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Supplement for “Revised interpretation of the Hain Lifescience GenoType MTBC to differentiate 

Mycobacterium canettii and members of the Mycobacterium tuberculosis complex” 

 

Methods 

894 genomes were included in this study (851 genomes previously used for Brites et al.1 with data from 

several earlier studies2-15; 21 previously published M. canettii genomes from Blouin et al.16 and Tagliani et al.17; 

14 BCG variants from Abdallah et al.18; three M. caprae genomes from Orloski et al.19; three unpublished M. 

canettii genomes from the Research Center Borstel20; one M. canettii genome from the New York State 

Department of Health; and finally an unpublished M. bovis genome from the Friedrich Loeffler Institute). The 

accession numbers for all genomes can be found in Table S1. Table S3 provides an analysis of the pyrazinamide 

resistance genes (i.e. panD, pncA, and rpsA) of the 26 M. canettii genomes. 

Raw genomic reads were processed as described in Menardo et al.21 Briefly, the reads were trimmed with 

Trimmomatic v0.33.22 Only reads larger than 20 bp were kept for the downstream analysis. The software 

SeqPrep (https://github.com/jstjohn/SeqPrep) was used to identify and merge any overlapping paired-end 

reads. The resulting reads were aligned to the reconstructed ancestral sequence of the M. tuberculosis 

complex using the mem algorithm of BWA v0.7.13.2,23 Duplicated reads were marked using the MarkDuplicates 

module of Picard v2.9.1 (https://github.com/broadinstitute/picard). The RealignerTargetCreator and 

IndelRealigner modules of GATK v 3.4.0 were used to perform local realignment of reads around InDels.24 

Finally, SNPs were called with Samtools v1.2 mpileup25 and VarScan v2.4.126 using the following thresholds: 

minimum mapping quality of 20, minimum base quality at a position of 20, minimum read depth at a position 

of 7X, maximum strand bias for a position 90%. SNPs were annotated using snpEff v4.1144, using the M. 

tuberculosis H37Rv reference annotation (NC_000962.3).27 A custom python script was used to type in-silico all 

genomes of the dataset, with the SNP/deletion markers from the assay (Figure S2 and Table S2). 

A maximum likelihood phylogeny was inferred with RAxML (v.8.2.8) using an alignment containing only 

polymorphic sites and excluding the variable positions in drug resistance-related genes. The phylogeny was 

inferred using the general time-reversible model of sequence evolution and Mycobacterium canettii 

(SRR011186) was used as an outgroup to root the phylogeny (Figure S1). 
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Figure S1. MTBC phylogeny. 

Maximum likelihood phylogeny of 571 of the 894 genomes included in this study (i.e. redundant genomes 

were removed21). The branch lengths are proportional to nucleotide substitutions and the tree is rooted with 

Mycobacterium canettii SRR011186. The node supports correspond to bootstrap values. Genomes with 

pattern 6 in Figure 1 (i.e. four M. bovis genomes without the pncA His57Asp mutation, which confers intrinsic 

resistance to pyrazinamide28, and three M. caprae genomes) are highlighted in light pink. The BCG genomes 

(banding pattern 8 in Figure 1) are indicated in brown. The RD1BCG deletion (Figure S2) and five gyrB mutations 

(Table S2) interrogated by the Hain Lifescience GenoType MTBC are indicated with a yellow triangle and yellow 

stars, respectively (e.g. band 8 develops if the Ala403Ser mutation is not present, whereas the reverse is the 

case for band 10). Notably, mutation Tyr144Tyr is homoplasic (i.e. it is present in all M. microti genomes 

(pattern 4 in Figure 1) as well as some M. canettii genomes, which are not included in this tree (pattern 1 in 

Figure 1)). The previously described gyrB Ala329Ala marker (1113 G>A at position 6109) could be added to the 

Hain assay to differentiate M. orygis from the remaining genotypes.29 The lepA V242V marker for M. caprae is 

indicated by a red star.30 RD1mic, which is discussed in Figure S2, is shown by a red triangle. 
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Figure S2. Amplicon and probe design for RD1BCG deletion. 

Diagrams adapted from Brodin et al. showing the differences in the region comprising Rv3863 and Rv3881c 

between the deletion in BCG RD1BCG (A) and M. microti RD1mic (C) relative to M. tuberculosis H37Rv (B).31 BCG 

is not detected by the lack of binding of a probe that falls within the RD1BCG deletion, which is shared by all 

BCG strains. Instead, the probe in question is just upstream of that deletion and is thus also present in M. 

bovis. However, because the corresponding primers are located upstream and downstream of RD1BCG, they are 

only sufficiently close to enable exponential amplification when the deletion is present (i.e. 52 bp vs. 9508 bp). 

This design also ensures that the fact that the probe and forward primer are deleted in M. microti is irrelevant. 
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Table S2. Probe design. 

Band 

number 

Probe ID in 

patent 

Probe sequences 
Position in Huard 

et al.29 

Genomic 

position 

Mutation 

3 21 GGAGTTCTGGGGCTG NA NA NA 

4 15 CTGGCCGCTGTGATCTC 1311 6307 wild-type 

5 17 GTCTGTAACGAACAGCT 1410 6406 wild-type 

6 13 CAGAACCGCACCGTTG 756 5752 wild-type 

7 11 ACGGGTACGAGTGGTC 675 5671 wild-type 

8 19 GACTTTCGCGTCGGTG 1450 6446 wild-type 

9 18 GTCTGTAATGAACAGCT 1410 C>T 6406 Asn389Asn 

10 20 GACTTTCGAGTCGGTG 1450 G>T 6446 Ala403Ser 

11 12 ACGGGTATGAGTGGTC 675 C>T 5671 Tyr144Tyr 

12 16 CTGGCCGCGGTGATCTC 1311 T>G 6307 Ala356Ala 

13 10 CGTGGTGGAGCGGA NA NA NA 
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