	-2.523085	3.119892	-0.209369
3	9	0	-0.445839	3.602088	0.368320
4	8	0	-1.882417	0.476687	-0.653100
5	6	0	-1.019767	1.324715	0.187234
6	6	0	0.402176	0.835959	0.112642
7	6	0	1.140569	0.678674	1.290853
8	6	0	1.006210	0.563754	-1.123077
9	6	0	2.469790	0.256073	1.244259
10	6	0	2.330750	0.133745	-1.182602
11	6	0	3.049056	-0.012990	0.005257
12	1	0	3.038410	0.133207	2.158828
13	1	0	2.794166	-0.083637	-2.138104
14	1	0	-0.952518	2.848447	-1.426058
15	1	0	-1.395017	1.316297	1.213075
16	16	0	-3.116679	-0.362618	-0.020916
17	8	0	-3.383462	0.057405	1.348109
18	8	0	-4.144508	-0.432822	-1.043597
19	6	0	-2.323310	-2.074109	0.071837
20	9	0	-3.243801	-2.940682	0.498495
21	9	0	-1.885014	-2.441177	-1.132011
22	9	0	-1.302394	-2.045914	0.932075
23	1	0	0.681937	0.884419	2.253531
24	1	0	0.443577	0.667381	-2.045837
25	35	0	4.859919	-0.602615	-0.069112

Standard orientation:

Center	Atomic	Atomic	Cooi	rdinates (Ang	gstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.014141	2.347783	-0.456626
2	9	0	-2.332235	2.686134	-0.281035
3	9	0	-0.263168	3.288969	0.201160
4	8	0	-1.591664	0.064460	-0.582047
5	6	0	-0.740363	0.983506	0.188168
6	6	0	0.706508	0.567146	0.116423
7	6	0	1.491365	0.606515	1.274227
8	6	0	1.285191	0.175214	-1.098465
9	6	0	2.843614	0.265250	1.226679
10	6	0	2.633345	-0.175053	-1.157718
11	1	0	0.684378	0.122519	-2.000987
12	6	0	3.398636	-0.122668	0.008156
13	1	0	3.448257	0.293898	2.125763
14	1	0	3.078098	-0.485520	-2.096158
15	1	0	-0.784549	2.396145	-1.523371
16	1	0	-1.087381	1.020536	1.223278
17	16	0	-2.315778	-1.191965	0.144990
18	8	0	-2.152672	-2.351585	-0.714096
19	8	0	-2.003242	-1.212476	1.567902
20	6	0	-4.112547	-0.634981	-0.032298
21	9	0	-4.895391	-1.613205	0.428767
22	9	0	-4.314752	0.473348	0.680346
23	9	0	-4.392042	-0.404357	-1.314920
24	1	0	1.050874	0.901978	2.221835
25	35	0	5.242058	-0.603873	-0.065269

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	-1.014042	2.347938	-0.456660	
2	9	0	-2.332028	2.686513	-0.280928	
3	9	0	-0.262824	3.289125	0.200880	
4	8	0	-1.591809	0.064725	-0.581739	
5	6	0	-0.740349	0.983725	0.188319	
6	6	0	0.706499	0.567272	0.116535	
7	6	0	1.491467	0.606835	1.274272	
8	6	0	1.285006	0.175049	-1.098337	
9	6	0	2.843680	0.265468	1.226642	
10	6	0	2.633142	-0.175318	-1.157662	
11	6	0	3.398521	-0.122737	0.008124	
12	1	0	3.448452	0.294255	2.125633	
13	1	0	3.077795	-0.486006	-2.096075	
14	1	0	-0.784539	2.396082	-1.523437	
15	1	0	-1.087289	1.020948	1.223450	
16	16	0	-2.315718	-1.191763	0.145402	
17	8	0	-2.151998	-2.351593	-0.713286	
18	8	0	-2.003599	-1.211788	1.568412	
19	6	0	-4.112576	-0.635301	-0.032654	
20	9	0	-4.895323	-1.613495	0.428598	
21	9	0	-4.315265	0.473295	0.679456	
22	9	0	-4.391769	-0.405267	-1.315450	
23	1	0	1.051055	0.902539	2.221831	
24	1	0	0.684032	0.122215	-2.000735	
25	35	0	5.241943	-0.604049	-0.065390	

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-1.766537	2.547873	-0.287485
2	9	0	-3.040290	2.884306	0.094885
3	9	0	-0.987275	3.671503	-0.147839
4	8	0	-2.193887	0.380551	0.835326
5	6	0	-1.212834	1.494843	0.679313
6	6	0	0.196695	1.036515	0.416780
7	6	0	1.008609	0.745624	1.522946
8	6	0	0.726406	0.894251	-0.873846
9	6	0	2.321208	0.309234	1.353401
10	6	0	2.040761	0.466011	-1.057361
11	1	0	0.124556	1.103048	-1.750329
12	6	0	2.823618	0.174243	0.059251
13	1	0	2.941665	0.086859	2.213713
14	1	0	2.445841	0.362847	-2.057274
15	1	0	-1.279021	1.930215	1.678503
16	16	0	-2.696895	-0.602409	-0.342612
17	8	0	-4.110329	-0.851008	-0.117839
18	8	0	-2.177674	-0.185171	-1.640796
19	6	0	-1.812879	-2.201726	0.147416
20	9	0	-2.097162	-2.503786	1.414692
21	9	0	-2.256323	-3.172018	-0.655879
22	9	0	-0.494548	-2.072603	0.003071
23	1	0	-1.792300	2.269072	-1.340457
24	1	0	0.615676	0.860919	2.529076
25	35	0	4.625118	-0.394206	-0.187081

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.766323	2.548132	-0.287494
2	9	0	-3.040178	2.884549	0.094832
3	9	0	-0.987055	3.671626	-0.147460
4	8	0	-2.193900	0.380618	0.835129
5	6	0	-1.212848	1.494824	0.679159
6	6	0	0.196711	1.036504	0.416622
7	6	0	1.008617	0.745727	1.522825
8	6	0	0.726434	0.893984	-0.873975
9	6	0	2.321232	0.309316	1.353359
10	6	0	2.040773	0.465702	-1.057415
11	6	0	2.823646	0.174122	0.059247
12	1	0	2.941635	0.087049	2.213736
13	1	0	2.445889	0.362388	-2.057298
14	1	0	-1.278921	1.930190	1.678359
15	16	0	-2.696817	-0.602361	-0.342787
16	8	0	-4.110354	-0.850718	-0.118362
17	8	0	-2.177149	-0.185414	-1.640874
18	6	0	-1.813203	-2.201743	0.147622
19	9	0	-2.097839	-2.503575	1.414894
20	9	0	-2.256529	-3.172090	-0.655620
21	9	0	-0.494785	-2.072726	0.003588
22	1	0	-1.792076	2.269593	-1.340516
23	1	0	0.615730	0.861141	2.528953
24	1	0	0.124505	1.102484	-1.750470
25	35	0	4.625165	-0.394298	-0.187061

Center Number

Atomic	Atomic	Coord	inates (Angs	stroms)
Number	Type	X	Y	Z
6	0	-1.318143	2.378994	-0.375303 0.014928
9	0	-2.568205	2.789339	

1	6	0	-1.318143	2.378994	-0.375303
2	9	0	-2.568205	2.789339	0.014928
3	9	0	-0.493721	3.477965	-0.322211
4	8	0	-1.792320	0.278254	0.813476
5	6	0	-0.788320	1.362075	0.641787
6	6	0	0.612469	0.857984	0.405755
7	6	0	1.415327	0.592102	1.524442
8	6	0	1.140953	0.656107	-0.877528
9	6	0	2.717339	0.119010	1.374263
10	6	0	2.445640	0.191621	-1.041495
11	1	0	0.546596	0.847533	-1.763716
12	6	0	3.219120	-0.075876	0.087411
13	1	0	3.329757	-0.088920	2.243898
14	1	0	2.849105	0.038850	-2.035640
15	1	0	-0.850843	1.839504	1.621622
16	16	0	-1.991673	-0.915803	-0.261157
17	8	0	-1.862934	-0.414720	-1.627093
18	8	0	-1.303699	-2.123360	0.168933
19	6	0	-3.831217	-1.163618	0.096327
20	9	0	-4.247323	-2.190518	-0.649612
21	9	0	-4.015103	-1.443762	1.386003
22	9	0	-4.513914	-0.067904	-0.231304
23	1	0	-1.382352	2.036453	-1.407592
24	1	0	1.022239	0.752728	2.524151
25	35	0	4.996836	-0.722604	-0.132598

Standard orientation:

Center	Atomic	Atomic	omic Coordinates (Angstrom		
Number	Number	Type	Х	У	Z
1	6	0	-1.318129	2.379431	-0.375059
2	9	0	-2.567851	2.790368	0.015638
3	9	0	-0.493211	3.478003	-0.322643
4	8	0	-1.792765	0.278702	0.813275
5	6	0	-0.788382	1.362402	0.641942
6	6	0	0.612268	0.858102	0.405867
7	6	0	1.414984	0.591709	1.524532
8	6	0	1.140823	0.656521	-0.877439
9	6	0	2.716928	0.118455	1.374312
10	6	0	2.445447	0.191880	-1.041453
11	6	0	3.218773	-0.076146	0.087438
12	1	0	3.329255	-0.089788	2.243937
13	1	0	2.848976	0.039427	-2.035620
14	1	0	-0.850885	1.839595	1.621891
15	16	0	-1.991472	-0.915640	-0.261174
16	8	0	-1.862775	-0.414722	-1.627172
17	8	0	-1.302978	-2.122818	0.169168
18	6	0	-3.830981	-1.164087	0.096168
19	9	0	-4.246638	-2.191266	-0.649635
20	9	0	-4.014960	-1.444057	1.385848
21	9	0	-4.514027	-0.068661	-0.231774
22	1	0	-1.382966	2.036591	-1.407231
23	1	0	1.021825	0.752090	2.524255
24	1	0	0.546585	0.848339	-1.763617
25	35	0	4.996534	-0.722697	-0.132622

5.4.3. Optimized Coordinate of Conformers of 1-(2-Fluorophenyl)-2,2-difluoroethanol Triflate (4-F)

		Standard	orientation:			
Center	Atomic	Atomic	Coord:	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	0.858959	2.456276	0.026579	
2	9	0	1.110787	2.673424	-1.304080	
3	9	0	-0.216050	3.240888	0.363690	
4	8	0	-0.635605	0.665342	-0.548811	
5	6	0	0.522395	0.986169	0.291776	
6	6	0	1.654341	0.042096	-0.029013	
7	6	0	2.421435	-0.507515	0.999651	
8	6	0	1.988223	-0.311821	-1.345718	
9	6	0	3.480460	-1.376662	0.775209	
10	6	0	3.044643	-1.185268	-1.601994	
11	1	0	1.407615	0.095258	-2.166266	
12	6	0	3.790454	-1.715451	-0.543278	
13	1	0	4.037569	-1.772448	1.617113	
14	1	0	3.286359	-1.450950	-2.625716	
15	1	0	4.614401	-2.393670	-0.740950	
16	1	0	1.726045	2.786797	0.603968	
17	1	0	0.237394	0.909655	1.342846	
18	16	0	-2.081569	0.336677	0.107843	
19	8	0	-2.072972	0.597113	1.541096	
20	8	0	-3.090651	0.870898	-0.788144	
21	6	0	-2.093469	-1.538069	-0.113226	
22	9	0	-3.247550	-2.009706	0.362827	
23	9	0	-1.980971	-1.847164	-1.404709	
24	9	0	-1.076511	-2.074553	0.566590	
25	9	0	2.119728	-0.174758	2.287957	

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.898097	2.437599	-0.329837
2	9	0	-1.296392	2.683774	0.954486
3	9	0	0.205802	3.222056	-0.566672
4	8	0	0.567668	0.658095	0.382285
5	6	0	-0.522384	0.967478	-0.547467
6	6	0	-1.664775	-0.005530	-0.390260
7	6	0	-2.253657	-0.554530	-1.541040
8	6	0	-2.199642	-0.386725	0.845602
9	6	0	-3.334903	-1.432003	-1.454351
10	6	0	-3.267952	-1.266553	0.960463
11	6	0	-3.840662	-1.788510	-0.201334
12	1	0	-3.771483	-1.841500	-2.359069
13	1	0	-3.634175	-1.528539	1.947072
14	1	0	-4.676905	-2.475884	-0.123036
15	1	0	-1.696229	2.750145	-1.008384
16	1	0	-0.138140	0.905840	-1.568621
17	16	0	2.060311	0.341722	-0.163675
18	8	0	2.138244	0.537196	-1.606343
19	8	0	3.001834	0.940302	0.764480
20	6	0	2.100476	-1.520207	0.143780
21	9	0	3.291430	-1.982972	-0.243355
22	9	0	1.919147	-1.775585	1.438307
23	9	0	1.138226	-2.111901	-0.569724
24	1	0	-1.852439	-0.289955	-2.515432
25	9	0	-1.654656	0.100349	1.988018

		Standard	orientation:		
Center	Atomic	Atomic	Coord:	inates (Angs	troms)
NUMBEL	NUMBEL	туре	~	±	
1	6	0	0.526288	2.171442	-0.131907
2	9	0	0.731069	2.360526	-1.474736
3	9	0	-0.701544	2.706444	0.166685
4	8	0	-0.496553	0.071777	-0.606791
5	6	0	0.544417	0.681039	0.219819
6	6	0	1.884104	0.031196	-0.038957
7	6	0	2.818399	-0.071777	0.992631
8	6	0	2.250562	-0.468129	-1.297041
9	6	0	4.071216	-0.645194	0.828128
10	6	0	3.502603	-1.051674	-1.493086
11	1	0	1.542168	-0.407786	-2.115955
12	6	0	4.411310	-1.139276	-0.433104
13	1	0	4.751564	-0.700149	1.670745
14	1	0	3.767618	-1.438348	-2.471484
15	1	0	5.385562	-1.593038	-0.584094
16	1	0	1.290434	2.725504	0.418796
17	1	0	0.274427	0.590891	1.273972
18	16	0	-1.434808	-1.110007	-0.009324
19	8	0	-1.597534	-2.103080	-1.056118
20	8	0	-1.032281	-1.450162	1.349099
21	6	0	-3.070134	-0.170505	0.105775
22	9	0	-4.015140	-1.034289	0.485254
23	9	0	-2.966183	0.803634	1.010122
24	9	0	-3.384933	0.345826	-1.080914
25	9	0	2.483789	0.419196	2.221824

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	6	0	-0.527929	2.150216	-0.523399
2	9	0	-0.813260	2.609002	0.732736
3	9	0	0.732509	2.597205	-0.838621
4	8	0	0.424045	0.136460	0.370029
5	6	0	-0.560129	0.620655	-0.600690
6	6	0	-1.925163	0.015453	-0.376078
7	6	0	-2.650714	-0.452135	-1.483618
8	6	0	-2.534585	-0.091622	0.879429
9	6	0	-3.930954	-0.987303	-1.339342
10	6	0	-3.802577	-0.631339	1.052273
11	6	0	-4.505776	-1.077474	-0.068740
12	1	0	-4.469743	-1.340651	-2.212070
13	1	0	-4.218851	-0.694660	2.051681
14	1	0	-5.497864	-1.499660	0.055426
15	1	0	-1.237984	2.593912	-1.226165
16	1	0	-0.220080	0.358019	-1.605606
17	16	0	1.401565	-1.101059	-0.003803
18	8	0	1.389333	-2.035258	1.108202
19	8	0	1.194421	-1.522631	-1.384683
20	6	0	3.059047	-0.197115	0.067671
21	9	0	4.027132	-1.103323	-0.096036
22	9	0	3.124416	0.705743	-0.910702
23	9	0	3.202722	0.402772	1.247983
24	1	0	-2.197868	-0.398491	-2.469648
25	9	0	-1.870448	0.330141	1.983954

Center	Atomic	Atomic	Coor	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	0.769346	2.557768	0.414751	
2	9	0	0.285653	2.756906	-0.855998	
3	9	0	-0.006498	3.316003	1.253890	
4	8	0	-0.744905	0.661952	0.767714	
5	6	0	0.671896	1.089957	0.825733	
6	6	0	1.663213	0.157071	0.179137	
7	6	0	2.072906	-0.976624	0.890009	
8	6	0	2.252234	0.370585	-1.077753	
9	6	0	3.009083	-1.881016	0.411493	
10	6	0	3.201993	-0.517233	-1.582493	
11	1	0	1.956349	1.227155	-1.671557	
12	6	0	3.577439	-1.642157	-0.841627	
13	1	0	3.280579	-2.741787	1.012393	
14	1	0	3.642663	-0.333878	-2.556655	
15	1	0	4.312916	-2.336118	-1.235936	
16	1	0	0.825792	1.071277	1.906382	
17	16	0	-1.597197	0.272105	-0.555164	
18	8	0	-2.777021	1.120454	-0.604839	
19	8	0	-0.760615	0.043965	-1.723531	
20	6	0	-2.174372	-1.416895	0.059199	
21	9	0	-2.833555	-1.292579	1.211253	
22	9	0	-2.987768	-1.934009	-0.866808	
23	9	0	-1.124369	-2.223804	0.227445	
24	1	0	1.795360	2.930465	0.461317	
25	9	0	1.526468	-1.203684	2.117022	

Ctandard	ariantation
Standard	OTTENLATION

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	У	Z
1	6	0	0.985021	2.378344	0.519800
2	9	0	0.365062	2.649006	-0.668665
3	9	0	0.460934	3.258444	1.441123
4	8	0	-0.759851	0.686828	0.844920
5	6	0	0.690098	0.949922	0.998320
6	6	0	1.590255	-0.171681	0.535361
7	6	0	1.681034	-1.313382	1.352313
8	6	0	2.365494	-0.166612	-0.627307
9	6	0	2.487214	-2.395206	1.006285
10	6	0	3.186944	-1.224894	-0.993545
11	6	0	3.242043	-2.349903	-0.170413
12	1	0	2.533079	-3.264127	1.654112
13	1	0	3.762551	-1.155371	-1.909900
14	1	0	3.878009	-3.184827	-0.446667
15	1	0	0.754503	0.991967	2.087433
16	16	0	-1.520346	0.320688	-0.542432
17	8	0	-2.569591	1.299654	-0.774328
18	8	0	-0.599273	-0.093922	-1.589515
19	6	0	-2.381039	-1.232013	0.100041
20	9	0	-3.156990	-0.932764	1.143165
21	9	0	-3.133447	-1.722514	-0.889391
22	9	0	-1.476518	-2.144118	0.463040
23	1	0	2.052008	2.584942	0.422501
24	1	0	1.100984	-1.347517	2.270252
25	9	0	2.340040	0.920389	-1.441780

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.531029	2.485906	0.147260
2	9	0	0.086087	2.489992	-1.149195
3	9	0	-0.397872	3.178953	0.885000
4	8	0	-0.682430	0.441932	0.637585
5	6	0	0.658464	1.069191	0.705757
6	6	0	1.796414	0.254640	0.144660
7	6	0	2.496080	-0.604800	1.000707
8	6	0	2.231207	0.323642	-1.190439
9	6	0	3.573105	-1.375900	0.591618
10	6	0	3.312695	-0.440282	-1.629109
11	1	0	1.713241	0.967888	-1.890524
12	6	0	3.981298	-1.288196	-0.741142
13	1	0	4.069846	-2.024995	1.303983
14	1	0	3.629737	-0.374916	-2.664431
15	1	0	4.821151	-1.884799	-1.082694
16	1	0	0.797064	1.179102	1.782576
17	16	0	-1.102809	-0.731036	-0.396245
18	8	0	-0.984178	-0.315777	-1.787552
19	8	0	-0.591865	-2.023159	0.043888
20	6	0	-2.931860	-0.650145	0.074422
21	9	0	-3.564819	-1.576183	-0.652965
22	9	0	-3.092387	-0.916496	1.370383
23	9	0	-3.429914	0.553045	-0.206070
24	1	0	1.480184	3.026202	0.194521
25	9	0	2.100118	-0.691556	2.299815

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.985326	2.378262	0.519719
2	9	0	0.365068	2.649150	-0.668613
3	9	0	0.461704	3.258451	1.441178
4	8	0	-0.759770	0.686844	0.845053
5	6	0	0.690123	0.949836	0.998305
6	6	0	1.590248	-0.171850	0.535358
7	6	0	1.680724	-1.313617	1.352230
8	6	0	2.365641	-0.166862	-0.627225
9	6	0	2.486822	-2.395538	1.006265
10	6	0	3.187014	-1.225200	-0.993400
11	6	0	3.241849	-2.350257	-0.170286
12	1	0	2.532449	-3.264537	1.654007
13	1	0	3.762759	-1.155748	-1.909669
14	1	0	3.877765	-3.185248	-0.446454
15	1	0	0.754659	0.992012	2.087410
16	16	0	-1.520063	0.320618	-0.542540
17	8	0	-2.568810	1.299957	-0.775019
18	8	0	-0.598698	-0.094686	-1.589065
19	6	0	-2.381572	-1.231562	0.100054
20	9	0	-3.134072	-1.721789	-0.889434
21	9	0	-1.477545	-2.144061	0.463308
22	9	0	-3.157509	-0.931818	1.143063
23	1	0	2.052327	2.584600	0.422046
24	1	0	1.100461	-1.347755	2.270032
25	9	0	2.340325	0.920134	-1.441790

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.062830	2.410040	-0.110091
2	9	0	2.186361	2.634496	0.645001
3	9	0	1.431039	2.497385	-1.427474
4	8	0	-0.686812	0.874739	-0.588941
5	6	0	0.532152	1.009466	0.224794
6	6	0	1.481894	-0.118930	-0.079445
7	6	0	2.161299	-0.760061	0.958026
8	6	0	1.728187	-0.564860	-1.387568
9	6	0	3.055589	-1.801100	0.749222
10	6	0	2.618251	-1.611141	-1.627630
11	1	0	1.209540	-0.092337	-2.214353
12	6	0	3.282740	-2.226457	-0.560983
13	1	0	3.552158	-2.259632	1.597161
14	1	0	2.793958	-1.945121	-2.644803
15	1	0	3.977576	-3.039482	-0.745888
16	1	0	0.335764	3.198700	0.095137
17	1	0	0.258662	1.018927	1.281459
18	16	0	-2.135596	0.642399	0.101790
19	8	0	-2.086776	0.962554	1.522513
20	8	0	-3.118923	1.209296	-0.803097
21	6	0	-2.280621	-1.235969	-0.042177
22	9	0	-3.467452	-1.601733	0.444537
23	9	0	-2.186162	-1.601618	-1.319730
24	9	0	-1.307864	-1.815900	0.665055
25	9	0	1.936083	-0.350195	2.238607

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.134796	2.391829	-0.043843
2	9	0	-2.116832	2.692009	-0.958700
3	9	0	-1.722218	2.380727	1.189756
4	8	0	0.618003	0.851159	0.459690
5	6	0	-0.551974	1.020099	-0.415851
6	6	0	-1.502201	-0.144340	-0.307487
7	6	0	-2.072301	-0.666150	-1.479572
8	6	0	-1.882316	-0.731099	0.904724
9	6	0	-2.987650	-1.717933	-1.434620
10	6	0	-2.781676	-1.786538	0.976971
11	6	0	-3.340628	-2.278947	-0.204399
12	1	0	-3.415770	-2.100240	-2.355155
13	1	0	-3.031307	-2.204203	1.946199
14	1	0	-4.046550	-3.102126	-0.159526
15	1	0	-0.383395	3.184486	-0.063385
16	1	0	-0.201933	1.111994	-1.446743
17	16	0	2.103687	0.662405	-0.160106
18	8	0	2.111226	0.966741	-1.586107
19	8	0	3.030770	1.267601	0.778795
20	6	0	2.300184	-1.208449	0.009821
21	9	0	3.515457	-1.540643	-0.430353
22	9	0	2.170230	-1.566100	1.285740
23	9	0	1.373345	-1.825031	-0.727496
24	1	0	-1.793067	-0.236056	-2.436992
25	9	0	-1.347405	-0.275092	2.065920

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.511072	2.172343	-0.208289
2	9	0	1.478379	2.794459	0.539035
3	9	0	0.851606	2.324331	-1.527151
4	8	0	-0.617934	0.140450	-0.617502
5	6	0	0.482566	0.689457	0.186425
6	6	0	1.764194	-0.059765	-0.073690
7	6	0	2.642899	-0.329336	0.977231
8	6	0	2.128319	-0.506336	-1.353221
9	6	0	3.840508	-1.010258	0.807685
10	6	0	3.324274	-1.195261	-1.553525
11	1	0	1.460566	-0.322140	-2.187532
12	6	0	4.179778	-1.445080	-0.475022
13	1	0	4.479863	-1.191561	1.664529
14	1	0	3.587244	-1.537845	-2.548786
15	1	0	5.110943	-1.981132	-0.628531
16	1	0	-0.442768	2.677120	-0.040802
17	1	0	0.217525	0.640236	1.244111
18	16	0	-1.590825	-1.004457	0.001449
19	8	0	-1.789494	-2.017330	-1.019294
20	8	0	-1.204960	-1.323436	1.369347
21	6	0	-3.181838	0.009277	0.086726
22	9	0	-4.146090	-0.762171	0.590004
23	9	0	-2.992740	1.066537	0.882416
24	9	0	-3.525909	0.423042	-1.131914
25	9	0	2.311234	0.091459	2.230667

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.519098	2.163965	-0.133268
2	9	0	-1.348701	2.784282	-1.037275
3	9	0	-1.023257	2.410367	1.112532
4	8	0	0.541760	0.101692	0.397018
5	6	0	-0.506626	0.665014	-0.465274
6	6	0	-1.819912	-0.056776	-0.303286
7	6	0	-2.563219	-0.380758	-1.449455
8	6	0	-2.364117	-0.415897	0.935178
9	6	0	-3.798421	-1.022168	-1.355518
10	6	0	-3.585748	-1.064900	1.056181
11	6	0	-4.308547	-1.364953	-0.100472
12	1	0	-4.353065	-1.259820	-2.257014
13	1	0	-3.952081	-1.323829	2.043543
14	1	0	-5.265120	-1.870888	-0.016909
15	1	0	0.472659	2.616697	-0.200559
16	1	0	-0.179186	0.586452	-1.504846
17	16	0	1.583206	-0.993643	-0.193446
18	8	0	1.639874	-2.116052	0.725674
19	8	0	1.393127	-1.162311	-1.629159
20	6	0	3.171133	-0.002158	0.052124
21	9	0	4.194372	-0.732803	-0.393581
22	9	0	3.098789	1.136564	-0.644270
23	9	0	3.343145	0.273066	1.343660
24	1	0	-2.161976	-0.125426	-2.425798
25	9	0	-1.678048	-0.142556	2.073512

Standard orientation: -----Coordinates (Angstroms) X Y Center Atomic Atomic Х z Number Number Туре -----1.090810 2.434564 2.399061 2.599016 0.643810 0.832919 1 6 0 0 2 9 0.795321 -0.711065 0.769905 1.545457 2.760000 0.792839 -0.648389 0.879634 3 9 0 0 4 8 5 6 0 0.927667 0.919865 0.173670 67899100111121313141551661771819202212223 6 0 0 1.743063 -1.362652 0.797015 6 2.132008 2.468906 0.052854 -1.090166 0.229296 6 6 0 0 -0.968393 0.991780 -2.192558 2.872687 2.003467 6 0 -1.683893 -1.613036 -1.028689 0.766523 1 0 3.038757 2.580409 6 0 1 0 -3.334186 -0.808756 -2.988552 0.786893 3.316314 -2.660929 1 0 0 3.611945 0.931915 -1.493324 1.990287 1 1 Õ -1.648781 -2.691397 -0.888455 -0.435447 -0.346984 16 0 0 0.647752 1.658059 8 8 0 0.426920 -1.655278 -2.449593 -3.070064 -0.995164 -0.884098 0.038271 1.213158 6 0

-3.338702

0.540181

1.193856

-0.884098 -1.309072 -1.950105 3.066550 -1.562502

-0.908159 0.109910 1.309746

2.028765

Ő

0

0

0

0

9

9

9

9

24 25

Standard orientation:

Center	Atomic	Atomic	Coor	dinates (And	(stroms)
Number	Number	Туре	Х	У	Z
1	6	0	-1.068271	2.256550	-0.834127
2	9	0	-2.426798	2.412085	-0.938449
3	9	0	-0.682363	2.662302	0.414218
4	8	0	0.759330	0.665555	-0.954474
5	6	0	-0.712730	0.788464	-1.113029
6	6	0	-1.519755	-0.341598	-0.519051
7	6	0	-1.610937	-1.519775	-1.284297
8	6	0	-2.197488	-0.334096	0.704919
9	6	0	-2.321776	-2.631899	-0.839831
10	6	0	-2.923408	-1.425149	1.167991
11	6	0	-2.981618	-2.582511	0.391903
12	1	0	-2.368183	-3.525206	-1.453554
13	1	0	-3.427662	-1.351929	2.125262
14	1	0	-3.545816	-3.438715	0.747766
15	1	0	-0.780321	0.685383	-2.198026
16	16	0	1.576213	0.536324	0.443100
17	8	0	2.465255	1.680045	0.574852
18	8	0	0.741165	0.075670	1.540785
19	6	0	2.649773	-0.917974	-0.102550
20	9	0	3.341902	-0.597962	-1.197363
21	9	0	3.495443	-1.198674	0.893034
22	9	0	1.886610	-1.983952	-0.351189
23	1	0	-0.588446	2.920461	-1.556764
24	1	0	-1.107188	-1.557194	-2.246198
25	9	0	-2.171519	0.768841	1.487643

Standard orientation:

Center	Atomic	Atomic	Coor	dinates (And	gstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.620739	2.411434	0.395188
2	9	0	1.855832	2.962353	0.634994
3	9	0	0.344489	2.580343	-0.936822
4	8	0	-0.737947	0.455821	0.712422
5	6	0	0.666985	0.935932	0.804015
6	6	0	1.705769	0.061892	0.152122
7	6	0	2.346736	-0.906857	0.934649
8	6	0	2.102129	0.161381	-1.193400
9	6	0	3.330311	-1.753531	0.447275
10	6	0	3.088971	-0.677572	-1.710144
11	1	0	1.632170	0.893221	-1.837590
12	6	0	3.701121	-1.633045	-0.893525
13	1	0	3.784689	-2.484164	1.106995
14	1	0	3.377840	-0.584809	-2.751635
15	1	0	4.467607	-2.287038	-1.296960
16	1	0	0.826568	0.928274	1.882881
17	16	0	-1.297493	-0.559072	-0.419587
18	8	0	-1.176399	-0.008284	-1.762771
19	8	0	-0.905018	-1.932435	-0.133043
20	6	0	-3.097397	-0.356834	0.121911
21	9	0	-3.833995	-1.148254	-0.663191
22	9	0	-3.248253	-0.725443	1.393778
23	9	0	-3.487432	0.908945	-0.030958
24	1	0	-0.126188	2.968328	0.964874
25	9	0	1.987128	-1.029752	2.242578

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	У	Z
1	6	0	0.406028	1.917469	-0.545918
2	9	0	1.137254	3.013906	-0.133843
3	9	0	0.913021	1.549197	-1.756312
4	8	0	-0.512576	-0.104896	0.705614
5	6	0	0.613337	0.842495	0.542540
6	6	0	1.929526	0.112872	0.485332
7	6	0	2.932105	0.434057	1.413231
8	6	0	2.223857	-0.878498	-0.454594
9	6	0	4.174136	-0.201646	1.383547
10	6	0	3.443057	-1.537857	-0.500695
11	6	0	4.427534	-1.188629	0.427246
12	1	0	4.934917	0.066658	2.108808
13	1	0	3.606558	-2.304219	-1.250283
14	1	0	5.387808	-1.693765	0.402630
15	1	0	0.557867	1.390179	1.484596
16	16	0	-1.580005	-0.660501	-0.372885
17	8	0	-1.552933	0.092556	-1.618534
18	8	0	-1.568417	-2.112245	-0.338901
19	6	0	-3.122772	-0.115107	0.567848
20	9	0	-4.194022	-0.486303	-0.137138
21	9	0	-3.160587	-0.685311	1.771858
22	9	0	-3.119186	1.215558	0.702974
23	1	0	-0.631113	2.226936	-0.675019
24	1	0	2.732172	1.194144	2.162708
25	9	0	1.268234	-1.232177	-1.354641

Center	Atomic	Atomic	Coor	dinates (And	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.941035	2.352749	-0.500053
2	9	0	-0.061196	3.251512	-0.236472
3	9	0	2.058106	2.777722	0.173963
4	8	0	-0.652605	0.596201	-0.717809
5	6	0	0.548410	0.973595	0.042598
6	6	0	1.613888	-0.068591	-0.166300
7	6	0	2.320593	-0.589470	0.919020
8	6	0	1.949150	-0.541384	-1.445192
9	6	0	3.323700	-1.539639	0.782021
10	6	0	2.950108	-1.497544	-1.613383
11	1	0	1.408399	-0.169175	-2.309963
12	6	0	3.637506	-1.994031	-0.500292
13	1	0	3.837191	-1.907476	1.663379
14	1	0	3.192470	-1.855066	-2.608542
15	1	0	4.418445	-2.736899	-0.627448
16	1	0	1.147349	2.371885	-1.572443
17	1	0	0.292485	1.084222	1.097709
18	16	0	-2.099384	0.454995	0.004156
19	8	0	-2.042027	0.922649	1.382044
20	8	0	-3.096262	0.911839	-0.947175
21	6	0	-2.220637	-1.428614	0.059631
22	9	0	-3.374355	-1.757817	0.643342
23	9	0	-2.186337	-1.923354	-1.177536
24	9	0	-1.202731	-1.922913	0.768749
25	9	0	2.015230	-0.149077	2.170846

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.047857	2.353315	0.14962
2	9	0	-0.054336	3.275102	-0.06826
3	9	0	-2.127327	2.731582	-0.61086
4	8	0	0.574750	0.647028	0.51730
5	6	0	-0.573129	0.982294	-0.34707
6	6	0	-1.604938	-0.109674	-0.28232
7	6	0	-1.986848	-0.789832	-1.44814
8	6	0	-2.223233	-0.490347	0.91255
9	6	0	-2.945945	-1.802987	-1.40871
10	6	0	-3.174549	-1.496199	0.98546
11	6	0	-3.536484	-2.156404	-0.19229
12	1	0	-3.227312	-2.315227	-2.32261
13	1	0	-3.615962	-1.747806	1.94346
14	1	0	-4.280197	-2.945902	-0.15416
15	1	0	-1.325932	2.386471	1.20300
16	1	0	-0.218478	1.108301	-1.37240
17	16	0	2.066191	0.475606	-0.09248
18	8	0	2.085822	0.791292	-1.51521
19	8	0	2.997098	1.059247	0.85655
20	6	0	2.233747	-1.398041	0.06666
21	9	0	3.438873	-1.750496	-0.38624
22	9	0	2.110306	-1.759867	1.34310
23	9	0	1.289393	-1.997535	-0.66275
24	1	0	-1.524640	-0.517893	-2.39245
25	9	0	-1.876075	0.155556	2.06184

Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Туре	Х	Y	Z
6	0	0.526409	2.071240	-0.695260
9	0	-0.670626	2.701761	-0.472740
9	0	1.503878	2.834704	-0.109529
8	0	-0.543186	-0.031086	-0.718847
6	0	0.522081	0.696186	-0.016095
6	0	1.836814	-0.028057	-0.153637
6	0	2.707397	-0.130625	0.932714
6	0	2.245778	-0.598689	-1.369060
6	0	3.938209	-0.768330	0.856677
6	0	3.476772	-1.245727	-1.475202
1	0	1.583879	-0.551612	-2.228269
6	0	4.321917	-1.328667	-0.363320
1	0	4.570088	-0.819762	1.736423
1	0	3.774239	-1.686268	-2.420904
1	0	5.280284	-1.831911	-0.441914
1	0	0.704450	2.036138	-1.772255
1	0	0.249909	0.829132	1.032246
16	0	-1.476803	-1.096175	0.074728
8	0	-1.682634	-2.230673	-0.808121
8	0	-1.037511	-1.236087	1.456219
6	0	-3.094593	-0.120310	0.092171
9	0	-4.028782	-0.877793	0.671352
9	0	-2.934123	1.004721	0.789407
9	0	-3.463202	0.170353	-1.155125
9	0	2.335962	0.417780	2.122312
	Atomic Number 6 9 9 8 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 8 8 8 6 9 9 9 9 9 9 9 9 9 9 9	Atomic Number Atomic Type 6 0 9 0 9 0 9 0 9 0 9 0 9 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 9 0 9 0 9	Atomic Number Atomic Type Coorr X 6 0 0.526409 9 0 -0.670626 9 0 1.503878 8 0 -0.543186 6 0 0.522081 6 0 1.836814 6 0 2.245778 6 0 2.245778 6 0 3.476772 1 0 1.583879 6 0 3.476772 1 0 4.570088 1 0 3.774239 6 0 -1.476803 1 0 0.704450 1 0 0.704450 16 0 -1.037511 6 0 -3.094593 9 0 -4.028782 9 0 -2.934123 9 0 -3.463202 9 0 2.335962	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Standard orientation:

Number 	Number 6	Туре	Х	Y	Z
1	6				
-		0	-0.547443	2.157172	0.061215
2	9	0	0.674523	2.713789	-0.222452
3	9	0	-1.481936	2.824661	-0.691276
4	8	0	0.457994	0.057366	0.498336
5	6	0	-0.544871	0.688878	-0.381011
6	6	0	-1.872936	-0.009728	-0.272458
7	6	0	-2.464466	-0.579721	-1.409413
8	6	0	-2.566369	-0.124892	0.936187
9	6	0	-3.695292	-1.232724	-1.329017
10	6	0	-3.786912	-0.772223	1.049636
11	6	0	-4.353581	-1.330082	-0.100018
12	1	0	-4.134730	-1.666709	-2.220802
13	1	0	-4.273838	-0.831689	2.016689
14	1	0	-5.308741	-1.840585	-0.029993
15	1	0	-0.763071	2.315591	1.117924
16	1	0	-0.187805	0.651571	-1.412237
17	16	0	1.451856	-1.087680	-0.072758
18	8	0	1.496455	-2.162050	0.903746
19	8	0	1.207665	-1.322539	-1.490631
20	6	0	3.092122	-0.160708	0.071281
21	9	0	4.072718	-1.007621	-0.252566
22	9	0	3.102525	0.875408	-0.767395
23	9	0	3.265438	0.268229	1.321132
24	1	0	-1.948821	-0.510642	-2.362520
25	9	0	-2.018947	0.424123	2.057563

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z
1	6	0	0.745317	2.457984	-0.272258
2	9	0	-0.018903	3.417400	0.340956
3	9	0	2.048308	2.893852	-0.246405
4	8	0	-0.735659	0.818492	0.846014
5	6	0	0.683437	1.168077	0.554410
6	6	0	1.505461	0.023131	0.029461
7	6	0	2.102828	-0.852193	0.943712
8	6	0	1.740373	-0.220213	-1.333984
9	6	0	2.893913	-1.926729	0.566188
10	6	0	2.533316	-1.291462	-1.744674
11	1	0	1.293921	0.422438	-2.083475
12	6	0	3.107344	-2.144163	-0.796846
13	1	0	3.326763	-2.568065	1.325794
14	1	0	2.700314	-1.460543	-2.803074
15	1	0	3.723034	-2.979495	-1.114739
16	1	0	1.013994	1.429941	1.560683
17	16	0	-1.849473	0.439037	-0.261258
18	8	0	-3.099685	1.046479	0.160388
19	8	0	-1.325673	0.596367	-1.613774
20	6	0	-2.039335	-1.411834	0.076885
21	9	0	-2.346303	-1.605521	1.359240
22	9	0	-3.028782	-1.867122	-0.695852
23	9	0	-0.911660	-2.059182	-0.217095
24	1	0	0.422314	2.381763	-1.310022
25	9	0	1.897723	-0.641307	2.273220

Center	Atomic	Atomic	Coor	rdinates (Ang	gstroms)
Number	Number	Type	Х	Y	Z
1	6	0	-1.061346	2.321362	-0.064517
2	9	0	-0.405628	3.369453	-0.663237
3	9	0	-2.408439	2.551414	-0.209082
4	8	0	0.742100	0.873603	-0.932850
5	6	0	-0.736129	1.039660	-0.842336
6	6	0	-1.466552	-0.223603	-0.465591
7	6	0	-1.651503	-1.193712	-1.467904
8	6	0	-1.988232	-0.516450	0.798417
9	6	0	-2.299426	-2.398310	-1.206706
10	6	0	-2.644606	-1.706130	1.087212
11	6	0	-2.795232	-2.655142	0.075898
12	1	0	-2.424180	-3.128263	-1.999348
13	1	0	-3.027136	-1.869268	2.088664
14	1	0	-3.306599	-3.588226	0.289716
15	1	0	-0.950539	1.264865	-1.889449
16	16	0	1.737138	0.587831	0.310942
17	8	0	2.939384	1.370968	0.081056
18	8	0	1.022472	0.607043	1.580451
19	6	0	2.216338	-1.205286	-0.049784
20	9	0	2.680332	-1.310672	-1.295758
21	9	0	3.172659	-1.551761	0.815494
22	9	0	1.164147	-2.008867	0.106274
23	1	0	-0.813187	2.319825	0.994510
24	1	0	-1.271269	-0.991983	-2.465329
25	9	0	-1.877829	0.394935	1.800616

Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Туре	Х	Y	Z
6	0	0.347112	2.207522	-0.364239
9	0	-0.688353	2.911825	0.195408
9	0	1.458245	3.016124	-0.326890
8	0	-0.609934	0.219928	0.731721
6	0	0.644014	0.985048	0.512051
6	0	1.800009	0.130616	0.064574
6	0	2.589494	-0.501815	1.031695
6	0	2.148876	-0.073864	-1.280801
6	0	3.675709	-1.305622	0.720511
6	0	3.237056	-0.875770	-1.624324
1	0	1.563784	0.386540	-2.068947
6	0	3.997623	-1.491453	-0.625780
1	0	4.246566	-1.768766	1.517523
1	0	3.487998	-1.020793	-2.669576
1	0	4.843083	-2.118005	-0.891248
1	0	0.822936	1.358690	1.521271
16	0	-1.258587	-0.742924	-0.397610
8	0	-1.129393	-0.149412	-1.726095
8	0	-0.912075	-2.135023	-0.155869
6	0	-3.043821	-0.502119	0.175890
9	0	-3.813890	-1.281943	-0.588052
9	0	-3.170248	-0.860654	1.452560
9	0	-3.406732	0.770107	0.023352
1	0	0.094133	2.005097	-1.404247
9	0	2.278054	-0.319368	2.343784
	Atomic Number 6 9 9 8 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 8 8 8 6 9 9 9 9 9 9 9 1 9	Atomic Number Atomic Type 6 0 9 0 9 0 9 0 9 0 9 0 9 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	Atomic Number Atomic Type Coorr X 6 0 0.347112 9 0 -0.688353 9 0 1.458245 8 0 -0.609934 6 0 0.644014 6 0 1.800009 6 0 2.589494 6 0 2.148876 6 0 3.237056 1 0 1.563784 6 0 3.297623 1 0 4.246566 1 0 3.487998 1 0 4.843083 1 0 0.822936 16 0 -1.258587 8 0 -0.912075 6 0 -3.813890 9 0 -3.813890 9 0 -3.406732 1 0 0.094133 9 0 2.278054	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.426002	2.190905	-0.008818
2	9	0	0.591349	2.914037	-0.584364
3	9	0	-1.573689	2.935902	-0.138245
4	8	0	0.673315	0.175924	-0.878736
5	6	0	-0.619186	0.906422	-0.824794
6	6	0	-1.792284	0.017986	-0.491238
7	6	0	-2.310707	-0.797253	-1.514431
8	6	0	-2.409520	-0.072160	0.760574
9	6	0	-3.374407	-1.665729	-1.284748
10	6	0	-3.476567	-0.923525	1.017375
11	6	0	-3.957896	-1.728792	-0.014759
12	1	0	-3.750353	-2.284979	-2.092079
13	1	0	-3.910508	-0.942951	2.010882
14	1	0	-4.790413	-2.399069	0.173501
15	1	0	-0.701784	1.221413	-1.867433
16	16	0	1.218443	-0.755584	0.331154
17	8	0	0.936208	-0.151058	1.628373
18	8	0	0.932375	-2.158616	0.071113
19	6	0	3.046956	-0.478164	-0.058775
20	9	0	3.752594	-1.224706	0.795210
21	9	0	3.315718	-0.854565	-1.308711
22	9	0	3.361034	0.805798	0.105196
23	1	0	-0.199865	2.061634	1.046852
24	1	0	-1.861023	-0.745837	-2.501880
25	9	0	-1.969076	0.706977	1.784623

5.4.4. Optimized Coordinate of Phenols and a,a-Difluorotoluenes

(1-OH-a) ₂
136.9° 140.1° 2.46
i İ İ
Standard orientation:

Center	Atomic	Atomic	omic Coordinates (Angstroms)		
Number	Number	Туре	Х	Ŷ	Z
1	6	0	-3.234185	-0.891175	0.002319
2	6	0	-3.396113	0.519938	-0.008855
3	6	0	-4.673765	1.105494	0.079473
4	6	0	-5.796076	0.304469	0.177736
5	6	0	-5.647238	-1.096167	0.188604
6	6	0	-4.393956	-1.681746	0.102851
7	7	0	-2.256793	1.394448	-0.109491
8	8	0	-2.059348	-1.529292	-0.074747
9	8	0	-1.116829	0.876333	-0.193313
10	8	0	-2.422101	2.614434	-0.111806
11	1	0	-1.338986	-0.862835	-0.140599
12	1	0	-4.748951	2.185560	0.067974
13	1	0	-6.780488	0.753710	0.245636
14	1	0	-6.524684	-1.730908	0.265284
15	1	0	-4.270514	-2.759238	0.110896
16	6	0	3.234659	0.891258	0.002545
17	6	0	3.395969	-0.519925	-0.008783
18	6	0	4.673378	-1.106049	0.079278
19	6	0	5.796051	-0.305519	0.177440
20	6	0	5.647825	1.095180	0.188467
21	6	0	4.394785	1.681317	0.102969
22	7	0	2.256245	-1.393914	-0.109319
23	8	0	2.060073	1.529863	-0.074302
24	8	0	1.116488	-0.875265	-0.192789
25	8	0	2.420997	-2.613970	-0.111880
26	1	0	1.339469	0.863654	-0.140113
27	1	0	4.748093	-2.186147	0.067665
28	1	0	6.780280	-0.755194	0.245143
29	1	0	6.525559	1.729531	0.265070
30	1	0	4.271817	2.758863	0.111129

1-0H-b
<u>~</u>
``} >

Standard orientation:					
Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Z
1	6	0	-0.456065	0.981808	-0.044582
2	6	0	0.241575	-0.245361	0.013809
3	6	0	-2.540655	-0.272530	0.028659
4	6	0	-0.450795	-1.463698	0.067692
5	6	0	-1.838077	-1.483997	0.085133
6	1	0	-3.626111	-0.270216	0.037013
7	1	0	0.125028	-2.379926	0.105051
8	1	0	-2.367340	-2.428486	0.142781
9	6	0	-1.859929	0.937910	-0.041099
10	1	0	-2.411228	1.872709	-0.095728
11	8	0	0.210473	2.154782	-0.135273
12	1	0	-0.422102	2.882075	-0.233486
13	7	0	1.699392	-0.306709	0.016241
14	8	0	2.229612	-1.369908	-0.334620
15	8	0	2.338627	0.683377	0.379019

		Standard	d orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	У	Z
1	6	0	-0.453191	0.395541	-0.073297
2	6	0	-0.580380	1.787537	-0.007157
3	6	0	1.977488	0.679948	0.079041
4	6	0	0.537747	2.613791	0.118191
5	1	0	-1.570218	2.224362	-0.065023
6	6	0	1.819272	2.060854	0.159518
7	1	0	2.958963	0.224060	0.106562
8	1	0	0.404449	3.689008	0.177619
9	1	0	2.692485	2.697380	0.253799
10	6	0	-1.715422	-0.431495	-0.209044
11	1	0	-1.604857	-1.368333	-0.748378
12	9	0	-2.685625	0.310007	-0.855065
13	9	0	-2.228078	-0.712355	1.042587
14	6	0	0.849379	-0.136987	-0.022975
15	7	0	1.094072	-1.586898	-0.065322
16	8	0	2.210073	-1.975710	-0.413873
17	8	0	0.174257	-2.343314	0.261288

Standard orientation:

Center Atomic Atomic			Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	3.255536	-0.645629	0.094955
2	1	0	1.133597	-1.255882	0.212683
3	7	0	2.198915	1.545465	0.745876
4	9	0	2.033459	-1.325222	2.010087
5	8	0	1.076863	1.031195	0.772841
6	6	0	4.350655	-1.290736	-0.486581
7	1	0	4.341778	-2.370811	-0.560139
8	8	0	2.438079	2.685622	1.145003
9	9	0	2.360174	-2.819202	0.421997
10	6	0	5.448915	-0.571337	-0.966869
11	1	0	6.279503	-1.104539	-1.417798
12	6	0	5.479148	0.819069	-0.864149
13	1	0	6.327635	1.383414	-1.235774
14	6	0	4.405882	1.488715	-0.280170
15	1	0	4.399997	2.567321	-0.187710
16	6	0	3.308869	0.760676	0.181957
17	6	0	2.109517	-1.480691	0.636343
18	6	0	-3.256028	0.645409	-0.095036
19	1	0	-1.133834	1.255947	-0.207766
20	7	0	-2.197972	-1.545376	-0.744917
21	9	0	-2.030120	1.327111	-2.007000
22	8	0	-1.076025	-1.030784	-0.769983
23	6	0	-4.352346	1.290109	0.484703
24	1	0	-4.343614	2.370132	0.559001
25	8	0	-2.436114	-2.685630	-1.144371
26	9	0	-2.360178	2.819296	-0.418011
27	6	0	-5.451601	0.570397	0.962223
28	1	0	-6.283132	1.103299	1.411766
29	6	0	-5.481604	-0.819943	0.858546
30	1	0	-6.330850	-1.384534	1.228060
31	6	0	-4.407104	-1.489196	0.276407
32	1	0	-4.400974	-2.567745	0.183337
33	6	0	-3.309138	-0.760860	-0.183005
34	6	0	-2 108891	1 480964	-0 633313

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z
1	6	0	0.196519	-0.779350	0.078052
2	6	0	1.324128	-1.606321	0.109677
3	6	0	1.698749	1.144266	-0.107408
4	6	0	2.616246	-1.084953	0.003350
5	1	0	1.187461	-2.677078	0.226904
6	6	0	2.804044	0.292703	-0.103296
7	1	0	1.819199	2.218482	-0.179588
8	1	0	3.469360	-1.755038	0.019089
9	1	0	3.802724	0.709591	-0.177735
10	6	0	-1.142922	-1.457960	0.241726
11	1	0	-1.030177	-2.468176	0.640976
12	9	0	-1.813950	-1.569092	-0.956701
13	9	0	-1.962692	-0.764317	1.104355
14	6	0	0.416093	0.604988	-0.035412
15	7	0	-0.696041	1.570114	-0.103444
16	8	0	-1.676398	1.276868	-0.783599
17	8	Ō	-0.556559	2.635866	0.501778

		Standard	d orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.940166	-0.024539	-0.000083
2	6	0	-0.265758	1.202317	-0.000018
3	6	0	1.174990	-1.191844	0.000077
4	6	0	1.132236	1.221689	-0.000029
5	1	0	-0.827680	2.133302	0.000050
6	6	0	1.860546	0.028555	0.000012
7	1	0	1.728447	-2.126558	0.000190
8	1	0	1.649587	2.176833	-0.000090
9	1	0	2.945816	0.048796	0.000062
10	6	0	-0.220575	-1.225282	-0.000054
11	1	0	-0.760644	-2.166752	-0.000164
12	8	0	-2.310091	-0.112798	-0.000030
13	1	0	-2.702435	0.771397	0.000756

Center	Atomic	Atomic	Coor	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.390594	0.523505	-0.128643
2	6	0	-0.249814	1.913245	-0.080609
3	6	0	2.048390	0.339780	0.048243
4	6	0	1.008908	2.513493	0.017978
5	1	0	-1.138652	2.530307	-0.117098
6	6	0	2.159648	1.728493	0.082985
7	1	0	2.923917	-0.295190	0.097116
8	1	0	1.082812	3.595696	0.047042
9	1	0	3.139320	2.187822	0.159020
10	6	0	-1.782748	-0.076096	-0.191223
11	1	0	-1.958703	-0.742019	-1.032650
12	9	0	-2.727153	0.925903	-0.245258
13	9	0	-2.036413	-0.779241	0.972339
14	6	0	0.787949	-0.246938	-0.066291
15	7	0	0.757978	-1.717352	-0.138411
16	8	0	1.715642	-2.337756	0.325146
17	8	0	-0.212253	-2.255743	-0.678012

(1-CF₂H-a)₂'

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	 6	0	-3.324716	-0.477123	0.151883
2	6	0	-4.435038	-1.317399	0.029868
3	6	0	-4.432543	1.089036	-1.377590
4	6	0	-5.520023	-0.976851	-0.783226
5	1	0	-4.449270	-2.247960	0.583018
6	6	0	-5.521591	0.226753	-1.487461
7	1	0	-4.404553	2.029723	-1.912737
8	1	0	-6.363306	-1.655599	-0.858894
9	1	0	-6.360193	0.496848	-2.120196
10	6	0	-2.194522	-0.877118	1.083070
11	1	0	-1.216009	-0.956578	0.615690
12	9	0	-2.476786	-2.091773	1.670052
13	9	0	-2.108099	0.035210	2.119881
14	6	0	-3.348676	0.730299	-0.575485
15	7	0	-2.219685	1.674314	-0.547922
16	8	0	-2.436564	2.847166	-0.855361
17	8	0	-1.105649	1.240537	-0.241771
18	1	0	1.218325	0.970392	0.598647
19	6	0	2.194143	0.887633	1.071101
20	6	0	3.326760	0.478082	0.147118
21	6	0	3.349088	-0.734013	-0.572328
22	6	0	4.440782	1.313317	0.024486
23	6	0	4.434866	-1.102292	-1.367420
24	6	0	5.527727	0.963398	-0.782019
25	1	0	4.456405	2.247193	0.571998
26	6	0	5.527603	-0.244782	-1.478399
27	1	0	4.405528	-2.046390	-1.896481
28	1	0	6.373922	1.638403	-0.858613
29	1	0	6.367785	-0.522124	-2.105884
30	7	0	2.216082	-1.673090	-0.543496
31	8	Ō	2.430750	-2.850146	-0.835946
32	8	Ō	1.101345	-1.231189	-0.251778
33	9	Ō	2.479964	2.102931	1.654924
34	9	0	2.097629	-0.020487	2.110767

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.168399	0.190391	-0.000343
2	6	0	0.348842	-1.113408	0.000275
3	6	0	2.081871	1.086983	-0.000451
4	6	0	1.729153	-1.310944	0.000596
5	1	0	-0.325546	-1.964132	0.000450
6	6	0	2.596782	-0.211341	0.000220
7	1	0	2.752349	1.940862	-0.000861
8	1	0	2.130124	-2.319950	0.001153
9	1	0	3.671230	-0.369103	0.000416
10	6	0	-1.648939	0.419797	-0.000485
11	1	0	-1.937176	1.473039	-0.001699
12	9	0	-2.244873	-0.173990	1.103078
13	9	0	-2.245150	-0.176756	-1.102369
14	6	0	0.697910	1.288218	-0.000616
15	1	0	0.295909	2.297826	-0.001015

5.4.5. Optimized Coordinates of Reference Compounds for the Development of NMR Scaling Factors

Standard orientation:						
Center Number	Atomic Number	Atomic Type	Co X	ordinates Y	(Angstroms) Z	
1	8	0	0.00000	1.403044	0.00000	
2	6	0	0.00000	0.178530	0.00000	
3	6	0	1.290559	-0.613074	0.002066	
4	1	0	1.283900	-1.359031	0.804561	
5	1	0	1.383440	-1.163454	-0.942094	
6	1	0	2.146802	0.053166	0.118481	
7	6	0	-1.290559	-0.613075	-0.002066	
8	1	0	-1.383440	-1.163453	0.942096	
9	1	0	-2.146802	0.053164	-0.118484	
10	1	0	-1.283898	-1.359036	-0.804558	

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-0.781818	-1.216532	0.000044	
2	6	0	-0.099489	-0.000078	-0.000067	
3	6	0	-2.179858	-1.207699	-0.000044	
4	6	0	-0.781675	1.216623	-0.000018	
5	6	0	-2.883133	0.000034	0.000029	
6	1	0	-2.715719	-2.152262	-0.000025	
7	6	0	-2.179643	1.207710	0.000010	
8	1	0	-0.235958	2.153707	0.000041	
9	1	0	-3.968600	0.000231	0.000022	
10	1	0	-2.715525	2.152283	0.000027	
11	1	0	-0.236086	-2.153658	0.000065	
12	35	0	1.808731	-0.000019	0.000004	

Standard orientation:	

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.178225	-1.218224	0.000073
2	6	0	0.501887	-0.000142	0.000114
3	6	0	-1.576496	-1.209434	-0.000093
4	6	0	-0.178077	1.218328	-0.000005
5	6	0	-2.277624	0.000039	0.000028
6	1	0	-2.113733	-2.153055	-0.000093
7	6	0	-1.576229	1.209493	-0.000012
8	1	0	0.372378	2.152829	0.000023
9	1	0	-3.363181	0.000264	-0.000020
10	1	0	-2.113509	2.153101	-0.000050
11	1	0	0.372128	-2.152880	0.000077
12	17	0	2.267912	-0.000037	-0.000033

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-0.261175	-1.221033	-0.000095
2	6	0	-0.924103	-0.000248	-0.000219
3	6	0	1.137679	-1.210990	0.000117
4	6	0	-0.261400	1.221028	-0.000017
5	6	0	1.837783	0.000111	-0.000033
6	1	0	1.676980	-2.153319	0.000138
7	6	0	1.137292	1.211194	0.000030
8	1	0	-0.827527	2.146288	-0.000010
9	1	0	2.923213	0.000336	0.000028
10	1	0	1.676533	2.153558	0.000096
11	9	0	-2.290983	-0.000061	0.000125
12	1	0	-0.826807	-2.146684	-0.000079

Standard orientation: ____ _____ _____ Center Atomic Atomic Coordinates (Angstroms) . 7 Number Number Туре х Y -----1 6 0 -1.272201 -0.130941 0.583285 0.000102 1.392519 2 0 6 3 4 6 6 0 -1.141041 1.141350 -0.809831 0.809531 -0.000203 0 5 6 0 0.130679 -1.392424 0.000113 6 7 -2.026811 1.272316 -1.439108 -0.583193 -0.000053 0.000004 1 0 6 0 0.000064 0.000140 0.000011 2.026154 0.231880 1.439887 -2.474156 8 9 1 1 0 0 10 1 0 2.259386 -1.037000 11 1 0 -2.259720 1.036247 0.000189 12 Ő -0.231862 2.474808 -0.000064 1

Atomic

Atomic

Number

6 1

17 17

1

Center

Center

Number

1

2

3

4 5

Standard	orientation:	
Atomic	Coordinates	(Angstroms)
Type	X Y	

Ζ 0.775444 1.381436

-0.218104

1.381436

Number	Number	туре	X	Ϋ́	Z
1	6	0	-0.000036	-0.000112	0.240019
2	17	0	0.324979	1.666242	-0.309284
4 5	17 17	0	-1.605788 1.280832	-0.551701 -1.114438	-0.309368 -0.309369

0 0

0

Standard on	rientation:		
Atomic Type	Coord X	linates (Angs Y	troms)
0 0	0.000000 0.901391	0.000000	0.77

0.000000

-0.901391

1.495044

0.000000

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	6	0	-1.908561	-0.000083	0.009136
2	6	0	-1.202972	1.207135	0.002120
3	6	0	-1.202768	-1.207245	0.002119
4	6	0	0.195214	1.204169	-0.009623
5	6	0	0.195359	-1.204088	-0.009621
6	1	0	-1.739629	-2.151960	0.002143
7	6	0	0.916701	0.000116	-0.012468
8	1	0	0.733918	2.148858	-0.018793
9	1	0	0.734208	-2.148699	-0.018801
10	1	0	-2.994745	-0.000174	0.015426
11	1	0	-1.739948	2.151787	0.002146
12	6	0	2.428500	0.000053	0.009952
13	1	0	2.835595	0.889472	-0.480717
14	1	0	2.806069	-0.006269	1.040338
15	1	0	2.835700	-0.883364	-0.491432

		Standard	orientation:					
Center	Atomic	Atomic	Coord	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	-0.168399	0.190391	-0.000343			
2	6	0	0.348842	-1.113408	0.000275			
3	6	0	2.081871	1.086983	-0.000451			
4	6	0	1.729153	-1.310944	0.000596			
5	1	0	-0.325546	-1.964132	0.000450			
6	6	0	2.596782	-0.211341	0.000220			
7	1	0	2.752349	1.940862	-0.000861			
8	1	0	2.130124	-2.319950	0.001153			
9	1	0	3.671230	-0.369103	0.000416			
10	6	0	-1.648939	0.419797	-0.000485			
11	1	0	-1.937176	1.473039	-0.001699			
12	9	0	-2.244873	-0.173990	1.103078			
13	9	0	-2.245150	-0.176756	-1.102369			
14	6	0	0.697910	1.288218	-0.000616			
15	1	0	0.295909	2.297826	-0.001015			

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.518838	0.000018	-0.000043
2	6	0	1.823065	-1.214167	-0.000041
3	6	0	1.822905	1.214198	0.000030
4	6	0	0.428664	-1.223744	0.000026
5	6	0	0.428538	1.223766	0.000031
6	1	0	2.364611	2.154290	0.000054
7	6	0	-0.244269	-0.000057	0.000038
8	1	0	-0.131142	-2.150366	0.000009
9	1	0	-0.131408	2.150302	0.000085
10	1	0	3.604387	0.000090	-0.000061
11	1	0	2.364725	-2.154207	-0.000074
12	7	0	-1.713231	-0.000033	0.000090
13	8	0	-2.296639	-1.087967	0.000000
14	8	0	-2.296486	1.087972	-0.000112

Center	Atomic	Atomic	Coor	dinates (Ang	(stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.451685	1.317955	0.000012
2	6	0	1.367109	0.267756	0.00003
3	6	0	-0.915530	1.049981	-0.000021
4	6	0	0.915458	-1.050063	0.000124
5	6	0	-1.367207	-0.267758	-0.000026
6	6	0	-0.451686	-1.317944	0.000010
7	9	0	2.681704	0.524959	-0.000150
8	9	0	0.886319	2.585467	0.000033
9	9	0	-1.796131	2.059624	0.000051
10	9	0	-2.681925	-0.525149	-0.000039
11	9	0	-0.886244	-2.585323	-0.000067
12	9	0	1.796390	-2.059529	0.000102

CF₃H

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.000246	0.000034	0.348905
2	1	0	-0.000297	0.000092	1.439053
3	9	0	0.684083	-1.060652	-0.130783
4	9	0	0.577002	1.122426	-0.130814
5	9	0	-1.260888	-0.061807	-0.130901

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	¥	Ζ		
1	6	0	0.000117	-0.000188	0.459451		
2	1	0	0.000156	-0.000194	1.544704		
3	17	0	1.518666	-0.774715	-0.084364		
4	17	0	-1.430498	-0.927442	-0.084341		
5	17	0	-0.088219	1.702236	-0.084319		

Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.843231	-0.004851	0.012326
2	6	0	2.139577	-1.213578	0.001750
3	6	0	2.150199	1.208837	0.001837
4	6	0	0.744193	-1.211660	-0.019049
5	6	0	0.753712	1.219163	-0.018743
6	1	0	2.693921	2.148272	0.007642
7	6	0	0.054599	0.007239	-0.031074
8	1	0	0.197280	-2.148627	-0.030277
9	1	0	0.214394	2.159859	-0.029899
10	1	0	3.928923	-0.009557	0.026863
11	1	0	2.675719	-2.157356	0.007427
12	6	0	-1.448396	0.003939	-0.004965
13	9	0	-1.979214	-1.004321	-0.746259
14	9	0	-1.984709	1.159595	-0.472132
15	9	0	-1.939735	-0.160509	1.259030

	beamdara	0110110401011.		
Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z
Number 6 9 9 9 14 6 1 1 1 6 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.090958 1.629650 1.630583 1.629541 -0.867601 -1.381713 -1.007696 -2.475011 -1.008471 -1.384252 -2.477653 -1.016235 -1.006722	0.000334 0.985425 0.189939 -1.174558 0.000120 -0.275546 0.521583 -0.286863 -1.232434 -1.410451 -1.473280 -1.260247 -2.372014	-0.000615 0.787267 -1.247221 0.458769 -0.000288 1.787324 2.438272 1.864204 2.166960 -1.131040 -1.131040 -1.174025 -2.151348 -0.767866
6 1 1 1	0 0 0 0	-1.385603 -1.012302 -2.479116 -1.014673	1.684945 1.851727 1.754024 2.492878	-0.654528 -1.670347 -0.682784 -0.015239
	Atomic Number 6 9 9 9 14 6 1 1 1 6 1 1 1 6 1 1 1 6 1 1 1	Atomic Number Atomic Type 6 0 9 0 9 0 9 0 14 0 6 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Atomic Number Atomic Type Coort X 6 0 1.090958 9 0 1.629650 9 0 1.629541 14 0 -0.867601 6 0 -1.381713 1 0 -1.007696 1 0 -2.475011 1 0 -2.477633 1 0 -2.477653 1 0 -1.006722 6 0 -1.385603 1 0 -1.016232 1 0 -1.016272 6 0 -1.385603 1 0 -2.479116 1 0 -1.0124673	$\begin{array}{c ccccc} Atomic & Atomic & Coordinates (Ang Number & Type & X & Y \\ \hline \\ \hline \\ 6 & 0 & 1.090958 & 0.000334 \\ \hline \\ 9 & 0 & 1.629650 & 0.985425 \\ 9 & 0 & 1.629541 & -1.174558 \\ 14 & 0 & -0.867601 & 0.000120 \\ \hline \\ 6 & 0 & -1.381713 & -0.275546 \\ 1 & 0 & -1.007696 & 0.521583 \\ 1 & 0 & -2.475011 & -0.286863 \\ 1 & 0 & -1.008471 & -1.232434 \\ \hline \\ 6 & 0 & -1.384252 & -1.410451 \\ 1 & 0 & -2.477653 & -1.473280 \\ 1 & 0 & -1.016235 & -1.260247 \\ 1 & 0 & -1.006722 & -2.372014 \\ \hline \\ 6 & 0 & -1.385603 & 1.684945 \\ 1 & 0 & -2.479116 & 1.754024 \\ 1 & 0 & -1.014673 & 2.492878 \\ \end{array}$

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	1.962552	-0.092520	0.000010
2	6	0	-0.431898	1.434010	-0.000004
3	1	0	0.575335	1.849184	-0.000550
4	1	0	-0.970035	1.780028	-0.889887
5	1	0	-0.969110	1.780115	0.890403
6	6	0	-1.589895	-0.768843	0.000005
7	1	0	-2.182521	-0.527308	-0.889825
8	1	0	-1.379007	-1.840395	-0.000111
9	1	0	-2.182428	-0.527481	0.889945
10	7	0	-0.340437	-0.020391	0.000005
11	6	0	0.859453	-0.646152	-0.000011
12	1	0	0.764450	-1.745332	-0.000032

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	14	0	-0.074561	-0.008740	-0.056406
2	6	0	-0.041286	1.540565	-0.772702
3	1	0	-0.287783	2.278494	-0.038127
4	1	0	0.937849	1.734287	-1.158276
5	1	0	-0.753067	1.579952	-1.570647
6	6	0	1.508741	0.157434	1.052259
7	1	0	2.368216	0.290596	0.428985
8	1	0	1.403497	1.002571	1.699999
9	1	0	1.627775	-0.729214	1.639275
10	6	0	0.480816	-1.414307	-0.850427
11	1	0	0.578408	-2.209573	-0.141252
12	1	0	-0.219912	-1.696254	-1.608309
13	1	0	1.432039	-1.218044	-1.299377
14	6	0	-1.860842	-0.274032	0.652410
15	1	0	-2.118185	0.547673	1.287608
16	1	0	-2.560007	-0.332964	-0.155424
17	1	0	-1.889551	-1.183126	1.215991

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	14	0	-0.074561	-0.008740	-0.056406
2	6	0	-0.041286	1.540565	-0.772702
3	1	0	-0.287783	2.278494	-0.038127
4	1	0	0.937849	1.734287	-1.158276
5	1	0	-0.753067	1.579952	-1.570647
6	6	0	1.508741	0.157434	1.052259
7	1	0	2.368216	0.290596	0.428985
8	1	0	1.403497	1.002571	1.699999
9	1	0	1.627775	-0.729214	1.639275
10	6	0	0.480816	-1.414307	-0.850427
11	1	0	0.578408	-2.209573	-0.141252
12	1	0	-0.219912	-1.696254	-1.608309
13	1	0	1.432039	-1.218044	-1.299377
14	6	0	-1.860842	-0.274032	0.652410
15	1	0	-2.118185	0.547673	1.287608
16	1	0	-2.560007	-0.332964	-0.155424
17	1	0	-1.889551	-1.183126	1.215991

5.5. Partitioning Analysis

5.5.1. Structural Optimization at the M06-2X/6-31+G(d,p) Level of Theory in the Gas Phase

The charge density and the energy partitioning analyses were performed on M06-2X/aug-cc-pVTZ wavefunctions, where geometries had been optimized at the M06-2X/6-31+G(d,p) level of theory. All these calculations were performed in vacuum (no PCM). Selected details of the QTAIM charge density analysis are shown in Table S16. IR frequencies were calculated at the M06-2X/6-31+G(d,p) level of theory using Gaussian 09.⁵ The default weighting scheme in Gaussian 09 (SSweight) was used for DFT numerical integration calculations (Figure S41).

Figure S40. Calculated molecules and their complexes in the gas phase and calculated relative energies (ΔE), relative energies with zero point energy correction ($\Delta(E+ZPE)$), enthalpies (ΔH), and Gibbs free energies (ΔG). All energies are in kcal/mol.

	M062X/6-31+G(d,p)										
	E (hartree)	ΔE (kcal/ mol)	E+ZPE (hartree)	Δ(E+ ZPE) (kcal/ mol)	H (hartree)	ΔH (kcal/ mol)	G (hartree)	ΔG (kcal/ mol)	ZPE correction (hartree)	Thermal Correction to Enthalpy (hartree)	Thermal Correction to Gibbs Free Energy (hartree)
H ₂ O	-76.394964	-	-76.373332	-	-76.369551	-	-76.391623	-	0.021632	0.025412	0.003341
(H ₂ O) ₂	-152.800557	-6.7	-152.753186	-4.1	-152.746778	-4.8	-152.778749	2.8	0.047371	0.053779	0.021807
CF_2H_2	-238.907037	-	-238.873640	-	-238.869582	-	-238.898221	-	0.033397	0.037455	0.008816
$(CF_2H_2)_2$	-477.820057	-3.8	-477.751565	-2.7	-477.742964	-2.4	-477.785057	7.1	0.068491	0.077093	0.034999
cytosine	-394.796685	-	-394.697148	-	-394.689424	-	-394.728079	-	0.099537	0.107260	0.068605
guanine	-542.379877	-	-542.261493	-	-542.252378	-	-542.294465	-	0.118385	0.127500	0.085412
GC base pair	-937.222093	-28.6	-937.002407	-27.5	-936.985441	-27.4	-937.048553	-16.3	0.219686	0.236652	0.173540
1-OH-a	-511.798919	-	-511.690160	-	-511.681610	-	-511.722899	-	0.108759	0.117309	0.076020
1-OH-b	-511.788395	6.6	-511.679637	6.6	-511.670810	6.8	-511.712937	6.3	0.108759	0.117586	0.075458
(1-OH-a) ₂	-1023.604525	-4.2	-1023.385992	-3.6	-1023.367645	-2.8	-1023.436303	6.0	0.218533	0.236880	0.168222
1-CF₂H-a	-674.306390	-	-674.188037	-	-674.177633	-	-674.223819	-	0.118353	0.128756	0.082571
1-CF₂H-b	-674.299204	4.5	-674.181013	4.4	-674.170562	4.4	-674.216700	4.5	0.118191	0.128642	0.082504
(1-CF₂H-a)₂	-1348.621675	-5.6	-1348.383934	-4.9	-1348.362066	-4.3	-1348.437428	6.4	0.237741	0.259609	0.184246
DMF	-248.408991	-	-248.305475	-	-248.298435	-	-248.334713	-	0.103517	0.110556	0.074278
2-CF₂H	-3041.082490	-	-3040.977051	-	-3040.967656	-	-3041.013085	-	0.105439	0.114834	0.069405
2-CF₂H […] DMF	-3289.501570	-6.3	-3289.291533	-5.7	-3289.273821	-4.9	-3289.343067	3.0	0.210037	0.227748	0.158503
2-OH	-2878.555905	-	-2878.459688	-	-2878.452066		-2878.491757	-	0.096217	0.103839	0.064148
2-0HDMF	-3126.984208	-12.1	-3126.782463	-10.9	-3126.767169	-10.5	-3126.827648	-0.7	0.201745	0.217039	0.156560

Table S14. Energies of calculated structures at the M06-2X/6-31+G(d,p) level of theory in the gas phase.

Table S15. Single point energies of calculated structures at the M062X/aug-cc-PVTZ level of theory with thermal or zero point energy corrections obtained at the M06-2X/6-31+G(d,p) level of theory in the gas phase.

M062X/aug-cc-PVTZ								
	E (hartree)	ΔE (kcal/mol)	E+ZPE (hartree)	Δ(E+ZPE) (kcal/mol)	E + Thermal Correction to Enthalpy (hartree)	ΔH (kcal/mol)	E+ Thermal Correction to Gibbs Free Energy (hartree)	ΔG (kcal/mol)
H ₂ O	-76.43009222	0.0	-76.408460	0.0	-76.404680	0.0	-76.426751	0.0
(H ₂ O) ₂	-152.8684207	-5.2	-152.821050	-2.6	-152.814642	-3.3	-152.846614	4.3
CF_2H_2	-239.0024858	0.0	-238.969089	0.0	-238.965031	0.0	-238.993670	0.0
$(CF_2H_2)_2$	-478.01102	-3.8	-477.942529	-2.7	-477.933927	-2.4	-477.976021	7.1
cytosine	-394.9360551	-	-394.836518	-	-394.828795		-394.867450	-
guanine	-542.5674374	-	-542.449052	-	-542.439937	-	-542.482025	-
GC base pair	-937.5475562	-27.6	-937.327870	-26.5	-937.310904	-26.5	-937.374016	-15.4
1-OH-a	-511.9766334	0.0	-511.867874	0.0	-511.859324	0.0	-511.900613	0.0
1-OH-b	-511.9608978	9.9	-511.852139	9.9	-511.843312	10.0	-511.885440	9.5
(1-OH-a) ₂	-1023.958827	-3.5	-1023.740294	-2.9	-1023.721947	-2.1	-1023.790605	6.7
1-CF₂H-a	-674.5503432	0.0	-674.4319902	0.0	-674.4215872	0.0	-674.4677722	0.0
1-CF₂H-b	-674.543547	4.3	-674.425356	4.2	-674.414905	4.2	-674.461043	4.2
(1-CF ₂ H-a) ₂	-1349.105606	-3.1	-1348.867925	-2.5	-1348.845823	-1.7	-1348.923732	7.4
DMF	-248.4969778	-	-248.393461	-	-248.386422	-	-248.422700	-
2-CF₂H	-3043.687451	-	-3043.582012	-	-3043.572617	-	-3043.618046	-
2-CF₂H [™] DMF	-3292.193126	-5.5	-3291.983089	-4.8	-3291.965378	-4.0	-3292.034623	3.8
2-OH	-2881.101586	-	-2881.005369	-	-2880.997747	-	-2881.037438	-
2-OH DMF	-3129.616373	-11.2	-3129.414628	-9.9	-3129.399334	-9.5	-3129.459813	0.2

Figure S41. Vibrational frequencies (cm⁻¹) of X-H bonds of compounds in Table S14 calculated at the M06-2X/6-31+G(d,p) level of theory in the gas phase. Symmetric (s) and asymmetric stretches (as) are indicated.

5.5.2. Optimized Coordinates of Molecules and Complexes for Partitioning Analysis

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang: Y	stroms) Z
1	6	0	-0.443053	1.334277	0.012062
2	6	0	-1.710898	1.917465	0.037305
3	6	0	-1.436518	-0.863107	-0.031747
4	6	0	-2.845283	1.115807	0.028447
5	1	0	-1.806813	2.998772	0.065167
6	6	0	-2.692029	-0.269308	-0.006164
7	1	0	-1.344709	-1.943139	-0.058563
8	1	0	-3.837263	1.553133	0.049113
9	6	0	0.778782	2.202886	0.020731
10	1	0	1.711029	1.634601	0.019830
11	9	0	0.765673	3.027082	1.116807
12	9	0	0.772337	3.038490	-1.067201
13	6	0	-0.303250	-0.049904	-0.022005
14	1	0	0.691081	-0.488786	-0.040650
15	6	0	4.251254	-0.139708	-0.088391
16	1	0	4.780551	0.817983	-0.232672
17	35	0	-4.233212	-1.360455	-0.017270
18	8	0	3.031492	-0.198986	-0.015348
19	7	0	5.090456	-1.194562	-0.005768
20	6	0	4.574791	-2.537084	0.186432
21	1	0	4.984137	-2.968705	1.105866
22	1	0	3.489320	-2.483708	0.259997
23	1	0	4.854961	-3.174113	-0.659209
24	6	0	6.527158	-1.040202	-0.103342
25	1	0	6.917616	-1.612973	-0.951505
26	1	0	6.775796	0.013088	-0.248452
27	1	0	7.013795	-1.393307	0.812275

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.707167	0.137039	-0.169344
2	6	0	1.074635	-1.084701	0.050638
3	6	0	-0.435143	1.248320	-0.255229
4	6	0	-0.313918	-1.147168	0.118223
5	1	0	1.666508	-1.987186	0.160850
6	6	0	-1.053813	0.021214	-0.035870
7	1	0	-1.030893	2.146282	-0.373779
8	1	0	-0.817817	-2.092239	0.286392
9	6	0	3.205423	0.229978	-0.215804
10	1	0	3.574196	0.964523	-0.937831
11	9	0	3.758039	-0.976964	-0.520243
12	9	0	3.693137	0.583178	1.012745
13	6	0	0.953164	1.298387	-0.325456
14	1	0	1.447821	2.250424	-0.499671
15	35	0	-2.935014	-0.055890	0.055102

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.374207	0.014124	-0.338723
2	9	0	0.911679	-0.131721	0.940190
3	9	0	2.757542	0.053840	-0.232102
4	1	0	1.064147	-0.891075	-0.941327
5	1	0	0.992151	0.991805	-0.754580
6	1	0	-1.578022	-0.083114	1.322010
7	6	0	-1.968479	-0.002880	0.311604
8	1	0	-3.053837	0.019535	0.247593
9	9	0	-1.474228	1.124869	-0.262811
10	9	0	-1.512638	-1.058612	-0.413165

		Standard	orientation:		
Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	туре	Δ	Ĭ	Δ
1	6	0	1.127230	-0.254612	-0.001096
2	6	0	1.048277	1.185609	-0.000756
3	6	0	-0.201481	1.709074	0.000657
4	6	0	-1.183024	-0.525664	0.000076
5	7	0	0.082235	-1.051074	0.000787
6	1	0	-0.397579	2.775895	0.000946
7	1	0	1.929075	1.812966	-0.005045
8	1	0	-2.221926	1.253403	0.001888
9	7	0	-1.278786	0.890182	0.001114
10	8	0	-2.213348	-1.171921	0.000272
11	7	0	2.348952	-0.839672	-0.015822
12	1	0	3.195258	-0.303622	0.066194
13	1	0	2.389136	-1.845768	0.038000

Standard	orientatio

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.862024	-0.648892	-0.000133
2	1	0	0.762796	-1.749802	-0.000271
3	8	0	1.945222	-0.094105	0.000232
4	7	0	-0.343203	-0.022002	-0.000599
5	6	0	-0.417652	1.425268	0.000043
6	1	0	-0.950119	1.778009	0.890570
7	1	0	0.597345	1.821902	0.000590
8	1	0	-0.949502	1.778869	-0.890504
9	6	0	-1.589507	-0.754909	0.000222
10	1	0	-2.182801	-0.510579	-0.888343
11	1	0	-1.385495	-1.827915	-0.001176
12	1	0	-2.180771	-0.512430	0.890682

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	У	Z
1	6	0	-0.854404	0.501101	0.009141
2	6	0	-0.530446	-0.848684	-0.000906
3	6	0	1.665829	-0.568088	-0.002467
4	6	0	0.216478	1.466278	0.003247
5	6	0	-2.708640	-0.525140	0.000805
6	1	0	2.269372	1.408825	-0.084300
7	1	0	-3.759440	-0.777663	-0.001258
8	1	0	-1.855151	-2.499426	-0.012731
9	8	0	0.195511	2.678556	-0.003411
10	7	0	1.473345	0.787110	-0.005238
11	1	0	3.064245	-1.994598	0.091595
12	7	0	2.967641	-1.001099	-0.064527
13	1	0	3.673973	-0.435220	0.382633
14	7	0	0.694432	-1.439140	0.007315
15	7	0	-2.218465	0.682484	0.008938
16	7	0	-1.729810	-1.498380	-0.004712

	Standard Orientation:						
Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z		
1	6	0	2.836830	-0.738423	-0.000037		
2	6	0	3.303211	0.573644	0.000134		
3	6	0	1.302136	1.525431	-0.000051		
4	6	0	1.420484	-0.941296	-0.000210		
5	6	0	4.951068	-0.895066	0.000195		
6	1	0	5.969514	-1.257070	0.000288		
7	1	0	5.316388	1.226807	0.000518		
8	8	0	0.791183	-2.002180	-0.000356		
9	7	0	0.730659	0.277849	-0.000195		
10	1	0	0.865028	3.489743	0.000308		
11	7	0	0.453853	2.571401	0.000062		
12	1	0	-0.560288	2.460965	-0.000165		
13	7	0	2.605125	1.728905	0.000147		
14	7	0	3.882762	-1.638560	0.000013		
15	7	0	4.664176	0.457542	0.000334		
16	1	0	-0.298939	0.197505	-0.000270		
17	6	0	-2.769539	-1.277390	-0.000115		
18	6	0	-4.206934	-1.424932	0.000380		
19	1	0	-4.840454	1.788829	0.000452		
20	1	0	-4.676848	-2.398991	0.000634		
21	7	0	-2.184167	-0.079990	-0.000418		
22	7	0	-4.318380	0.923416	0.000236		
23	6	0	-2.922728	1.057826	-0.000237		
24	6	0	-4.936360	-0.286555	0.000566		
25	1	0	-6.020492	-0.277540	0.001083		
26	7	0	-1.984176	-2.352863	-0.000146		
27	1	0	-0.956350	-2.243435	-0.000352		
28	1	0	-2.385665	-3.275926	0.000270		
29	8	0	-2.444916	2.191654	-0.000487		

Center	Atomic	Atomic	Coord	dinates (Ang:	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.115575
2	1	0	0.00000	-0.768770	-0.462300
3	1	0	0.00000	0.768770	-0.462300

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	-1.505055	0.029816	-0.116075
2	8	0	1.367203	-0.020421	0.097571
3	1	0	-1.902984	-0.190687	0.730192
4	1	0	-0.546390	-0.018337	0.015399
5	1	0	1.794786	-0.689830	-0.446212
6	1	0	1.757403	0.823696	-0.151345

		Standard	orientation:		
Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.424755	0.993659	0.000010
2	6	0	-0.215713	-0.262060	0.000029
3	6	0	2.546684	-0.175280	-0.000010
4	6	0	0.515524	-1.457736	0.000048
5	6	0	1.895158	-1.418570	0.000026
6	1	0	3.631172	-0.134763	-0.000024
7	1	0	-0.026091	-2.395704	0.000061
8	1	0	2.465246	-2.339914	0.000031
9	6	0	1.827938	1.006116	-0.000018
10	1	0	2.320834	1.972063	-0.000027
11	8	0	-0.197109	2.177537	0.000072
12	1	0	-1.161411	2.025322	0.000188
13	7	0	-1.660853	-0.358485	-0.000005
14	8	0	-2.179827	-1.457615	0.000018
1.5	8	0	-2.319296	0.688280	-0.000177

Standard orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.444284	0.979486	-0.053209	
2	6	0	-0.231561	-0.248889	0.016551	
3	6	0	2.531465	-0.254081	0.032496	
4	6	0	0.457582	-1.459855	0.081016	
5	6	0	1.843050	-1.468271	0.100159	
6	1	0	3.616445	-0.242650	0.040348	
7	1	0	-0.115965	-2.378227	0.123317	
8	1	0	2.380553	-2.406778	0.166328	
9	6	0	1.844348	0.948797	-0.050003	
10	1	0	2.387122	1.887362	-0.116022	
11	8	0	-0.241351	2.133268	-0.158128	
12	1	0	0.371690	2.871768	-0.272538	
13	7	0	-1.691122	-0.312563	0.019486	
14	8	0	-2.210140	-1.334309	-0.408720	
15	8	0	-2.315635	0.635209	0.461861	

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.206722	-0.778992	0.068458
2	6	0	1.334029	-1.597211	0.096957
3	6	0	1.686234	1.156391	-0.098380
4	6	0	2.618905	-1.062577	-0.000283
5	1	0	1.203618	-2.669869	0.205724
6	6	0	2.795624	0.313807	-0.094581
7	1	0	1.792324	2.233041	-0.162923
8	1	0	3.478413	-1.723701	0.012987
9	1	0	3.791315	0.737825	-0.161605
10	6	0	-1.137045	-1.447039	0.233163
11	1	0	-1.023723	-2.462030	0.620872
12	9	0	-1.811766	-1.529766	-0.947021
13	9	0	-1.924035	-0.753947	1.105571
14	6	0	0.417443	0.599896	-0.033668
15	7	0	-0.712067	1.540753	-0.102708
16	8	0	-1.694828	1.198356	-0.730741
17	8	0	-0.576014	2.620047	0.449109

Standard orientation:

Center	Atomic	Atomic	Coord	stroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-2.969276	-0.431779	0.308858
2	6	0	-4.025723	-1.286783	0.616095
3	6	0	-4.455076	0.762388	-1.221897
4	6	0	-5.271928	-1.136346	0.008719
5	1	0	-3.864930	-2.069848	1.347253
6	6	0	-5.490417	-0.111662	-0.906732
7	1	0	-4.586927	1.575051	-1.926247
8	1	0	-6.075316	-1.820323	0.261754
9	1	0	-6.460439	0.011201	-1.375967
10	6	0	-1.642958	-0.595634	1.025841
11	1	0	-0.813920	-0.887441	0.381747
12	9	0	-1.775369	-1.532125	2.005165
13	9	0	-1.327366	0.579589	1.648472
14	6	0	-3.215418	0.581228	-0.624083
15	7	0	-2.143641	1.501793	-1.044125
16	8	0	-2.470209	2.598337	-1.454368
17	8	0	-0.996217	1.092390	-0.983910
18	1	0	0.814908	0.890365	0.377837
19	6	0	1.643470	0.599944	1.023146
20	6	0	2.969835	0.432585	0.307058
21	6	0	3.215215	-0.583448	-0.622745
22	6	0	4.027033	1.287465	0.612039
23	6	0	4.454810	-0.767608	-1.219767
24	6	0	5.273213	1.134027	0.005365
25	1	0	3.866831	2.072830	1.340855
26	6	0	5.490898	0.106458	-0.907022
27	1	0	4.586045	-1.582559	-1.921605
28	1	0	6.077201	1.817993	0.256512
29	1	0	6.460883	-0.018640	-1.375744
30	7	0	2.142575	-1.504261	-1.039963
31	8	0	2.468010	-2.602775	-1.445780
32	8	0	0.995645	-1.093070	-0.982169
33	9	0	1.776481	1.539433	1.999474
34	9	0	1.326613	-0.573053	1.649420

		Standard	orientation:		
Center Number	Atomic Number	Atomic Type	Coord X	dinates (Ang Y	stroms) Z
1	6	0	-2.958676	-0.895580	0.029750
2	6	0	-3.146661	0.501187	-0.038980
3	6	0	-4.377636	1.092842	0.279123
4	6	0	-5.441938	0.305028	0.665203
5	6	0	-5.272825	-1.087131	0.736363
6	6	0	-4.060027	-1.672872	0.426933
7	7	0	-2.071137	1.381672	-0.439304
8	8	0	-1.830315	-1.556488	-0.239362
9	8	0	-1.001473	0.866595	-0.783751
10	8	0	-2.249105	2.583641	-0.430024
11	1	0	-1.119820	-0.949959	-0.519494
12	1	0	-4.465402	2.170229	0.209439
13	1	0	-6.395414	0.759159	0.907586
14	1	0	-6.103640	-1.717007	1.037678
15	1	0	-3.917005	-2.746514	0.480058
16	6	0	2.958685	0.895584	0.029643
17	6	0	3.146649	-0.501182	-0.039142
18	6	0	4.377601	-1.092873	0.278983
19	6	0	5.441904	-0.305096	0.665137
20	6	0	5.272814	1.087064	0.736345
21	6	0	4.060038	1.672839	0.426896
22	7	0	2.071136	-1.381638	-0.439554
23	8	0	1.830352	1.556533	-0.239484
24	8	0	1.001473	-0.866542	-0.783970
25	8	0	2.249131	-2.583605	-0.430376
26	1	0	1.119830	0.950045	-0.519626
27	1	0	4.465349	-2.170259	0.209257
28	1	0	6.395360	-0.759256	0.907540
29	1	0	6.103630	1.716913	1.037715
30	1	0	3.917033	2.746481	0.480058

Standard orientation:

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	Х	Y	Z
1	6	0	-0.285248	0.592425	-0.139935
2	6	0	0.101660	1.930586	-0.103190
3	6	0	2.066858	-0.036820	0.063546
4	6	0	1.445833	2.286723	0.000775
5	1	0	-0.663752	2.696147	-0.149321
6	6	0	2.429026	1.306534	0.087438
7	1	0	2.802139	-0.829426	0.135480
8	1	0	1.719746	3.336385	0.021792
9	1	0	3.474891	1.580345	0.173648
10	6	0	-1.760140	0.243940	-0.192113
11	1	0	-2.060116	-0.321290	-1.072521
12	9	0	-2.497597	1.390349	-0.152797
13	9	0	-2.087654	-0.472671	0.919061
14	6	0	0.725948	-0.371625	-0.060962
15	7	0	0.411645	-1.811020	-0.140297
16	8	0	1.207542	-2.588130	0.349926
17	8	0	-0.611390	-2.131207	-0.719517

5.5.3. The $\Delta \overline{\chi}$ - Electronegativity Equalization Relationship

The Allen scale of electronegativity (units eV e⁻¹) was devised by averaging atomic *s*- and *p*-level energies obtained from photoelectron spectroscopy.¹⁵ The Allen scale offers a good estimate of how the change in the average electron binding energy, $\Delta \chi$,¹⁶ relates to the classical Pauling electronegativity scale (Pauling units = PU, Figure S42).¹⁷ If we choose to let the linear regression in Figure S42 intersect the origin, i.e. that zero PU = zero eV e⁻¹, the coefficient of determination, r², becomes 0.995, and the conversion reads as 1 PU = 6.06 eV e⁻¹ = 585 kJ/mol = 140 kcal/mol. By this relationship, the $\Delta \chi$ -term expresses the binding energy change corresponding to a certain degree of "electronegativity equalization," over a chemical transformation. For a more detailed account of $\Delta \chi$ and its uses see references ¹⁶ and ¹⁸.

Figure S42. Allen electronegativity plotted against Pauling electronegativity for the first two rows of the periodic table; He, Ar and Cl omitted.

Species	Atom X in HB donor X–H	н	HB acceptor
H ₂ O	-1.17	0.59	-1.17
(H ₂ O) ₂	-1.22	0.63	-1.18
$2 \text{ H}_2\text{O} \rightarrow (\text{H}_2\text{O})_2$	-0.05	0.04	-0.01
1-OH-b	-1.15	0.61	-0.46
1-OH-a	-1.21	0.67	-0.53
(1-OH-a) ₂	-1.22	0.68	-0.55
$1-OH-b \rightarrow 1-OH-a$	-0.06	0.01	-0.08
2 1-OH-a \rightarrow (1-OH-a) ₂	-0.01	0.07	-0.01
1-CF₂H-b	1.29	0.06	-0.45
1-CF₂H-a	1.25	0.11	-0.48
(1-CF₂H-a) ₂	1.18	0.13	-0.49
$\textbf{1-CF}_2\textbf{H-b} \rightarrow \textbf{1-CF}_2\textbf{H-a}$	-0.03	0.05	-0.03
$2 \text{ 1-CF}_2\text{H-a} \rightarrow (\text{1-CF}_2\text{H-a})_2$	-0.08	0.02	-0.01
DMF	-	-	-1.22
2-CF₂H	1.24	0.07	-
[2-CF ₂ H DMF]	1.20	0.11	-1.24
$\textbf{2-CF}_2\textbf{H} + \text{DMF} \rightarrow [\textbf{2-CF}_2\textbf{H}^{\text{m}}\text{DMF}]$	-0.05	0.05	-0.02
2-OH	-1.17	0.60	-
[2-OH DMF]	-1.23	0.66	-1.24
2-OH + DMF \rightarrow [2-OH ^{\dots} DMF]	-0.06	0.06	-0.02
Ph <u>CH</u> ₃ ^b	0.04	0.01	-

Table S16. Atomic charge on selected atoms and change upon bond formation.^a

^a QTAIM-charges derived from topological analyses of M06-2X/aug-cc-pVTZ electron densities.¹⁹ Integrations were performed on 18.5 μ Å³ resolution grids.^{20 b} C and H charges on the methyl group in toluene given for reference when comparing with NMR-shielding measurements.

6. X-ray Crystallography Studies

6.1. CSD Structure Search and Data Analysis

All structure parameters were retrieved from the CSD using the fragment defining query tool of ConQuest. X^{...}H distances were set to ≤ 2.6 Å and ≤ 2.7 Å, corresponding to the sum of the van der Waals radii of O^{...}H and N^{...}H, respectively. The data for O^{...}H distances and C–H^{...}O angles of methyl-containing compounds were obtained using the automatic export function of ConQuest. For difluoromethyl-containing compounds, the CF₂H^{...}O distances and F₂C–H^{...}O angles were measured manually using ORTEP (version 2.02) based on the corresponding .cif files. Manual inspection of the data sets allowed for consideration of possible disorder of the CF₂H groups. In some cases, the disorder had not been modeled sufficiently to allow for high accuracy measurements. Such structures were refined again to obtain reliable CF₂H^{...}X (X = N, O) distances. Details of the re-refinement as well as the corresponding .res files are provided in Section 6.2.5.

#	CSD Refcode	F₂CH⋯O Bond distance [Å]	F₂C-H…O Bond angle [°]	#	CSD Refcode	CF₂CH…O Bond distance [Å]	F₂C-H···O Bond angle [°]
1	PUMYUN	2.490	99.44	45	MAPWOQ	2.664	95.85
2	ADIGEA	2.462	103.67	46	SASHUR	2.203	106.77
3	APITID	2.430	90.48	47	SASHUR	2.213	105.76
4	APITOJ	2.237	126.13	48	TELRUX	2.684	91.74
5	AZELIB	2.626	98.91	49	QUXCUJ	2.510	110.55
6	GEJRUK	2.524	98.85	50	TUWVEM	2.585	98.36
7	LUKMOT	2.510	93.54	51	TUWVEM	2.500	103.25
8	ZIJFAB	2.622	112.12	52	TUWVEM	2.470	103.04
9	BEBTUY	2.376	117.16	53	FIQXEI	2.540	129.10
10	IQOSIR	2.556	120.01	54	YUHGIT	2.579	103.44
11	SEPWEQ	2.457	98.21	55	YAPMUY	2.694	109.98
12	SOSBOS	2.529	99.26	56	YAWTIB	2.516	103.69
13	SOSBOS	2.544	99.46	57	ZAPPIR	2.513	103.15
14	TUZWUG	2.588	90.04	58	WEFHAS	2.352	152.78
15	XOFTIX	2.659	98.19	59	NAYPUZ	2.606	97.16
16	XOFTIX	2.529	96.71	60	HIKMIX	2.685	95.02
17	YESVUO	2.692	103.48	61	VEXNOC	2.361	122.68
18	AZEPOL	2.081	138.91	62	MOGLAV	2.238	116.99
19	AZEPOL	2.323	125.24	63	MOGLOJ	2.139	121.48
20	GEJRUK	2.221	127.30	64	POYLIZ	2.639	104.18
21	JIXQAJ	2.226	126.47	65	RIDCOY	2.658	131.72
22	TIJZOC	2.310	118.65	66	WOHJAG	2.167	132.30
23	HALNIT	2.261	108.53	67	LUVJOC	2.229	119.44
24	HALNIT	2.243	110.85	68	LUVJOC	2.390	110.49
25	HALNIT	2.414	159.39	69	ZECBIU	2.677	91.57
26	QEZLUE	2.392	111.18	70	APIVAX	2.347	92.36
27	XOCVIW	2.128	130.00	71	AZEPUR	2.201	131.31
28	XOCVIW	2.194	124.18	72	XIRXOM	2.564	90.61
29	XOCVIW	2.200	123.05	73	XIRXUS	2.654	92.34
30	XOCVIW	2.145	127.67	74	IHEPES	2.500	96.84
31	QUWQOQ	2.509	98.46	75	JIXQEN	2.318	129.61
32	BAXCIN	2.277	113.15				
33	BAXCIN	2.344	109.54				
34	DIDZUL	2.386	139.27				
35	ELUGUO	2.265	126.02				
36	HALNOZ	2.292	106.41				
37	SEFFIU	2.217	128.27				
38	SEFFIU	2.419	125.43				
39	CEFZAP	2.527	96.14				
40	GAPYIG	2.403	95.67				
41	IFOZUZ	2.261	104.69				
42	MAPWEG	2.481	100.78				
43	MAPWEG	2.654	93.23				
44	MAPWEG	2.535	96.36				

Table S17. Summary of short $F_2C-H^{\cdots}O$ bond distances and the corresponding bond angles found in CSD.

#	CSD Refcode	H₂CH…O Bond distance [Å]	H₂C-H⋯O Bond angle [°]	#	CSD Refcode	H ₂ CH…O Bond distance [Å]	H₂C-H…O Bond angle [°]
1	FUVSEW	2.677	134.691	45	NEMCAK	2.466	105.57
2	GUNRAK	2.627	142.957	46	NEQSEI	2.391	114.026
3	RUMFEM	2.589	144.421	47	NIFMUM	2.626	98.682
4	ALEYAS	2.593	153.641	48	NIYKEN	2.433	116.224
5	BIFNOU	2.703	132.607	49	OBOGAO	2.431	130.585
6	CENBIH	2.705	117.813	50	ODIDEM	2.626	170.894
7	DIKWUQ	2.638	161.969	51	OGAKOX	2.66	114.117
8	DOPKAU	2.546	124.38	52	OHESUR	2.669	142.08
9	DOYPEM	2.642	108.989	53	PIBQAU	2.506	124.347
10	ENOYEM	2.511	154.161	54	QAZLIM	2.396	156.438
11	EVADOU	2.706	121.723	55	RASXEQ	2.226	145.709
12	EZOJIN	2.394	106.244	56	REJDOB	2.285	126.62
13	FEWMEA	2.658	136.262	57	SABWOI	2.636	115.886
14	FIHQOC	2.316	126.142	58	SEQWOA01	2.648	114.275
15	FILYOP	2.643	138.349	59	SOWZEK	2.415	134.142
16	GIVQOS	2.661	115.982	60	SUJCOR	2.712	137.784
17	HOCWOM	2.639	159.287	61	TIDKOH	2.448	122.532
18	HOTSOZ	2.705	113.6	62	TOKNOY	2.299	143.072
19	ICAGEA	2.567	153.007	63	TURGUI	2.415	122.859
20	INIBUC	2.342	121.979	64	UGALEV	2.416	159.616
21	IQETON	2.54	114.67	65	VEYYEF	2.518	173.889
22	IVUPAR	2.45	113.544	66	VOZYIU	2.669	98.373
23	JIVJOO	2.498	148.28	67	WEVFUZ	2.56	149.426
24	JIXKEG	2.471	112.903	68	XALHEZ	2.454	123.188
25	KANDOU01	2.394	122.658	69	XURRIL	2.486	120.306
26	KAWLEA	2.581	135.566	70	YONKIW	2.348	124.862
27	KEDSUI	2.627	118.121	71	YUSJAX	2.664	111.804
28	KISCUL	2.511	103.163	72	ZUZRUH	2.546	121.286
29	LACFAW02	2.514	126.216	73	RUJQUK	2.714	109.769
30	LEJXOP	2.301	124.289	74	WUYXIZ	2.488	142.828
31	LIFWOM	2.669	117.31	75	YUTREM	2.36	125.188
32	LILVAF	2.49	121.648				
33	LIYDEC	2.593	122.966				
34	LOPHUU	2.452	123.233				
35	LOTWOG	2.652	128.659				
36	LUKKOS	2.512	119.49				
37	LUNKEL	2.507	120.015				
38	MEJCUA	2.508	128.097				
39	MEPYEM	2.564	159.772				
40	MIGHEQ	2.712	109.613				
41	MOKKOM	2.695	136.898				
42	MUDTIP	2.586	143.962				
43	NAJCOS	2.598	93.003				
44	NARQII	2.314	159.104				

Table S18. Selected short $H_2C-H^{\cdots}O$ bond distances and the corresponding bond angles found in CSD.

Figure S43. A) Correlation between short $F_2C-H^{...}O$ bond distances and the corresponding $F_2C-H^{...}O$ bond angles; b) Correlation between short $H_2C-H^{...}O$ bond distances and the corresponding $H_2C-H^{...}O$ bond angles; C) Histogram showing the distribution of short $F_2C-H^{...}O$ distances; D) Histogram showing the distribution of short $F_2C-H^{...}O$ distances.

A one-tailed Student *t*-test was performed on the bond angle/distance correlations to determine the significance of the results. A *t* value for the correlation coefficient (r) was determined using equation S2 for a population of size n.

$$t = r_{\sqrt{\frac{n-2}{1-r^2}}}$$
 Eq. (S2)

For the F₂C–H^{...}O correlation, t = 6.27 corresponding to a *p*-value of 1.1×10^{-8} . For the H₂C–H^{...}O correlation, t = 0.82 corresponding to a *p*-value of 0.21. These results indicate a significant correlation (r > 0) between the

bond distances and angles for $F_2C-H^{...}O$ interactions, but no significant correlation (r = 0) for $H_2C-H^{...}O$ interactions. These results are consistent with the proposed weak $F_2C-H^{...}O$ bonding interactions but negligible $H_2C-H^{...}O$ interactions.

6.2. Experimental Details of the Crystal Structure Refinement

Single crystals of 1-CF₂H, 1-OH, and 5-CF₂H were mounted on loops with Paratone-N oil and transferred to an N₂ cold stream (100 K) with a KRYO-FLEX low-temperature apparatus. The crystal of 2-CF₂H was mounted at low temperature and transferred to the N₂ cold stream with a dry ice device. Data sets were collected at 100 K. Data collection was carried out using a Bruker SMART APEX CCD X-ray diffractometer equipped with a Bruker APEX2 CCD detector with Mo K_a radiation ($\lambda = 0.71073$ Å) controlled by the APEX2 software package.²¹Reduction of the data of 1-CF₂H, 1-OH, and 5-CF₂H was performed with SAINT.²² Empirical absorption corrections were calculated with SADABS.²³ Reduction of the data of **2-CF₂H** was performed with CELL NOW and empirical absorption correction was applied with TWINABS.²³ The space groups were determined by XPREP²² through analysis of metric symmetry and systematic absences. The structures were solved with SHELXT.²⁴ All structures were refined by full-matrix least-squares based on F^2 using SHELXL (Re. 789).²⁵ Each structure was checked for higher symmetry using PLATON.²⁶ All non-hydrogen atoms were located and refined anisotropically. If not otherwise noted, the isotropic displacement parameters of the hydrogen atoms were fixed to 1.2 times the U_{eq} value of the atoms, to which they are attached. Distance and anisotropic displacement parameter restraints were applied to disordered atoms. Figures were generated using the program ORTEP and Mercury.²⁷ See Figures S44-47 and Tables S19-38 below for crystallographic data and refinement details. Specific details and discussion about refinement, including disorder, are provided below for selected structures.

6.2.1. *o*-Nitro-α,α-difluorotoluene (1-CF₂H)

o-Nitro- α , α -difluorotoluene crystallized in the monoclinic space group $P2_1/c$ with one molecule in the asymmetric unit. As governed by the symmetry operations of the space group, the densest packing of the layers is achieved by a glide plane and a twofold screw-axis rotation. The distance between the two indicated aromatic rings was determined to be 3.472(42) Å (see Figure S44 B).

Figure S44. ORTEP representation of 1-difluoromethyl-2-nitro-benzene (**A**). (**B**) shows the packing of the unit cell, hydrogen atoms, except H7, were deleted for clarity. Thermal ellipsoids are set at 50% probability.

Coordinates for H7, the hydrogen atom of the CF₂H group, were taken from the difference Fourier synthesis. H7 was subsequently refined semi-freely with the U_{iso} value constrained to 1.2 times the U_{eq} value of the carbon atom to which it is attached. The relatively high residual electron density of 1.21 of H7 was unexpected.

We searched the CSD for other examples of CF₂H-containing molecules in order to compare the residual electron density of the H-atoms. Because of the limited availability of .cif files containing .res- and .hkl-files necessary for this comparison a thorough analysis was not possible. It is conceivable that the relatively high residual electron density of H7 is associated with the blue-shifted nature of the hydrogen bonding interaction. In order to pursue this hypothesis, we synthesized and crystallized *p*-bromo- α , α -difluorotoluene (**2-CF₂H**), a CF₂H containing compound that does not show hydrogen bonding interactions. Thorough analysis of the residual electron density of the CF₂H hydrogen atom was impeded by a statistical disorder of the CF₂H moiety and the bromide (see §6.2.3.). To avoid this issue we synthesized and crystallized 1-benzyloxy-4-(difluoromethyl)benzene (**5-CF₂H**, see §6.2.4.). Indeed, the crystal did not exhibit disorder. In contrast to the residual electron density of the CF₂H hydrogen atom in **1-CF₂H**, the residual electron density of this CF₂H hydrogen atom was similar to those of other hydrogen atoms in the structure. Thus, the relatively high residual electron density of the CF₂H hydrogen atom in **1-CF₂H** is unique. At the moment, we do not have an explanation for this phenomenon.

Table S19. Crystal data and structure refinement for *o*-nitro- α , α -difluorotoluene (1-CF₂H).

CCDC number	1552715
Empirical formula	$C_7H_5F_2NO_2$
Formula weight	173.12
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	
a = 8.007(2) Å	
b = 12.905(3) Å	$\beta = 113.188(4)^{\circ}$
c = 7.3562(18) Å	
Volume	698.7(3) Å ⁻³
Z	4
Density (calculated)	1.646 Mg/m ³
Absorption coefficient	0.155 mm ⁻¹
F(000)	352
Crystal size	0.250 x 0.200 x 0.070 mm ³
Theta range for data collection	2.768 to 28.281°
Index ranges	-10<=h<=10, -17<=k<=17, -9<=l<=9
Reflections collected	12289
Independent reflections	1728 [R(int) = 0.0521]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6422
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data / restraints / parameters	1728 / 0 / 112
Goodness-of-fit on F^2	1.089
Final R indices [I>2sigma(I)]	R1 = 0.0407, wR2 = 0.1197
R indices (all data)	R1 = 0.0541, wR2 = 0.1279
Largest diff. peak and hole	0.657 and -0.288 e.Å ⁻³

	х	У	Z	U(eq)
F(1)	3973(1)	6045(1)	1539(2)	34(1)
O(1)	8735(2)	4982(1)	2870(2)	32(1)
N(1)	7794(2)	5451(1)	3571(2)	26(1)
C(1)	6330(2)	7170(1)	3427(2)	18(1)
F(2)	3253(1)	7410(1)	2829(2)	40(1)
O(2)	6910(2)	5020(1)	4381(2)	33(1)
C(2)	6497(2)	8241(1)	3468(2)	21(1)
C(3)	8120(2)	8705(1)	3636(2)	22(1)
C(4)	9583(2)	8106(1)	3750(2)	22(1)
C(5)	9445(2)	7037(1)	3701(2)	20(1)
C(6)	7839(2)	6585(1)	3556(2)	18(1)
C(7)	4541(2)	6682(1)	3168(3)	26(1)

Table S20. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for *o*-nitro- α,α -difluorotoluene (1-CF₂H). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S21. Bond distances [Å] and angles [°] for *o*-nitro- α , α -difluorotoluene (1-CF₂H).

	Bond distance (Å)		Bond angle (°)		Bond angle (°)
F(1)-C(7)	1.375(2)	O(2)-N(1)-O(1)	123.32(15)	C(4)-C(5)-H(5)	120.4
O(1)-N(1)	1.2269(18)	O(2)-N(1)-C(6)	118.59(14)	C(5)-C(6)-C(1)	122.20(14)
N(1)-O(2)	1.2242(18)	O(1)-N(1)-C(6)	117.95(13)	C(5)-C(6)-N(1)	116.61(13)
N(1)-C(6)	1.464(2)	C(2)-C(1)-C(6)	117.61(13)	C(1)-C(6)-N(1)	121.18(13)
C(1)-C(2)	1.389(2)	C(2)-C(1)-C(7)	119.83(14)	F(2)-C(7)-F(1)	106.87(13)
C(1)-C(6)	1.396(2)	C(6)-C(1)-C(7)	122.51(14)	F(2)-C(7)-C(1)	110.70(14)
C(1)-C(7)	1.506(2)	C(1)-C(2)-C(3)	120.62(14)	F(1)-C(7)-C(1)	109.35(13)
F(2)-C(7)	1.343(2)	C(1)-C(2)-H(2)	119.7	F(2)-C(7)-H(7)	107.5(12)
C(2)-C(3)	1.391(2)	C(3)-C(2)-H(2)	119.7	F(1)-C(7)-H(7)	101.0(13)
C(2)-H(2)	0.95	C(4)-C(3)-C(2)	120.35(14)	C(1)-C(7)-H(7)	120.4(12)
C(3)-C(4)	1.378(2)	C(4)-C(3)-H(3)	119.8		
C(3)-H(3)	0.95	C(2)-C(3)-H(3)	119.8		
C(4)-C(5)	1.383(2)	C(3)-C(4)-C(5)	120.07(14)		
C(4)-H(4)	0.95	C(3)-C(4)-H(4)	120		
C(5)-C(6)	1.377(2)	C(5)-C(4)-H(4)	120		
C(5)-H(5)	0.95	C(6)-C(5)-C(4)	119.15(14)		
C(7)-H(7)	0.96(2)	C(6)-C(5)-H(5)	120.4		

Table S22. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for *o*-nitro- α, α -difluorotoluene (**1-CF₂H**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[\text{h}^2a^{*2}\text{U}^{11} + ... + 2 \text{ h k } a^* \text{ b}^* \text{U}^{12}]$.

···· · · · · · · · · · · · ·			· · · L ··			· ·]·
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	25(1)	41(1)	29(1)	-6(1)	5(1)	-9(1)
O(1)	46(1)	23(1)	31(1)	-2(1)	18(1)	9(1)
N(1)	28(1)	22(1)	25(1)	1(1)	9(1)	0(1)
C(1)	16(1)	25(1)	14(1)	1(1)	6(1)	0(1)
F(2)	20(1)	52(1)	51(1)	-6(1)	15(1)	3(1)
O(2)	35(1)	26(1)	36(1)	5(1)	13(1)	-8(1)
C(2)	22(1)	24(1)	16(1)	1(1)	8(1)	6(1)
C(3)	28(1)	18(1)	17(1)	1(1)	6(1)	-1(1)
C(4)	20(1)	26(1)	18(1)	2(1)	6(1)	-5(1)
C(5)	17(1)	25(1)	17(1)	3(1)	7(1)	2(1)
C(6)	21(1)	18(1)	15(1)	1(1)	7(1)	1(1)
C(7)	17(1)	36(1)	24(1)	-1(1)	7(1)	-2(1)

Table S23. Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å²×10³) for *o*-nitro- α , α -difluorotoluene (1-CF₂H).

	х	у	z	U(eq)
H(2)	5494	8662	3380	25
H(3)	8220	9439	3672	26
H(4)	10687	8427	3863	26
H(5)	10445	6620	3767	24
H(7)	4460(30)	6221(17)	4160(30)	31

6.2.2. o-Nitrophenol (1-OH)

o-Nitrophenol (**1-OH**) crystallized in the monoclinic space group $P2_1/c$ with one molecule in the asymmetric unit. Packing of the unit cell of *o*-nitrophenol is similar to that of *o*-nitro- α,α -difluorotoluene (**1-CF**₂**H**); however, the distance between the two indicated aromatic rings is 3.329(15) Å, which is shorter than that of *o*-nitro- α,α -difluorotoluene (**1-CF**₂**H**). Coordinates for H1, the hydrogen atom of the hydroxyl group, were taken from the difference Fourier synthesis. H1 was subsequently refined freely to obtain good geometry parameters for the hydrogen bonding.

CCDC number	1552716
Empirical formula	$C_6H_5NO_3$
Formula weight	139.11
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	
a = 6.3511(6) Å	
b = 14.3305(14) Å	$\beta = 103.348(2)^{\circ}$
c = 6.6757(6) Å	
Volume	591.17(10) Å ³
Z	4
Density (calculated)	1.563 Mg/m ³
Absorption coefficient	0.128 mm ⁻¹
F(000)	288
Crystal size	0.170 x 0.160 x 0.120 mm ³
Theta range for data collection	2.843 to 30.624°
Index ranges	-8<=h<=9, -20<=k<=20, -8<=l<=9
Reflections collected	11483
Independent reflections	1710 [R(int) = 0.0259]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6901
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1710 / 0 / 95
Goodness-of-fit on F^2	1.078
Final R indices [I>2sigma(I)]	R1 = 0.0363, wR2 = 0.0981
R indices (all data)	R1 = 0.0445, wR2 = 0.1045
Largest diff. peak and hole	0.368 and -0.268 e. Å⁻³

Table S24. Crystal data and structure refinement for *o*-nitrophenol (1-OH).

	х	У	Z	U(eq)
O(1)	3855(1)	6748(1)	5413(1)	23(1)
N(1)	8293(1)	6038(1)	6695(1)	18(1)
C(1)	5588(2)	7318(1)	5907(2)	17(1)
O(2)	6794(1)	5453(1)	6269(1)	24(1)
C(2)	7751(2)	7021(1)	6515(2)	15(1)
O(3)	10192(1)	5808(1)	7274(1)	26(1)
C(3)	9459(2)	7657(1)	6992(2)	17(1)
C(4)	9033(2)	8604(1)	6898(2)	19(1)
C(5)	6882(2)	8909(1)	6316(2)	20(1)
C(6)	5192(2)	8281(1)	5818(2)	20(1)

Table S25. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å²×10³) for *o*-nitrophenol (**1-OH**). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Figure S45. ORTEP representation of *o*-nitrophenol (**1-OH**, **A**). (**B**) shows the packing of the unit cell, hydrogen atoms, except H1, were deleted for clarity. The distance between the layers was determined to be 3.329(15) Å. Thermal ellipsoids are set at 50% probability.

	Bond distance (Å)		Bond angle (°)		Bond angle (°)
O(1)-C(1)	1.3486(12)	C(1)-O(1)-H(1)	104.4(13)	C(5)-C(4)-H(4)	120.4
O(1)-H(1)	0.91(2)	O(3)-N(1)-O(2)	122.23(9)	C(6)-C(5)-C(4)	121.10(9)
N(1)-O(3)	1.2237(11)	O(3)-N(1)-C(2)	119.12(8)	C(6)-C(5)-H(5)	119.4
N(1)-O(2)	1.2513(11)	O(2)-N(1)-C(2)	118.65(8)	C(4)-C(5)-H(5)	119.4
N(1)-C(2)	1.4487(12)	O(1)-C(1)-C(6)	117.19(9)	C(5)-C(6)-C(1)	120.63(10)
C(1)-C(6)	1.4011(14)	O(1)-C(1)-C(2)	125.15(9)	C(5)-C(6)-H(6)	119.7
C(1)-C(2)	1.4053(13)	C(6)-C(1)-C(2)	117.66(9)	C(1)-C(6)-H(6)	119.7
C(2)-C(3)	1.3960(13)	C(3)-C(2)-C(1)	121.64(9)		
C(3)-C(4)	1.3812(14)	C(3)-C(2)-N(1)	117.30(9)		
C(3)-H(3)	0.95	C(1)-C(2)-N(1)	121.05(9)		
C(4)-C(5)	1.4017(14)	C(4)-C(3)-C(2)	119.79(9)		
C(4)-H(4)	0.95	C(4)-C(3)-H(3)	120.1		
C(5)-C(6)	1.3815(15)	C(2)-C(3)-H(3)	120.1		
C(5)-H(5)	0.95	C(3)-C(4)-C(5)	119.17(9)		
C(6)-H(6)	0.95	C(3)-C(4)-H(4)	120.4		

Table S26. Bond distances [Å] and angles [°] for *o*-nitrophenol (1-OH).

Table S27. Anisotropic displacement parameters $(\text{\AA}^2 \times 10^3)$ for *o*-nitrophenol (**1-OH**). The anisotropic displacement factor exponent takes the form: $-2p^2[\text{\AA}^2 a^{*2} U^{11} + ... + 2 \text{ h k a* b* } U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	14(1)	22(1)	29(1)	0(1)	1(1)	-4(1)
N(1)	18(1)	14(1)	20(1)	0(1)	3(1)	-1(1)
C(1)	15(1)	18(1)	16(1)	1(1)	3(1)	-1(1)
O(2)	23(1)	16(1)	32(1)	-1(1)	2(1)	-6(1)
C(2)	16(1)	12(1)	16(1)	0(1)	2(1)	0(1)
O(3)	18(1)	17(1)	41(1)	3(1)	3(1)	3(1)
C(3)	15(1)	16(1)	19(1)	-1(1)	2(1)	0(1)
C(4)	21(1)	14(1)	20(1)	-1(1)	3(1)	-2(1)
C(5)	25(1)	15(1)	19(1)	1(1)	4(1)	3(1)
C(6)	18(1)	19(1)	21(1)	2(1)	3(1)	5(1)

Table S28. Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å²×10³) for *o*-nitrophenol (**1-OH**).

	х	у	z	U(eq)
H(1)	4430(30)	6160(15)	5560(30)	55(5)
H(3)	10909	7440	7381	20
H(4)	10184	9042	7223	23
H(5)	6580	9559	6264	24
H(6)	3747	8503	5411	24

6.2.3. *p*-Bromo-α,α-difluorotoluene (2-CF₂H)

2-CF₂H crystallized as a non merohedral twin. Three components were identified with CELL_NOW and refined using the hkl5 file. The batch scale factor (BASF) was refined and converged to a composition consisting of 59.1% of the first, 26.7% of the second, and 14.2% of the third twin domain.

The structure was solved in the monoclinic space group $P2_1/c$ with half a molecule in the asymmetric unit. The bromo- and CF₂H motifs were found to be disordered statistically across two positions, a result which is likely due to the similar space requirements of the CF₂H and bromo motifs. Because half of the molecule is generated through crystallographic symmetry, the occupancies of the disordered motifs were set to 50% to generate the full disordered molecule.

Figure S46. ORTEP representation of *p*-bromo- α , α -difluorotoluene (**2-CF₂H**) (A). Thermal ellipsoids are set at 50% probability. Disordered motifs are highlighted with bold/dashed bonds (B).

Table S29. Crystal data and structure refinement for *p*-bromo- α , α -difluorotoluene (2-CF₂H).

CCDC number	1552717
Empirical formula	$C_7H_5BrF_2$
Formula weight	207.02
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	
a = 7.962(2) Å	
b = 7.097(2) Å	$\beta = 92.557(4)^{\circ}$
c = 6.1966(18) Å	
Volume	349.76(17) Å ³
Z	2
Density (calculated)	1.966 Mg/m ³
Absorption coefficient	5.825 mm ⁻¹
F(000)	200
Crystal size	0.700 x 0.400 x 0.400 mm ³
Theta range for data collection	2.561 to 29.477°.
Index ranges	-8<=h<=9, -20<=k<=20, -8<=l<=9
Reflections collected	1066
Independent reflections	066 [R(int) = ?]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.745882 and 0.257008
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1066 / 96 / 69
Goodness-of-fit on F^2	1.125
Final R indices [I>2sigma(I)]	R1 = 0.0578, wR2 = 0.1367
R indices (all data)	R1 = 0.0824, wR2 = 0.1549
Largest diff. peak and hole	0.888 and -0.669 e. Å ⁻³

Table S30. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å²×10³) for *p*-bromo- α,α -difluorotoluene (**2-CF₂H**). <u>U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.</u>

	х	У	z	U(eq)
Br(1)	8496(2)	5518(2)	7992(2)	28(1)
C(1)	6489(5)	5240(5)	6196(7)	20(1)
C(3)	5027(5)	4220(6)	2928(7)	22(1)
C(2)	6522(5)	4473(6)	4145(7)	20(1)
C(4)	8126(15)	5570(20)	7395(18)	28(3)
F(2)	9251(8)	4251(12)	6904(12)	58(2)
F(1)	7914(8)	5388(13)	9508(10)	59(2)

Table S31. Bond distances [Å] and angles [°] for *p*-bromo- α , α -difluorotoluene (**2-CF**₂**H**).

	Bond distance (Å)		Bond angle (°)		Bond angle (°
Br(1)-C(1)	1.916(4)	C(2)-C(1)-C(3)#1	121.1(4)	C(3)-C(2)-H(2)	120.1
C(1)-C(2)	1.384(6)	C(2)-C(1)-C(4)	117.9(5)	F(1)-C(4)-F(2)	105.7(11)
C(1)-C(3)#1	1.398(5)	C(3)#1-C(1)-C(4)	120.9(6)	F(1)-C(4)-C(1)	109.2(9)
C(1)-C(4)	1.490(11)	C(2)-C(1)-Br(1)	121.6(3)	F(2)-C(4)-C(1)	110.9(9)
C(3)-C(2)	1.392(6)	C(3)#1-C(1)-Br(1)	117.3(3)	F(1)-C(4)-H(4)	110.3
C(3)-H(3)	0.9500	C(2)-C(3)-C(1)#1	119.1(4)	F(2)-C(4)-H(4)	110.3
C(2)-H(2)	0.9500	C(2)-C(3)-H(3)	120.5	C(1)-C(4)-H(4)	110.3
C(4)-F(1)	1.333(12)	C(1)#1-C(3)-H(3)	120.5		
C(4)-F(2)	1.340(13)	C(1)-C(2)-C(3)	119.8(3)		
C(4)-H(4)	1.0000	C(1)-C(2)-H(2)	120.1		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1

Table S32. Anisotropic displacement parameters ($Å^2 \times 10^3$) for *p*-bromo- α , α -difluorotoluene (**2-CF₂H**). The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$.

1400111		experient takes	the form.	2p lin u	0	- 2 II K U	0 0	J٠
		U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
	Br(1)	23(1)	35(1)	26(1)	2(1)	-8(1)	-4(1)	
	C(1)	18(2)	17(2)	24(2)	1(2)	0(1)	-2(1)	
	C(3)	23(2)	18(2)	24(2)	-4(2)	2(2)	-1(1)	
	C(2)	18(2)	21(2)	22(2)	0(2)	4(1)	1(1)	
	C(4)	31(6)	35(5)	17(5)	-2(5)	-8(4)	-9(4)	
	F(2)	32(3)	96(6)	45(4)	-17(4)	-8(3)	20(3)	
_	F(1)	33(3)	123(7)	22(3)	-7(4)	-8(2)	-4(4)	

Table S33. Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å²×10³) for *p*-bromo- α , α -difluorotoluene (**2-CF₂H**).

	х	у	Z	U(eq)
H(3)	5036	3689	1522	26
H(2)	7562	4120	3570	24
H(4)	8565	6854	7069	34

6.2.4. 1-Benzyloxy-4-(difluoromethyl)benzene (5-CF₂H)

5-CF₂H crystallized in the monoclinic space group $P2_1/c$ with one molecule in the asymmetric unit. The coordinates of the CF₂H hydrogen were taken from the Fourier synthesis and refined freely. All other hydrogen atoms were attached to idealized positions and their isotropic displacement parameters were fixed to 1.2 times the U_{eq} value of the atoms to which they are attached.

Figure S47. ORTEP representation of 1-benzyloxy-4-(difluoromethyl)benzene (5-CF₂H). Thermal ellipsoids are set at 50% probability.

CCDC number	1552718
Empirical formula	$C_{14}H_{12}F_2O$
Formula weight	234.24
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	
a = 14.4147(11) Å	
b = 10.6790(8) Å	$\beta = 103.7140(10)$
c = 7.5441(6) Å	
Volume	1128.19(15) Å ³
Z	4
Density (calculated)	1.379 Mg/m ³
Absorption coefficient	0.108 mm ⁻¹
F(000)	488
Crystal size	0.400 x 0.300 x 0.300 mm ³
Theta range for data collection	1.454 to 30.905°
Index ranges	-20<=h<=20, -15<=k<=14, -10<=l<=10
Reflections collected	24098
Independent reflections	3407 [R(int) = 0.0264]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.7038
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3407 / 0 / 158
Goodness-of-fit on <i>F</i> ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0385, wR2 = 0.1015
R indices (all data)	R1 = 0.0433, wR2 = 0.1064
Largest diff. peak and hole	0.451 and -0.292 e. Å ⁻³

Table S35. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å²×10³) for 1-benzyl-oxy-4-(difluoromethyl)benzene (**5-CF₂H**).U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
F(1)	-562(1)	3116(1)	6562(1)	34(1)
O(1)	3832(1)	3617(1)	7816(1)	14(1)
C(1)	-47(1)	3790(1)	8039(1)	20(1)
F(2)	-446(1)	4954(1)	7850(1)	30(1)
C(2)	984(1)	3819(1)	7992(1)	15(1)
C(3)	1372(1)	4806(1)	7208(1)	16(1)
C(4)	2328(1)	4782(1)	7118(1)	15(1)
C(5)	2890(1)	3752(1)	7819(1)	12(1)
C(6)	2501(1)	2758(1)	8613(1)	14(1)
C(7)	1554(1)	2796(1)	8703(1)	16(1)
C(8)	4275(1)	4628(1)	7054(1)	14(1)
C(9)	5279(1)	4245(1)	7081(1)	12(1)
C(10)	5449(1)	3176(1)	6136(1)	14(1)
C(11)	6376(1)	2831(1)	6117(1)	16(1)
C(12)	7147(1)	3555(1)	7043(1)	17(1)
C(13)	6984(1)	4628(1)	7965(1)	17(1)
C(14)	6051(1)	4972(1)	7987(1)	14(1)

	Bond distance (Å)		Bond angle (°)		Bond angle (°)
F(1)-C(1)	1.3845(12)	C(5)-O(1)-C(8)	117.12(7)	H(8A)-C(8)-H(8B)	108.4
O(1)-C(5)	1.3667(10)	F(2)-C(1)-F(1)	104.92(8)	C(14)-C(9)-C(10)	119.29(8)
O(1)-C(8)	1.4408(10)	F(2)-C(1)-C(2)	112.07(8)	C(14)-C(9)-C(8)	120.65(8)
C(1)-F(2)	1.3632(12)	F(1)-C(1)-C(2)	109.77(8)	C(10)-C(9)-C(8)	120.02(8)
C(1)-C(2)	1.4944(12)	F(2)-C(1)-H(1)	106.9(8)	C(11)-C(10)-C(9)	120.40(8)
C(1)-H(1)	0.962(13)	F(1)-C(1)-H(1)	106.9(8)	C(11)-C(10)-H(10)	119.8
C(2)-C(3)	1.3906(13)	C(2)-C(1)-H(1)	115.6(8)	C(9)-C(10)-H(10)	119.8
C(2)-C(7)	1.3955(12)	C(3)-C(2)-C(7)	119.80(8)	C(10)-C(11)-C(12)	120.09(8)
C(3)-C(4)	1.3965(12)	C(3)-C(2)-C(1)	121.90(8)	C(10)-C(11)-H(11)	120.0
C(3)-H(3)	0.9500	C(7)-C(2)-C(1)	118.26(8)	C(12)-C(11)-H(11)	120.0
C(4)-C(5)	1.3937(12)	C(2)-C(3)-C(4)	120.53(8)	C(13)-C(12)-C(11)	119.82(8)
C(4)-H(4)	0.9500	C(2)-C(3)-H(3)	119.7	C(13)-C(12)-H(12)	120.1
C(5)-C(6)	1.3993(12)	C(4)-C(3)-H(3)	119.7	C(11)-C(12)-H(12)	120.1
C(6)-C(7)	1.3836(12)	C(5)-C(4)-C(3)	119.20(8)	C(12)-C(13)-C(14)	120.01(8)
C(6)-H(6)	0.9500	C(5)-C(4)-H(4)	120.4	C(12)-C(13)-H(13)	120.0
C(7)-H(7)	0.9500	C(3)-C(4)-H(4)	120.4	C(14)-C(13)-H(13)	120.0
C(8)-C(9)	1.5005(12)	O(1)-C(5)-C(4)	124.79(8)	C(9)-C(14)-C(13)	120.39(8)
C(8)-H(8A)	0.9900	O(1)-C(5)-C(6)	114.84(7)	C(9)-C(14)-H(14)	119.8
C(8)-H(8B)	0.9900	C(4)-C(5)-C(6)	120.36(8)	C(13)-C(14)-H(14)	119.8
C(9)-C(14)	1.3947(12)	C(7)-C(6)-C(5)	119.91(8)		
C(9)-C(10)	1.3978(12)	C(7)-C(6)-H(6)	120.0		
C(10)-C(11)	1.3895(12)	C(5)-C(6)-H(6)	120.0		
C(10)-H(10)	0.9500	C(6)-C(7)-C(2)	120.19(8)		
C(11)-C(12)	1.3976(13)	C(6)-C(7)-H(7)	119.9		
C(11)-H(11)	0.9500	C(2)-C(7)-H(7)	119.9		
C(12)-C(13)	1.3897(13)	O(1)-C(8)-C(9)	107.90(7)		
C(12)-H(12)	0.9500	O(1)-C(8)-H(8A)	110.1		
C(13)-C(14)	1.3971(12)	C(9)-C(8)-H(8A)	110.1		
C(13)-H(13)	0.9500	O(1)-C(8)-H(8B)	110.1		
C(14)-H(14)	0.9500	C(9)-C(8)-H(8B)	110.1		

 $\label{eq:solution} Table \ S36. \ Bond \ distances \ [Å] \ and \ angles \ [°] \ for \ 1-benzyloxy-4-(difluoromethyl) benzene \ (5-CF_2H).$

Table S37. Anisotropic displacement parameters ($Å^2 \times 10^3$) for 1-benzyloxy-4-(difluoromethyl)benzene (5-CF₂H).The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$.

1	1		1	L		
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	14(1)	45(1)	41(1)	-16(1)	5(1)	-5(1)
O(1)	11(1)	15(1)	18(1)	4(1)	6(1)	1(1)
C(1)	14(1)	24(1)	23(1)	0(1)	6(1)	1(1)
F(2)	18(1)	29(1)	43(1)	1(1)	12(1)	8(1)
C(2)	12(1)	19(1)	15(1)	-1(1)	4(1)	0(1)
C(3)	14(1)	17(1)	18(1)	2(1)	4(1)	3(1)
C(4)	14(1)	15(1)	16(1)	2(1)	5(1)	1(1)
C(5)	11(1)	15(1)	11(1)	0(1)	3(1)	0(1)
C(6)	14(1)	15(1)	15(1)	2(1)	4(1)	1(1)
C(7)	14(1)	17(1)	16(1)	2(1)	5(1)	-2(1)
C(8)	12(1)	14(1)	17(1)	2(1)	6(1)	0(1)
C(9)	12(1)	13(1)	12(1)	2(1)	4(1)	0(1)
C(10)	14(1)	14(1)	15(1)	0(1)	4(1)	-2(1)
C(11)	17(1)	15(1)	17(1)	0(1)	7(1)	2(1)
C(12)	13(1)	20(1)	18(1)	4(1)	6(1)	2(1)
C(13)	13(1)	20(1)	16(1)	1(1)	2(1)	-3(1)
C(14)	15(1)	15(1)	14(1)	-1(1)	3(1)	-1(1)

Table S38. Hydrogen coordinates (×10⁴) and isotropic displacement parameters (Å²×10³) for 1-benzyloxy-4-(difluoromethyl)benzene (**5-CF₂H**).

	х	У	z	U(eq)
H(1)	-184(9)	3425(12)	9114(17)	17(3)
H(3)	984	5504	6729	20
H(4)	2593	5459	6586	18
H(6)	2887	2058	9089	17
H(7)	1292	2124	9250	19
H(8A)	4277	5399	7785	17
H(8B)	3916	4799	5787	17
H(10)	4926	2682	5503	17
H(11)	6485	2102	5474	19
H(12)	7781	3314	7042	20
H(13)	7506	5129	8581	20
H(14)	5942	5704	8622	17

6.2.5. Experimental details of the crystal structure re-refinement of published structures

Two structures were re-refined and a more detailed disorder model was applied to obtain hydrogen bonding parameters with a higher accuracy. All structures were re-refined by full-matrix least-squares based on F^2 using SHELXL (Re. 789).²⁵ Each structure was checked for higher symmetry using PLATON.²⁶ All non-hydrogen atoms were located and refined anisotropically. If not otherwise noted, the isotropic displacement parameters of the hydrogen atoms were fixed to 1.2 times the U_{eq} value of the atoms to which they are attached. Figures were

generated using the program ORTEP. See Figures S51-S52 and Tables S39-S48 below for crystallographic data and refinement details.

6.2.5.1. CCDC Entry SUQQEC

SUQQEC crystallized in the orthorhombic space group *Pbcn* with one molecule in the asymmetric unit. Coordinates for H2n, the hydrogen atom of the amino group, were taken from the difference Fourier synthesis. H2n was subsequently refined freely. All other hydrogen atoms including H15, the hydrogen atom of the CF₂H group, were attached to idealized positions. Their isotropic displacement parameters were fixed to 1.2 times the U_{eq} value of the atoms to which they are attached. The CF₂H group was modeled across two positions. The major component of the disorder refined to an occupancy of 63.3%. The CFClH group was also found to be disordered and was subsequently modeled across two positions. The major part refined to an occupancy of 75.7%. Distance and anisotropic displacement parameter restraints were applied to all disordered atoms.

Figure S48. ORTEP representation of SUQQEC. Thermal ellipsoids are set at 50% probability.

res-file for the re-refinement of SUQQEC:

TITL	import in	ıPcnb	transform	ed to spac	ce group :	Pbcn	
CELL	0.71073	10.0193	20.3405	16.9296	90.000	90.000	90.000
ZERR	8.00	0.0003	0.0006	0.0004	0.000	0.000	0.000
LATT	1						
SYMM	1/2 - X,	1/2 - Y,	1/2 + Z				
SYMM	1/2 + X,	1/2 - Y,	- Z				
SYMM	- X, Y	1/2 - 2	,				
SFAC	CHNOF	° CL					
UNIT	144 112 1	6 8 24 8					
LIST	4						
FMAP	2						
PLAN	5						
ACTA							
BOND	\$H						
OMIT	0 2	0 ! bean	nstop				
OMIT	1 1	0 ! bean	istop				

OMIT 0 2 1 ! beamstop OMIT 1 1 1 ! Outlier HTAB HTAB N2 01 RIGU SADI C15 F1 C15 F2 C15 F1B C15 F2B C18 F3 C18 F3B SADI C18 Cl1 C18 Cl1B DFIX 0.88 N2 H2N SIZE 0.40x0.35x0.30 L.S. 10 TEMP -100.00 WGHT 0.067400 2.395100 0.36612 0.63255 0.75704 FVAR 01 4 0.392743 0.927444 0.179835 11.00000 0.04609 0.04195 = 0.04347 -0.00327 0.00124 -0.00103 N1 3 0.417444 0.741529 0.118093 11.00000 0.03165 0.03448 = 0.04076 -0.00184 0.00348 0.00126 3 0.385233 0.799168 0.157013 11.00000 0.03527 0.03502 = N2 0.03889 0.00023 0.00526 -0.00102 H2N 2 0.412795 0.837476 0.140864 11.00000 -1.20000 С1 1 0.522101 0.686363 0.012694 11.00000 0.02326 0.03433 = 0.04221 -0.00056 0.00232 -0.00101 C2 1 0.551190 0.629850 0.056176 11.00000 0.03004 0.03666 = 0.04497 -0.00006 0.00098 -0.00356 AFTX 43 H2 2 0.545867 0.630843 0.112190 11.00000 -1.20000 AFIX 0 C3 1 0.587701 0.572448 0.018192 11.00000 0.03364 0.03324 = 0.06257 0.00017 0.00240 -0.00327 AFIX 43 ΗЗ 2 0.608378 0.534342 0.048242 11.00000 -1.20000 AFIX 0 C4 1 0.594268 0.570239 -0.063431 11.00000 0.03868 0.03983 = 0.06262 -0.01230 0.01085 -0.00336 AFIX 43 H4 2 0.619021 0.530686 -0.089429 11.00000 -1.20000 AFIX 0 1 0.564763 0.625625 -0.106741 11.00000 0.04546 0.05010 = C.5 0.04536 -0.00765 0.01109 -0.00516 AFIX 43 H5 2 0.567951 0.623922 -0.162787 11.00000 -1.20000 AFTX 0 C6 1 0.530468 0.683820 -0.069428 11.00000 0.03654 0.04235 = 0.04324 0.00032 0.00393 0.00088 AFIX 43 2 0.512619 0.722064 -0.099858 11.00000 -1.20000 Hб AFIX 0 C7 1 0.515436 0.811779 0.014050 11.00000 0.03144 0.03328 = 0.03635 -0.00061 0.00301 0.00247 1 0.647574 0.827627 -0.001337 11.00000 0.03070 0.04136 = C8 0.06399 0.00754 0.00623 0.00487

AFIX 43 H8 2 0.716538 0.798068 0.013557 11.00000 -1.20000 AFIX 0 C9 1 0.679333 0.885977 -0.038086 11.00000 0.03988 0.04763 = 0.08723 0.01454 0.01903 -0.00025 AFIX 43 2 0.770119 0.896522 -0.048160 11.00000 -1.20000 Н9 AFIX 0 C10 1 0.580242 0.929158 -0.060335 11.00000 0.06296 0.04615 = 0.07664 0.02268 0.02039 0.00632 AFIX 43 H10 2 0.602237 0.969328 -0.085832 11.00000 -1.20000 AFIX 0 C11 1 0.449233 0.913496 -0.045246 11.00000 0.05231 0.05435 = 0.06156 0.02273 0.00985 0.01725 AFIX 43 2 0.380711 0.943253 -0.060283 11.00000 -1.20000 H11 AFTX 0 c12 1 0.415930 0.855444 -0.008739 11.00000 0.03328 0.05013 = 0.04664 0.01081 0.00251 0.00776 AFIX 43 H12 2 0.324898 0.845151 0.000925 11.00000 -1.20000 AFTX 0 C13 1 0.481109 0.747953 0.052265 11.00000 0.02387 0.03555 = 0.03920 0.00132 -0.00229 0.00156 C14 1 0.318747 0.797388 0.225492 11.00000 0.03287 0.04606 = 0.03829 0.00107 0.00349 0.00032 c15 1 0.273138 0.730169 0.252770 11.00000 0.05751 0.05183 = 0.05199 0.00372 0.01714 -0.00541 PART 1 AFIX 13 H15A 2 0.344996 0.697061 0.242858 21.00000 -1.20000 AFIX 13 PART 2 H15B 2 0.233865 0.710010 0.204167 -21.00000 -1.20000 AFIX 0 PART 0 C16 1 0.292075 0.852941 0.268470 11.00000 0.04151 0.05176 = 0.03489 -0.00210 0.00466 0.00191 AFIX 43 H16 2 0.244245 0.849107 0.316703 11.00000 -1.20000 AFTX 0 C17 1 0.333873 0.915775 0.242904 11.00000 0.03665 0.04717 = 0.03843 -0.00731 -0.00388 0.00430 C18 1 0.307243 0.974407 0.296609 11.00000 0.05296 0.05527 = 0.04803 -0.01295 0.00401 0.00099 PART 1 AFIX 13 H18A 2 0.392520 0.999315 0.303420 31.00000 -1.20000 AFIX 13 PART 2

H18B 2 0.326885 0.965388 0.353499 -31.00000 -1.20000 AFIX 0 PART 0 PART 1 F1 5 0.245446 0.733560 0.333930 21.00000 0.07718 0.06202 = 0.04620 0.01243 0.01660 -0.00762 F2 5 0.167445 0.712928 0.218181 21.00000 0.08169 0.07993 = 0.06589 0.01567 -0.01633 -0.03636 6 0.189103 1.026991 0.255561 31.00000 0.15047 0.09510 = CL1 0.08628 -0.03659 -0.03275 0.07557 F3 5 0.261369 0.956359 0.370184 31.00000 0.13288 0.06698 = 0.05277 -0.01743 0.02881 0.00398 PART 2 F1B 5 0.370555 0.692195 0.269774 -21.00000 0.08697 0.05532 = 0.05771 0.01785 -0.01721 -0.00251 F2B 5 0.172034 0.734342 0.301212 -21.00000 0.11218 0.07520 = 0.11504 -0.02063 0.08113 -0.02979 CL1B 6 0.143821 0.995781 0.279435 -31.00000 0.06371 0.07015 = 0.10772 -0.03841 0.01701 0.00413 F3B 5 0.377611 1.029539 0.266122 -31.00000 0.12636 0.05415 = 0.07787 -0.02142 0.02179 -0.03254 PART 0 HKLF 4 REM import in P c n b transformed to space group : Pbcn REM R1 = 0.0626 for 2706 Fo > 4sig(Fo) and 0.0975 for all 3959 data REM 267 parameters refined using 227 restraints END WGHT 0.0674 2.3951 REM Instructions for potential hydrogen bonds HTAB N2 O1 EQIV \$1 -x+1, y, -z+1/2 HTAB C18 O1 \$1 REM Highest difference peak 0.496, deepest hole -0.473, 1-sigma level 0.050 Q1 1 0.1711 0.9598 0.3341 11.00000 0.05 0.50 1 0.2854 1.0417 0.2625 11.00000 0.05 0.33 02 Q3 1 0.1015 0.7473 0.2499 11.00000 0.05 0.30 04 1 0.3076 0.7050 0.3071 11.00000 0.05 0.21 05 1 0.4968 0.7845 0.0343 11.00000 0.05 0.20

Table S39. Crystal data and structure refinement for SUQQEC.

Empirical formula	$C_{18}H_{14}CIF_3N_2O$
Formula weight	366.76
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbcn
Unit cell dimensions	
a = 10.0193(3) Å	
b = 20.3405(6) Å	
c = 16.9296(4) Å	
Volume	3450.21(17) Å ³
Z	8
Density (calculated)	1.412 Mg/m ³
Absorption coefficient	0.260 mm ⁻¹
F(000)	1504
Crystal size	0.400 x 0.350 x 0.300 mm ³
Theta range for data collection	2.406 to 27.509°
Index ranges	-10<=h<=13, -19<=k<=26, -21<=l<=21
Reflections collected	23579
Independent reflections	3959 [R(int) = 0.0629]
Completeness to theta = 25.242°	99.80%
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data / restraints / parameters	3959 / 227 / 267
Goodness-of-fit on F^2	1.038
Final R indices [I>2sigma(I)]	R1 = 0.0626, wR2 = 0.1475
R indices (all data)	R1 = 0.0975, wR2 = 0.1656
Largest diff. peak and hole	0.496 and -0.473 e.Å ⁻³

	X	Y	Z	U(eq)
O(1)	3927(2)	9274(1)	1798(1)	44(1)
N(1)	4174(2)	7415(1)	1181(1)	36(1)
N(2)	3852(2)	7992(1)	1570(1)	36(1)
C(1)	5221(2)	6864(1)	127(1)	33(1)
C(2)	5512(2)	6298(1)	562(1)	37(1)
C(3)	5877(2)	5724(1)	182(2)	43(1)
C(4)	5943(2)	5702(1)	-634(2)	47(1)
C(5)	5648(2)	6256(1)	-1067(2)	47(1)
C(6)	5305(2)	6838(1)	-694(1)	41(1)
C(7)	5154(2)	8118(1)	141(1)	34(1)
C(8)	6476(2)	8276(1)	-13(2)	45(1)
C(9)	6793(3)	8860(1)	-381(2)	58(1)
C(10)	5802(3)	9292(1)	-603(2)	62(1)
C(11)	4492(3)	9135(1)	-452(2)	56(1)
C(12)	4159(2)	8554(1)	-87(1)	43(1)
C(13)	4811(2)	7480(1)	523(1)	33(1)
C(14)	3187(2)	7974(1)	2255(1)	39(1)
C(15)	2731(3)	7302(1)	2528(2)	54(1)
C(16)	2921(2)	8529(1)	2685(1)	43(1)
C(17)	3339(2)	9158(1)	2429(1)	41(1)
C(18)	3072(3)	9744(1)	2966(2)	52(1)
F(1)	2454(4)	7336(2)	3339(2)	62(1)
F(2)	1674(3)	7129(2)	2182(2)	76(1)
CI(1)	1891(3)	10270(1)	2556(1)	111(1)
F(3)	2614(3)	9564(1)	3702(1)	84(1)
F(1B)	3706(5)	6922(2)	2698(3)	67(2)
F(2B)	1720(9)	7343(4)	3012(5)	101(3)
CI(1B)	1438(4)	9958(3)	2794(4)	80(2)
F(3B)	3776(9)	10295(3)	2661(5)	86(3)

Table S40. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for SUQQEC. U(eq) is defined as <u>one third of the trace of the orthogonalized U^{ij} tensor.</u>
	Bond distance (Å)		Bond angle (°)		Bond angle (°)
O(1)-C(17)	1.243(3)	C(13)-N(1)-N(2)	116.16(18)	F(1B)-C(15)-F(2B)	119.4(6)
N(1)-C(13)	1.291(3)	C(14)-N(2)-N(1)	120.41(19)	F(2)-C(15)-F(1)	107.6(3)
N(1)-N(2)	1.383(3)	C(14)-N(2)-H(2N)	117.0(17)	F(2)-C(15)-C(14)	111.3(3)
N(2)-C(14)	1.338(3)	N(1)-N(2)-H(2N)	122.3(17)	F(1B)-C(15)-C(14)	112.6(3)
N(2)-H(2N)	0.871(16)	C(6)-C(1)-C(2)	118.9(2)	F(2B)-C(15)-C(14)	111.5(4)
C(1)-C(6)	1 394(3)	C(6)-C(1)-C(13)	120 0(2)	F(1)-C(15)-C(14)	108 3(3)
C(1)-C(2)	1 396(3)	C(2)- $C(1)$ - $C(13)$	121 1(2)	F(2)-C(15)-H(15A)	109.9
C(1)-C(13)	1 479(3)	C(3)-C(2)-C(1)	120.4(2)	F(1)-C(15)-H(15A)	109.9
C(2)-C(3)	1 382(3)	C(3)-C(2)-H(2)	119.8	C(14)-C(15)-H(15A)	109.9
C(2)-H(2)	0.9500	C(1)-C(2)-H(2)	119.8	E(1B)-C(15)-H(15B)	103.8
C(3)-C(4)	1 384(4)	C(2)-C(3)-C(4)	120 3(2)	F(2B)-C(15)-H(15B)	103.8
C(3)-H(3)	0.9500	C(2)-C(3)-H(3)	119.9	C(14)-C(15)-H(15B)	103.8
C(4)- $C(5)$	1 376(4)	C(4)-C(3)-H(3)	119.9	C(14)-C(16)-C(17)	121 7(2)
C(4)-H(4)	0.9500	C(5)-C(4)-C(3)	119 7(2)	C(14) - C(16) - H(16)	110 1
C(5)-C(6)	1 385(3)	C(5)-C(4)-H(4)	120.2	C(17)-C(16)-H(16)	110.1
C(5)-H(5)	0.9500	C(3)-C(4)-H(4)	120.2	O(1) - C(17) - C(16)	125 2(2)
C(5)-H(5)	0.9500	C(3)-C(4)-C(6)	120.2	O(1)-C(17)-C(18)	125.2(2)
$C(0) = \Gamma(0)$	1 287(3)	C(4) - C(5) - C(6)	110.7	C(16) C(17) C(18)	118.3(2)
C(7) - C(8)	1.307(3)	C(4) - C(5) - H(5)	110.7	E(10) - C(11) - C(13)	112.0(2)
C(7) - C(12)	1.390(3)	C(5) - C(5) - C(1)	120 1(2)	F(3)-C(10)-C(17)	108 3(3)
C(7) - C(13)	1.491(3)	C(5)-C(0)-C(1)	110.0	F(3D)-C(10)-C(17)	100.3(3)
	0.0500	C(3)-C(0)-H(0)	119.9	F(3B)-C(10)-C(1B)	102.2(3)
$C(0) - \Pi(0)$	0.9500	$C(1)-C(0)-\Pi(0)$	119.9	C(17)-C(10)-Cl(1B)	105.3(2)
C(9)-C(10)	0.0500	C(8) - C(7) - C(12)	110.9(2)	F(3)-C(10)-Cl(1)	107.3(2)
$C(9) - \Pi(9)$	0.9500	C(0) - C(7) - C(13)	120.27(19)	C(17) - C(10) - C(1)	111.22(10)
C(10)-C(11)	1.375(4)	C(12)-C(7)-C(13)	120.8(2)	F(3)-C(18)-H(18A)	108.4
C(10)-H(10)	0.9500	C(9)-C(8)-C(7)	120.4(2)	C(17)-C(18)-H(18A)	108.4
C(11)-C(12)	1.374(4)	C(9)-C(8)-H(8)	119.8	CI(1)-C(18)-H(18A)	108.4
С(11)-Н(11)	0.9500	C(7)-C(8)-H(8)	119.8		
C(12)-H(12)	0.9500	C(8)-C(9)-C(10)	120.4(2)		
C(14)-C(16)	1.370(3)	C(8)-C(9)-H(9)	119.8		
C(14)-C(15)	1.514(4)	C(10)-C(9)-H(9)	119.8		
C(15)-F(2)	1.260(4)	C(11)-C(10)-C(9)	119.3(2)		
C(15)-F(1B)	1.278(5)	C(11)-C(10)-H(10)	120.3		
C(15)-F(2B)	1.306(6)	С(9)-С(10)-Н(10)	120.3		
C(15)-F(1)	1.403(4)	C(12)-C(11)-C(10)	121.0(2)		
C(15)-H(15A)	1.0000	C(12)-C(11)-H(11)	119.5		
C(15)-H(15B)	1.0000	C(10)-C(11)-H(11)	119.5		
C(16)-C(17)	1.413(4)	C(11)-C(12)-C(7)	120.0(2)		
C(16)-H(16)	0.9500	C(11)-C(12)-H(12)	120.0		
C(17)-C(18)	1.523(3)	C(7)-C(12)-H(12)	120.0		
C(18)-F(3)	1.378(3)	N(1)-C(13)-C(1)	116.27(19)		
C(18)-F(3B)	1.422(7)	N(1)-C(13)-C(7)	125.23(19)		
C(18)-Cl(1B)	1.719(6)	C(1)-C(13)-C(7)	118.49(18)		
C(18)-CI(1)	1.740(3)	N(2)-C(14)-C(16)	122.3(2)		
C(18)-H(18A)	1.0000	N(2)-C(14)-C(15)	116.1(2)		
C(18)-H(18B)	1.0000	C(16)-C(14)-C(15)	121.6(2)		

 Table S41. Bond distances [Å] and angles [°] for SUQQEC.

Table S42. Anisotropic displacement parameters ($Å^2 \times 10^3$) for SUQQEC. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	46(1)	42(1)	44(1)	-3(1)	1(1)	-1(1)
N(1)	32(1)	34(1)	41(1)	-2(1)	4(1)	1(1)
N(2)	35(1)	35(1)	39(1)	0(1)	5(1)	-1(1)
C(1)	23(1)	34(1)	42(1)	-1(1)	2(1)	-1(1)
C(2)	30(1)	37(1)	45(1)	0(1)	1(1)	-4(1)
C(3)	34(1)	33(1)	63(2)	0(1)	2(1)	-3(1)
C(4)	39(1)	40(1)	63(2)	-12(1)	11(1)	-3(1)
C(5)	45(1)	50(1)	45(1)	-8(1)	11(1)	-5(1)
C(6)	36(1)	42(1)	43(1)	0(1)	4(1)	1(1)
C(7)	31(1)	33(1)	36(1)	-1(1)	3(1)	2(1)
C(8)	31(1)	41(1)	64(2)	7(1)	6(1)	5(1)
C(9)	40(1)	48(2)	87(2)	14(1)	19(1)	0(1)
C(10)	63(2)	46(2)	77(2)	23(1)	20(2)	6(1)
C(11)	52(2)	54(2)	62(2)	23(1)	10(1)	17(1)
C(12)	33(1)	50(1)	47(1)	11(1)	2(1)	8(1)
C(13)	24(1)	36(1)	39(1)	1(1)	-2(1)	2(1)
C(14)	33(1)	46(1)	38(1)	1(1)	4(1)	0(1)
C(15)	58(2)	52(2)	52(1)	4(1)	17(1)	-5(1)
C(16)	42(1)	52(1)	35(1)	-2(1)	5(1)	2(1)
C(17)	37(1)	47(1)	38(1)	-7(1)	-4(1)	4(1)
C(18)	53(2)	55(2)	48(1)	-13(1)	4(1)	1(1)
F(1)	77(2)	62(2)	46(2)	12(1)	17(1)	-8(2)
F(2)	82(2)	80(2)	66(2)	16(2)	-16(2)	-36(2)
CI(1)	150(2)	95(1)	86(1)	-37(1)	-33(1)	76(1)
F(3)	133(2)	67(2)	53(1)	-17(1)	29(1)	4(2)
F(1B)	87(3)	55(3)	58(3)	18(2)	-17(2)	-3(2)
F(2B)	112(5)	75(4)	115(7)	-21(4)	81(5)	-30(4)
CI(1B)	64(2)	70(3)	108(4)	-38(3)	17(2)	4(2)
F(3B)	126(7)	54(4)	78(5)	-21(3)	22(4)	-33(4)

	Х	Y	Z	U(eq)
H(2N)	4130(20)	8375(9)	1409(14)	44
H(2)	5459	6308	1122	45
H(3)	6084	5343	482	52
H(4)	6190	5307	-894	56
H(5)	5680	6239	-1628	56
H(6)	5126	7221	-999	49
H(8)	7165	7981	136	54
H(9)	7701	8965	-482	70
H(10)	6022	9693	-858	74
H(11)	3807	9433	-603	67
H(12)	3249	8452	9	52
H(15A)	3450	6971	2429	65
H(15B)	2339	7100	2042	65
H(16)	2442	8491	3167	51
H(18A)	3925	9993	3034	63
H(18B)	3269	9654	3535	63

Table S43. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters ($\mathbb{A}^2 \times 10^3$) for SUQQEC.

6.2.5.2. CCDC Entry SUQQIG

SUQQIG crystallized in the orthorhombic space group *Pbcn* with two molecules in the asymmetric unit. Coordinates for H2n, the hydrogen atom of the amino group, were taken from the difference Fourier synthesis and H2n was subsequently refined freely. All other hydrogen atoms including H19, the hydrogen atom of the CF₂H group, were attached to idealized positions. Their isotropic displacement parameters were fixed to 1.2 times the U_{eq} value of the atoms, to which they are attached. The CF₂H group was modeled across two positions. The major component of the disorder refined to an occupancy of 64.2%. The terminal CFHCF₃ moiety was also modeled across two positions. The major part refined to an occupancy of 56.9%. Distance and anisotropic displacement parameter restraints were applied to all disordered atoms.

Figure S49. ORTEP representation of SUQQIG. Thermal ellipsoids are set at 50% probability.

res-file for the re-refinement of SUQQIG:

TITL suggig a.res in Pbcn CELL 0.71073 9.9803 20.8362 17.5990 90.000 90.000 90.000 ZERR 8.000 0.0020 0.0042 0.0035 0.000 0.000 0.000 LATT 1 SYMM 1/2-X, 1/2-Y, 1/2+Z SYMM -X, Y, 1/2-Z SYMM 1/2+X, 1/2-Y, -Z SFAC C H N O F UNIT 152 112 16 8 48 L.S. 10 BOND \$H LIST 4 ACTA FMAP 2 PLAN 5 HTAB HTAB N2 01 EQIV \$1 -x, +y, 1/2-z FREE F1A F1A \$1 SIMU RIGU SADI C18 F1 C18 F2 C18 F3 C18a F1a C18a F2a C18a F3a SADI 0.04 F1 F2 F2 F3 F3 F1 F1A F2A F2A F3A F3A F1A SADI C17 F6 C17 F6A SADI C19 F4 C19 F5 C19 F4a C19 F5a DFIX 0.89 N2 H2n WGHT 0.065400 1.037700 0.34263 0.56912 0.64207 FVAR 4 0.390092 0.570803 0.319142 11.00000 01 0.05849 0.04002 = 0.04639 -0.00422 -0.01117 -0.00030 N1 3 0.408340 0.752995 0.379722 11.00000 0.03981 0.03194 = 0.04179 -0.00251 -0.00485 -0.00252 3 0.379466 0.696597 0.342258 11.00000 0.03119 = N2 0.04252 0.04162 -0.00131 -0.00799 -0.00070 2 0.406336 0.657770 0.357945 11.00000 -1.20000 H2N 1 0.470258 0.747103 0.443765 11.00000 0.02757 0.03242 = С1 0.03785 -0.00163 0.00243 -0.00323 1 0.504576 0.684885 0.479944 11.00000 0.03527 0.03278 = C2 0.03565 -0.00184 -0.00353 -0.00418 0.405134 0.644424 0.506912 11.00000 C3 1 0.03971 0.05120 = 0.05194 0.00988 -0.00128 -0.00811 AFIX 43 2 0.315640 0.656192 0.502156 11.00000 HЗ -1.20000 AFIX 0 0.437922 0.586928 0.540693 11.00000 0.06296 0.05479 = C4 1 0.06528 0.02293 -0.00885 -0.01625 AFIX 43 2 0.370376 0.560224 0.558739 11.00000 -1.20000 H4 AFIX 0

C5 1 0.568436 0.568826 0.547906 11.00000 0.08009 0.04389 = 0.07320 0.01553 -0.02692 -0.00407 AFIX 43 H5 2 0.589859 0.529772 0.570421 11.00000 -1.20000 AFIX 0 C6 1 0.668090 0.608387 0.521857 11.00000 0.05360 0.05393 = 0.10254 0.00974 -0.02580 0.00710 AFIX 43 H6 2 0.757258 0.596167 0.526977 11.00000 -1.20000 AFIX 0 C7 1 0.636725 0.666442 0.487963 11.00000 0.03570 0.04717 = 0.07939 0.00721 -0.00686 -0.00397 AFIX 43 H7 2 0.704862 0.693098 0.470544 11.00000 -1.20000 AFIX 0 C8 1 0.509007 0.807482 0.482429 11.00000 0.02769 0.03413 = 0.04461 -0.00290 -0.00055 0.00000 1 0.524276 0.808785 0.560916 11.00000 0.04290 0.04489 = C9 0.04378 -0.00388 -0.00364 0.00099 AFIX 43 Н9 2 0.512005 0.771518 0.589153 11.00000 -1.20000 AFIX 0 C10 1 0.557922 0.865860 0.597204 11.00000 0.05183 0.05876 = 0.05286 -0.01864 -0.01123 0.00777 AFIX 43 H10 2 0.565760 0.866858 0.649848 11.00000 -1.20000 AFIX 0 C11 1 0.579576 0.920581 0.555914 11.00000 0.04717 0.04008 = 0.07732 -0.02285 -0.01368 0.00659 AFIX 43 H11 2 0.603085 0.958419 0.580570 11.00000 -1.20000 AFIX 0 C12 1 0.566643 0.919797 0.477817 11.00000 0.04319 0.03154 = 0.07485 -0.00337 -0.00224 0.00151 AFIX 43 H12 2 0.582117 0.956953 0.449883 11.00000 -1.20000 AFIX 0 C13 1 0.530507 0.863461 0.441066 11.00000 0.03690 0.03538 = 0.04973 -0.00325 0.00004 -0.00005 AFIX 43 H13 2 0.520611 0.863122 0.388523 11.00000 -1.20000 AFTX 0 C14 1 0.314075 0.697692 0.275970 11.00000 0.04108 0.04162 = 0.04100 0.00053 -0.00559 -0.00137 C15 1 0.287567 0.643355 0.234454 11.00000 0.05024 0.04489 = 0.03678 -0.00182 -0.00984 -0.00215 AFIX 43 H15 2 0.240916 0.647050 0.188919 11.00000 -1.20000 AFTX 0 c16 1 0.329199 0.582102 0.259027 11.00000 0.04345 0.04327 = 0.03873 -0.00623 -0.00271 -0.00589

S113

c17 1 0.301842 0.524518 0.207237 11.00000 0.05797 0.04937 = 0.04781 -0.01189 -0.00965 -0.00378 PART 1 AFIX 13 H17A 2 0.383590 0.516804 0.177771 21.00000 -1.20000 AFTX 13 PART 2 H17B 2 0.383785 0.499393 0.199719 -21.00000 -1.20000 AFIX 0 PART 1 F4 5 0.247202 0.760957 0.171770 31.00000 0.11399 0.06027 = 0.05510 0.01519 -0.02918 0.01113 F5 5 0.161868 0.780402 0.281162 31.00000 0.10511 0.08874 = 0.10732 0.02087 0.01296 0.04554 5 0.199551 0.538049 0.155319 21.00000 0.12727 0.06392 = F6 0.09265 -0.00206 -0.07221 -0.01017 PART 2 F4A 5 0.168393 0.757443 0.199154 -31.00000 0.16074 0.07297 = 0.15814 -0.02466 -0.12571 0.03824 F5A 5 0.373623 0.795473 0.227597 -31.00000 0.12071 0.05973 = 0.08446 0.02803 0.02694 0.00035 5 0.249594 0.541148 0.141050 -21.00000 0.15632 0.06536 = F6A 0.04278 -0.01534 -0.02659 -0.01543 PART 1 F1 5 0.173582 0.472345 0.298606 21.00000 0.10519 0.08914 = 0.08504 -0.01597 0.02517 -0.04073 F2 5 0.219630 0.421476 0.195334 21.00000 0.12150 0.05463 = 0.07756 -0.01266 -0.02219 -0.03142 5 0.375922 0.438886 0.275344 21.00000 FЗ 0.13883 0.06495 = 0.11690 -0.01302 -0.05730 0.01545 C18 1 0.267256 0.464996 0.243817 21.00000 0.08373 0.05200 = 0.05600 -0.00671 -0.01368 -0.01437 PART 2 F1A 5 0.082296 0.515013 0.257657 -21.00000 0.07225 0.13053 = 0.17281 -0.06084 0.01638 -0.03347 F2A 5 0.156182 0.434603 0.199164 -21.00000 0.12721 0.08197 = 0.08414 -0.03655 -0.01025 -0.04183 F3A 5 0.235603 0.457301 0.307337 -21.00000 0.17357 0.09719 = 0.07670 0.01549 -0.02798 -0.06511 C18A 1 0.191766 0.482818 0.242861 -21.00000 0.08470 0.06450 = 0.05476 -0.02469 -0.00030 -0.02190 PART 0 c19 1 0.270142 0.763114 0.247965 11.00000 0.07242 0.04876 = 0.05479 0.00332 -0.01907 0.00594 PART 1 AFIX 13 H19A 2 0.340719 0.794553 0.258613 31.00000 -1.20000 AFIX 13 PART 2 H19B 2 0.233668 0.785362 0.292453 -31.00000 -1.20000 PART 0

S114

```
AFIX 0
HKLF 4
REM suqqig_a.res in Pbcn
REM R1 = 0.0580 for 2606 Fo > 4sig(Fo) and 0.1140 for all 4419 data
REM 321 parameters refined using 608 restraints
END
WGHT 0.0654 1.0377
REM Instructions for potential hydrogen bonds
HTAB N2 O1
EQIV $2 -x+1, y, -z+1/2
HTAB C17 O1 $2
REM Highest difference peak 0.316, deepest hole -0.170, 1-sigma level 0.039
Q1 1 0.4001 0.4751 0.2302 11.00000 0.05 0.32
Q2 1 0.0916 0.7429 0.2541 11.00000 0.05 0.25
Q3 1 0.5008 0.7768 0.4630 11.00000 0.05 0.24
Q4 1 0.3127 0.5515 0.2359 11.00000 0.05 0.21
```

Q5 1 0.4859 0.7190 0.4618 11.00000 0.05 0.21

Empirical formula	$C_{19}H_{14}F_6N_2O$
Formula weight	400.32
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	Pbcn
Unit cell dimensions	
a = 9.980(2) Å	
b = 20.836(4) Å	
c = 17.599(4) Å	
Volume	3659.7(13) Å ³
Z	8
Density (calculated)	1.453 Mg/m ³
Absorption coefficient	0.133 mm ⁻¹
F(000)	1632
Crystal size	0.450 x 0.150 x 0.100 mm ³
Theta range for data collection	2.263 to 28.022°
Index ranges	-13<=h<=12, -27<=k<=10, -9<=l<=23
Reflections collected	18813
Independent reflections	4417 [R(int) = 0.0682]
Completeness to theta = 25.242°	99.90%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4417 / 608 / 321
Goodness-of-fit on F^2	1.013
Final R indices [I>2sigma(I)]	R1 = 0.0575, wR2 = 0.1294
R indices (all data)	R1 = 0.1137, wR2 = 0.1528
Largest diff. peak and hole	0.319 and -0.167 e.Å ⁻³

Table S44. Crystal data and structure refinement for SUQQIG.

Y Х Х U(eq) O(1) 3901(2) 5708(1) 3191(1) 48(1) N(1) 4083(2) 7530(1) 3797(1) 38(1) N(2) 3795(2) 6966(1) 3423(1) 38(1) C(1) 4703(2) 7471(1) 4438(1) 33(1) C(2) 5046(2) 6849(1) 4799(1) 35(1) C(3) 5069(1) 48(1) 4051(2) 6444(1) C(4) 4379(3) 5869(1) 5407(1) 61(1) 5479(2) C(5) 5684(3) 5688(1) 66(1) C(6) 6681(3) 6083(1) 5219(2) 70(1) C(7) 6367(2) 4880(1) 54(1) 6664(1) 4824(1) C(8) 5090(2) 8075(1) 36(1) C(9) 5243(2) 8088(1) 5609(1) 44(1) C(10) 5579(2) 8659(1) 5972(1) 54(1) C(11) 5796(2) 9206(1) 5559(2) 55(1) C(12) 5666(2) 4778(1) 50(1) 9198(1) C(13) 5305(2) 4411(1) 41(1) 8635(1) C(14) 2760(1) 41(1) 3141(2) 6977(1) C(15) 2876(2) 6433(1) 2344(1) 44(1) C(16) 3292(2) 5821(1) 2590(1) 42(1) C(17) 3018(3) 5245(1) 2072(1) 52(1) 1718(2) F(4) 2472(4) 7609(2) 76(1) 2812(2) 100(1) F(5) 1619(3) 7804(2) F(6) 1996(9) 5380(5) 1553(4) 95(3) 1685(9) 7575(4) 1991(6) 131(4) F(4A) F(5A) 3736(6) 7955(2) 2276(3) 88(2) F(6A) 2495(12) 5412(7) 1411(5) 88(3) 1736(7) 4724(4) 2986(4) 93(2) F(1) F(2) 2196(6) 4215(3) 1954(4) 84(2) F(3) 3759(5) 4389(2) 2753(2) 107(2) 2673(7) 2438(3) C(18) 4650(3) 64(1) F(1A) 823(5) 5150(3) 2577(4) 125(2) F(2A) 1562(9) 4347(5) 1991(6) 98(3) F(3A) 2355(11) 4573(6) 3073(5) 116(4) 68(2) C(18A) 1918(10) 4828(4) 2429(4) C(19) 2480(1) 59(1) 2701(3) 7631(1)

Table S45. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for SUQQIG. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Bond distance (Å)		Bond angle (°)		Bond angle (°)
O(1)-C(16)	1.242(2)	C(1)-N(1)-N(2)	115.87(17)	F(6)-C(17)-C(18)	106.9(5)
N(1)-C(1)	1.291(2)	C(14)-N(2)-N(1)	120.31(17)	F(6A)-C(17)-C(16)	112.9(6)
N(1)-N(2)	1.378(2)	C(14)-N(2)-H(2N)	115.3(14)	F(6)-C(17)-C(16)	111.2(5)
N(2)-C(14)	1.337(2)	N(1)-N(2)-H(2N)	124.3(14)	C(18)-C(17)-C(16)	116.8(3)
N(2)-H(2N)	0.901(16)	N(1)-C(1)-C(8)	116.41(17)	F(6A)-C(17)-C(18A)	103.0(6)
C(1)-C(8)	1.482(3)	N(1)-C(1)-C(2)	124.60(17)	C(16)-C(17)-C(18A)	109.1(3)
C(1)-C(2)	1.485(3)	C(8)-C(1)-C(2)	118.99(16)	F(6)-C(17)-H(17A)	107.1
C(2)-C(7)	1.381(3)	C(7)-C(2)-C(3)	118.6(2)	C(18)-C(17)-H(17A)	107.1
C(2)-C(3)	1.386(3)	C(7)-C(2)-C(1)	120.49(18)	C(16)-C(17)-H(17A)	107.1
C(3)-C(4)	1.377(3)	C(3)-C(2)-C(1)	120.87(19)	F(6A)-C(17)-H(17B)	110.5
C(3)-H(3)	0.93	C(4)-C(3)-C(2)	120.5(2)	C(16)-C(17)-H(17B)	110.5
C(4)-C(5)	1.362(4)	C(4)-C(3)-H(3)	119.8	C(18A)-C(17)-H(17B)	110.5
C(4)-H(4)	0.93	C(2)-C(3)-H(3)	119.8	F(2)-C(18)-F(3)	106.2(5)
C(5)-C(6)	1.370(4)	C(5)-C(4)-C(3)	120.6(2)	F(2)-C(18)-F(1)	106.6(6)
C(5)-H(5)	0.93	C(5)-C(4)-H(4)	119.7	F(3)-C(18)-F(1)	108.2(6)
C(6)-C(7)	1.385(4)	C(3)-C(4)-H(4)	119.7	F(2)-C(18)-C(17)	112.7(5)
C(6)-H(6)	0.93	C(4)-C(5)-C(6)	119.8(2)	F(3)-C(18)-C(17)	110.0(5)
C(7)-H(7)	0.93	C(4)-C(5)-H(5)	120.1	F(1)-C(18)-C(17)	112.8(6)
C(8)-C(9)	1.390(3)	C(6)-C(5)-H(5)	120.1	F(1A)-C(18A)-F(2A)	106.3(7)
C(8)-C(13)	1.392(3)	C(5)-C(6)-C(7)	120.4(2)	F(1A)-C(18A)-F(3A)	108.0(9)
C(9)-C(10)	1.391(3)	C(5)-C(6)-H(6)	119.8	F(2A)-C(18A)-F(3A)	106.5(9)
C(9)-H(9)	0.93	C(7)-C(6)-H(6)	119.8	F(1A)-C(18A)-C(17)	112.9(6)
C(10)-C(11)	1.369(4)	C(2)-C(7)-C(6)	120.2(2)	F(2A)-C(18A)-C(17)	112.7(7)
C(10)-H(10)	0.93	C(2)-C(7)-H(7)	119.9	F(3A)-C(18A)-C(17)	109.9(8)
C(11)-C(12)	1.380(3)	C(6)-C(7)-H(7)	119.9	F(5A)-C(19)-F(4A)	118.5(6)
C(11)-H(11)	0.93	C(9)-C(8)-C(13)	119.11(19)	F(5)-C(19)-F(4)	108.5(3)
C(12)-C(13)	1.388(3)	C(9)-C(8)-C(1)	120.10(18)	F(5)-C(19)-C(14)	110.5(3)
C(12)-H(12)	0.93	C(13)-C(8)-C(1)	120.80(17)	F(5A)-C(19)-C(14)	109.3(3)
C(13)-H(13)	0.93	C(8)-C(9)-C(10)	120.0(2)	F(4A)-C(19)-C(14)	110.5(4)
C(14)-C(15)	1.373(3)	C(8)-C(9)-H(9)	120	F(4)-C(19)-C(14)	109.8(3)
C(14)-C(19)	1.515(3)	C(10)-C(9)-H(9)	120	F(5)-C(19)-H(19A)	109.4
C(15)-C(16)	1.410(3)	C(11)-C(10)-C(9)	120.4(2)	F(4)-C(19)-H(19A)	109.4
C(15)-H(15)	0.93	C(11)-C(10)-H(10)	119.8	C(14)-C(19)-H(19A)	109.4
C(16)-C(17)	1.531(3)	C(9)-C(10)-H(10)	119.8	F(5A)-C(19)-H(19B)	105.9
C(17)-F(6A)	1.322(9)	C(10)-C(11)-C(12)	120.3(2)	F(4A)-C(19)-H(19B)	105.9
C(17)-F(6)	1.399(7)	C(10)-C(11)-H(11)	119.9	C(14)-C(19)-H(19B)	105.9
C(17)-C(18)	1.439(6)	C(12)-C(11)-H(11)	119.9		
C(17)-C(18A)	1.534(9)	C(11)-C(12)-C(13)	119.9(2)		
C(17)-H(17A)	0.9800	C(11)-C(12)-H(12)	120.1		
C(17)-H(17B)	0.9800	C(13)-C(12)-H(12)	120 1		
F(4)-C(19)	1.361(4)	C(12)-C(13)-C(8)	120.3(2)		
F(5)-C(19)	1.280(4)	C(12)-C(13)-H(13)	119.8		
F(4A)-C(19)	1.335(6)	C(8)-C(13)-H(13)	119.8		
F(5A)-C(19)	1.285(5)	N(2)-C(14)-C(15)	122.96(19)		
F(1) C(10)	1 352(8)	N(2) C(14) C(10)	116 14(18)		

Table S46. Bond distances [Å] and angles [°] for SUQQIG.

F(2)-C(18)	1.333(6)	C(15)-C(14)-C(19)	120.90(18)
F(3)-C(18)	1.334(7)	C(14)-C(15)-C(16)	121.76(18)
F(1A)-C(18A)	1.308(9)	C(14)-C(15)-H(15)	119.1
F(2A)-C(18A)	1.314(8)	C(16)-C(15)-H(15)	119.1
F(3A)-C(18A)	1.327(10)	O(1)-C(16)-C(15)	125.20(19)
C(19)-H(19A)	0.9800	O(1)-C(16)-C(17)	116.49(19)
C(19)-H(19B)	0.9800	C(15)-C(16)-C(17)	118.29(18)

Table S47. Anisotropic displacement parameters ($Å^2 \times 10^3$) for SUQQIG. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$.

xponent takes the	iorm: -2π [h a	$* \cup + + 2$	<u>пкатот U</u> .			
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	58(1)	40(1)	46(1)	-4(1)	-11(1)	0(1)
N(1)	40(1)	32(1)	42(1)	-2(1)	-5(1)	-2(1)
N(2)	42(1)	31(1)	42(1)	-1(1)	-8(1)	-1(1)
C(1)	28(1)	32(1)	38(1)	-2(1)	2(1)	-3(1)
C(2)	35(1)	33(1)	36(1)	-2(1)	-4(1)	-4(1)
C(3)	40(1)	51(1)	52(1)	10(1)	-1(1)	-8(1)
C(4)	63(2)	55(2)	65(2)	23(1)	-9(1)	-16(1)
C(5)	80(2)	44(1)	73(2)	16(1)	-27(1)	-4(1)
C(6)	54(2)	54(2)	102(2)	10(2)	-26(2)	7(1)
C(7)	36(1)	47(1)	79(2)	7(1)	-7(1)	-4(1)
C(8)	28(1)	34(1)	45(1)	-3(1)	-1(1)	0(1)
C(9)	43(1)	45(1)	44(1)	-4(1)	-4(1)	1(1)
C(10)	52(1)	59(2)	53(1)	-19(1)	-11(1)	8(1)
C(11)	47(1)	40(1)	77(2)	-23(1)	-14(1)	7(1)
C(12)	43(1)	32(1)	75(2)	-3(1)	-2(1)	2(1)
C(13)	37(1)	35(1)	50(1)	-3(1)	0(1)	0(1)
C(14)	41(1)	42(1)	41(1)	1(1)	-6(1)	-1(1)
C(15)	50(1)	45(1)	37(1)	-2(1)	-10(1)	-2(1)
C(16)	44(1)	43(1)	39(1)	-6(1)	-3(1)	-6(1)
C(17)	58(2)	49(1)	48(1)	-12(1)	-10(1)	-4(1)
F(4)	114(3)	60(2)	55(1)	15(1)	-29(2)	11(2)
F(5)	105(2)	89(2)	107(2)	21(2)	13(2)	45(2)
F(6)	128(5)	64(3)	93(5)	-2(3)	-73(5)	-10(4)
F(4A)	161(7)	73(4)	159(8)	-25(5)	-126(6)	39(5)
F(5A)	121(4)	60(3)	85(3)	28(2)	27(3)	0(3)
F(6A)	157(9)	65(4)	43(2)	-15(2)	-27(4)	-16(5)
F(1)	105(4)	89(4)	85(4)	-16(3)	25(3)	-41(3)
F(2)	122(5)	54(2)	77(2)	-13(2)	-22(3)	-31(3)
F(3)	139(4)	64(2)	117(3)	-13(2)	-57(3)	16(2)
C(18)	83(4)	52(3)	56(3)	-7(2)	-14(3)	-14(3)
F(1A)	73(3)	130(5)	173(5)	-61(4)	17(3)	-34(3)
F(2A)	128(6)	82(5)	84(3)	-37(3)	-11(4)	-42(4)
F(3A)	174(10)	97(6)	77(4)	16(3)	-28(5)	-65(6)
C(18A)	85(5)	64(4)	55(3)	-25(3)	0(3)	-22(3)
C(19)	72(2)	49(2)	55(1)	3(1)	-19(1)	6(1)

	Х	Y	Z	U(eq)
H(2N)	4060(20)	6574(8)	3579(12)	46
H(3)	3156	6561	5021	57
H(4)	3704	5602	5587	73
H(5)	5898	5297	5704	79
H(6)	7572	5961	5269	84
H(7)	7049	6931	4706	65
H(9)	5120	7715	5892	53
H(10)	5658	8669	6498	65
H(11)	6031	9584	5806	66
H(12)	5821	9570	4499	60
H(13)	5206	8632	3885	49
H(15)	2409	6470	1889	53
H(17A)	3836	5168	1778	62
H(17B)	3838	4994	1997	62
H(19A)	3407	7946	2586	70
H(19B)	2336	7854	2925	70

Table S48. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (Å²×10³) for SUQQIG.

7. NMR Spectra

Figure S51. ¹⁹F NMR spectrum of TMSCF₂H.

Figure S52. ¹H NMR spectrum of TMSCF₂D.

Figure S53. ¹⁹F NMR spectrum of TMSCF₂D.

Figure S54. ¹³C{¹H} NMR spectrum of TMSCF₂D.

Figure S55. ¹H NMR spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethan-1-ol (3-NO₂).

Figure S56. Splitting diagram for H2 of 2,2-difluoro-1-(2-nitrophenyl)ethan-1-ol (3-NO₂).

Figure S57. ¹⁹F NMR spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethan-1-ol (3-NO₂).

Figure S59. ¹H-¹³C HSQC spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethan-1-ol (3-NO₂).

Figure S60. ¹H NMR spectrum of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethan-1-ol (3-NO₂-D).

73 5.72 5.71 5.70 5.69 5.68 5.67 5.66 5.65 5.64 5.63 5.62 5.61 5.60 5.59 5.58 5.57

Figure S61. Splitting diagram for H2 of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethan-1-ol (3-NO₂-D).

Figure S62. ¹⁹F NMR spectrum of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethan-1-ol (3-NO₂-D).

Figure S63. Splitting diagrams for F2 (left) and F1 (right) of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethan-1-ol (**3-NO₂-D**).

Figure S64. ¹H NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethan-1-ol (3-Br).

Figure S65. Splitting diagram for H2 of 1-(4-bromophenyl)-2,2-difluoroethan-1-ol (3-Br).

Figure S66. ¹⁹F NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethan-1-ol (3-Br).

Figure S67. ¹³C{¹H} NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethan-1-ol (**3-Br**).

Figure S68. ¹H NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethan-2-deutero-1-ol (3-Br-D).

Figure S69. ¹⁹F NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethan-2-deutero-1-ol (3-Br-D).

Figure S70. Splitting diagrams for Fa (left) and Fb (right) of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethan-1-ol (**3-Br-D**).

Figure S71. ¹H NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F).

Figure S72. Splitting diagrams for H4 (left) and H1 (right) of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F).

Figure S73. Splitting diagram for H2 of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F).

Figure S74. ¹⁹F NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F).

Figure S75. Splitting diagrams for Fb (left) and Fa (right) of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F).

Figure S76. Splitting diagram for F_{Ar} of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (**3-F**).

Figure S77. ¹⁹F{¹H} NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (**3-F**).

Figure S78. ¹³C{¹H} NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (3-F).

Figure S79. ¹H NMR spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S80. Splitting diagram for H4 of 2,2-difluoro-1-(2-fluorophenyl)ethan-1-ol (4-NO₂).

Figure S81. ¹⁹F NMR spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S82. Splitting diagrams for Fb of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (**4-NO**₂). Left: full signal; right: expansion of the part of the signal.

-133.2 -133.3 -133.4 -133.5 -133.6 -133.7 -133.8 -133.9 -134.0 -134.1 -134.2

Figure S83. Splitting diagram for Fa of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S84. ¹³C{¹H} NMR spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S85. ¹H-¹H COSY spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S86. ¹H-¹³C HSQC spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S87. ¹H-¹³C HMBC spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S88. ¹H-¹⁹F HOESY spectrum of 2,2-difluoro-1-(2-nitrophenyl)ethyl triflate (4-NO₂).

Figure S89. ¹H NMR spectrum of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethyl triflate (4-NO₂-D).

Figure S90. ¹⁹F NMR spectrum of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethyl triflate (4-NO₂-D).

Figure S91. Splitting diagrams for Fb (left) and Fa (right) of 2,2-difluoro-2-deutero-1-(2-nitrophenyl)ethyl triflate (**4-NO₂-D**).

Figure S92. ¹H NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethyl triflate (4-Br).

Figure S93. ¹⁹F NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethyl triflate (4-Br).

Figure S94. Splitting diagrams for Fa (left) and Fb (right) of 1-(4-bromophenyl)-2,2-difluoroethyl triflate (4-Br).

Figure S95. ¹³C{¹H} NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethyl triflate (4-Br).

Figure S96. ¹H-¹⁹F HOESY spectrum of 1-(4-bromophenyl)-2,2-difluoroethyl triflate (4-Br).

Figure S97. ¹H NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethyl-2-deutero triflate (4-Br-D).

Figure S98. ¹⁹F NMR spectrum of 1-(4-bromophenyl)-2,2-difluoroethyl-2-deutero triflate (4-Br-D).

Figure S99. ¹H NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F).

Figure S100. Splitting diagrams for H1 (left) and H2 (right) of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F).

Figure S101. Splitting diagram for H3 of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F).

Figure S102. ¹⁹F NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F).

3.77 -116.79 -116.81 -116.83 -116.85 -116.87 -116.89 -116.91 -116.93 -116.95

Figure S103. Splitting diagram for Fd of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F) in ¹⁹F NMR spectrum.

Figure S104. ¹⁹F{¹H} NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F).

Figure S105. Splitting diagrams for Fa (left) and Fb (right) of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F) in ${}^{19}F{}^{1}H$ NMR spectrum.

Figure S106. ¹³C{¹H} NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F).

Figure S107. ¹H-¹⁹F NMR spectrum of 2,2-difluoro-1-(2-fluorophenyl)ethyl triflate (4-F).

Figure S108. ¹H NMR spectrum of *o*-nitro- α , α -difluorotoluene (1-CF₂H).

Figure S109. ¹⁹F NMR spectrum of *o*-nitro- α , α -difluorotoluene (1-CF₂H).

Figure S110. ¹H NMR spectrum of *o*-nitro- α -deutero- α , α -difluorotoluene (1-CF₂D).

Figure S111. ¹⁹F NMR spectrum of *o*-nitro- α -deutero- α , α -difluorotoluene (1-CF₂D).

Figure S112. ¹H NMR spectrum of *p*-bromo- α , α -difluorotoluene (2-CF₂H).

Figure S116. ¹H NMR spectrum of *p*-bromophenol (2-OH).

Figure S117. ¹H NMR spectrum of 1-benzyloxy-4-(difluoromethyl)benzene (5-CF₂H).

Figure S118. ¹⁹F NMR spectrum of 1-benzyloxy-4-(difluoromethyl)benzene (5-CF₂H).

8. o-Substituent Effects on the ¹H NMR Chemical Shift of the CF₂H Group

An analysis of ¹H NMR data of α -difluoromethylbenzyl alcohols (ArCH(OH)CF₂H) suggests that the deshielding of CF₂H proton is associated with hydrogen bonding acceptors in the *ortho*-position on the phenyl ring. In the absence of hydrogen bonding acceptors in the *ortho*-position, the CF₂H proton peaks appear below 5.80 ppm in CDCl₃ (Figure S119, compounds a-c). The CF₂H protons are slightly deshielded when a weak hydrogen bonding acceptor is present in the *ortho*-position (Figure S119, compounds d-f). Strong hydrogen bonding acceptors lead to significant deshielding of the CF₂H proton, indicating the presence of hydrogen bonding interactions (Figure S119, compounds g-h).

Figure S119. CF_2H proton chemical shifts of various α -difluoromethylbenzyl alcohols (ArCH(OH)CF₂H) in CDCl₃. Data for compounds a, d, e, and g are from reference ². Data for compound c are from reference ²⁸. Data for the remaining compounds are from this work.

References

- 1. Tyutyunov, A. A.; Boyko, V. E.; Igoumnov, S. M. The Unusual Reaction of (Trifluoromethyl)Trimethylsilane with Sodium Borohydride *Fluorine Notes* [Online], 2011. http://notes.fluorine1.ru/public/2011/1_2011/letters/letter2.html (accessed Mar 3, 2017).
- 2. Zhao, Y.; Huang, W.; Zheng, J.; Hu, J., Org. Lett. 2011, 13, 5342-5345.
- 3. Feng, Z.; Min, Q.-Q.; Zhang, X., Org. Lett. 2016, 18, 44-47.
- 4. Reichardt, C.; Welton, T., Solvents and Solvent Effects in Organic Chemistry. 4th ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian, Inc.: Wallingford, CT, USA, 2009.
- 6. Zhao, Y.; Truhlar, D. G., Theor. Chem. Acc. 2008, 120, 215-241.
- 7. Lodewyk, M. W.; Siebert, M. R.; Tantillo, D. J., *Chem. Rev.* **2012**, *112*, 1839-1862.
- 8. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A., J. Org. Chem. 1997, 62, 7512-7515.
- 9. Bailey, W. F.; Cioffi, E. A.; Wiberg, K. B., J. Org. Chem. 1981, 46, 4219-4225.
- 10. Knauber, T.; Arikan, F.; Röschenthaler, G. V.; Gooßen, L. J., Chem. Eur. J. 2011, 17, 2689-2697.
- 11. Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H., Chem. Eur. J. 2011, 17, 5652-5660.
- 12. Ramaiah, P.; Krishnamurti, R.; Prakash, G. K. S., Org. Synth. 1995, 72, 5.
- 13. Kremsner, J. M.; Rack, M.; Pilger, C.; Oliver Kappe, C., Tetrahedron Lett. 2009, 50, 3665-3668.
- 14. Surya Prakash, G. K.; Reddy, V. P.; Li, X.-Y.; Olah, G. A., *Synlett* **1990**, *1990*, 594-596.
- 15. Allen, L. C., J. Am. Chem. Soc. 1989, 111, 9003-9014.
- 16. Rahm, M.; Hoffmann, R., J. Am. Chem. Soc. 2015, 137, 10282-10291.
- 17. Pauling, L., The Nature of the Chemical Bond and the Structure of Molecules and Crystals : An Introduction to Modern Structural Chemistry. 3rd ed.; Cornell University Press: Ithaca, N.Y., 1960.
- 18. Rahm, M.; Hoffmann, R., J. Am. Chem. Soc. 2016, 138, 3731-3744.
- 19. Bader, R. F. W., Atoms in molecules : a quantum theory. Clarendon Press: Oxford; New York, 1990.
- 20. Kohout, M. *DGrid*, 4.6; Radebeul, 2011.
- 21. APEX2 v.4.0, Bruker AXS, Inc.: Madison, WI, 2008.
- 22. SAINT: SAX Area-Detector Integration Program, University of Göttingen: Göttingen, Germany, 2008.
- 23. Sheldrick, G. M. SADABS: Area-Detector Absorption Correction, University of Göttingen: Göttingen, Germany, 2008.
- 24. Sheldrick, G. M., Acta. Crystallogr. A 2015, 71, 3-8.
- 25. Sheldrick, G. M., Acta. Crystallogr. C 2015, 71, 3-8.
- 26. Spek, A. L. *PLATON: A Multipurpose Crystallographic Tool*, University of Utrecht: Utrecht, The Netherlands, 2008.
- 27. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J., J. Appl. Crystallogr. 2006, 39, 453-457.
- 28. Kaneko, S.; Yamazaki, T.; Kitazume, T., J. Org. Chem. 1993, 58, 2302-2312.