Defining the S_N1 side of glycosylation reactions: stereoselectivity of glycopyranosyl cations

Thomas Hansen¹, Ludivine Lebedel², Wouter A. Remmerswaal¹, Stefan van der Vorm¹, Dennis P.A. Wander¹, Mark Somers¹, Herman S. Overkleeft¹, Dmitri V. Filippov¹, Jérôme Désiré², Agnès Mingot², Yves Bleriot², Gijsbert A. van der Marel¹, Sebastien Thibaudeau², Jeroen D. C. Codée^{1*}

Affiliations:

¹Leiden University, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC Leiden, The Netherlands

²Université de Poitiers, UMR-CNRS 7285, IC2MP, Equipe 'Synthèse organique', 4 rue Michel Brunet, TSA 51106, Poitiers Cedex 9 86073, France.

*Correspondence to: jcodee@chem.leidenuniv.nl

Supplementary information

DFT calculations

General procedure I: CEL calculation of pyranosyl oxocarbenium ions	S2
General procedure II: computation of stereochemical preference based on the calculated CEL	2 S3
General procedure III: simulation of NMR spectra based on the calculated CEL map	S4
CEL maps	S4
Mono-substituted pyranosyl oxocarbenium ions	S5
C-4 Mono-substituted pyranosyl oxocarbenium ions	S5
C-3 Mono-substituted pyranosyl oxocarbenium ions	S23
C-2 Mono-substituted pyranosyl oxocarbenium ions	S29
Mono-substituted pyranosyl oxocarbenium ions with dispersion-corrected DFT	S33
Probing the influence of the substituent orientation on the oxocarbenium ion stability	S35
Multi-substituted pyranosyl oxocarbenium ions	S37
Solvent effects on multi-substituted pyranosyl oxocarbenium ions	S85
Additional information	S89
Top views per slice	S89
HF/SbF5 experiments	S99
CEL maps	S99
Protonated mono-substituted pyranosyl oxocarbenium ions	S99
Protonated multi-substituted pyranosyl oxocarbenium ions	S102
DFT computed NMR simulations	S107
NMR experiments	S110
General experimental procedures	S110
General procedure in superacidic media for NMR experiments	S110
Protonated pyranosyl oxocarbenium ions	S110
Organic synthesis	S116
General experimental procedures	S116
General procedure IV: synthesis of phenyl 2,3,4-tri-O-benzyl/methyl-1-thio-pentopyranoses	S116

General procedure V: pre-activation Tf ₂ O/Ph ₂ SO based D-glycosylation	S117
General procedure VI: debenzylation of D-coupled pyranoses	S117
General procedure VII: pre-activation Tf ₂ O/Ph ₂ SO based D-glycosylation in Et ₂ O or CH ₃ CN	S117
General procedure VIII: TMSOTf activation based D-glycosylation	S118
Preparation of the donors for the model glycosylation reactions	S119
OBn-protected glycosyl donors	S119
OMe-protected glycosyl donors	S132
Model glycosylation reactions	S134
OBn-protected glycosyl donors	S134
OMe-protected glycosyl donors	S141
Model glycosylation reactions in Et ₂ O or MeCN	S142
Preparation of N-phenyl trifluoroacetimidate donors and their model glycosylations	S143
Preparation of the donors for the HF/SbF5 experiments	S146
Stereochemical proofs	S148
DFT computed NMR simulations of selected glycosides	S169
NMR spectra of new and selected compounds	S172

DFT calculations

General procedure I: conformational energy landscape calculation of pyranosyl oxocarbenium ions

To keep the calculation time manageable, large protection groups (OBn) were substituted with electronic comparable smaller groups (OMe). The initial structure for the conformational energy landscape (CEL) mapping of the six-membered oxocarbenium ion was optimised by starting from a 'conformer distribution search' option included in the Spartan 10 program by utilising DFT as the level of theory and B3LYP as hybrid functional in gas phase with 6-31G(d) as the basis set. All generated output geometries were re-optimised with Gaussian 03 or Gaussian 09 by using DFT/B3LYP/6-311G(d,p), their zero-point energy (ZPE) corrections calculated, and further optimised with a polarisable continuum model (PCM) to correct for solvation in CH₂Cl₂. For heavy elements, including iodine, a combination of LANL2DZ and 6-311G(d,p) was used as basis set by utilising the keyword "genecp". The geometry with the lowest, ZPE corrected, solvated energy was selected as the starting point for the CEL. A complete survey of the possible conformational space was done by scanning three dihedral angles ranging from -60° to 60°, including the C1-C2-C3-C4 (D1), C3-C4-C5-O (D3) and C5-O-C1-C2 (D5). The resolution of this survey is determined by the step size which was set to 15° per puckering parameter, giving a total of 729 prefixed conformations per pyranosyl oxocarbenium ion spanning the entire conformational landscape. All other internal coordinates were unconstrained. Except when a C2-substituent was present on the oxocarbenium ring of interest, then the C2-H2 bond length was fixed based on the optimised structure to counteract rearrangements occurring for higher energy conformers. The 729 structures were computed with Gaussian 03 or Gaussian 09 with DFT/B3LYP/6-311G(d,p). Furthermore, solvation effects of CH₂Cl₂ (or in selected cases Et₂O or MeCN) were taken into account with a PCM function. Dispersion-corrected DFT functionals were also used, including @B97XD and B3LYP-D3, and showed comparable results (vide infra). For pyranosyl oxocarbenium ions bearing a C5-C6 substituent three separate staggered rotamers (gg, gt, tg) of the O5-C5-C6-O6 dihedral angle $(-65^\circ, 65^\circ, 175^\circ)$ were considered. Earlier work showed the importance of these rotamers and their crucial impact on the selectivity and reactivity of the ion. [E. R. van Rijssel et al., Furanosyl Oxocarbenium Ion Stability and Stereoselectivity. Angew. Chem. Int. Ed. 53, 10381–10385 (2014)] The CEL maps were calculated separately and the starting geometry was obtained from the method described above in which the lowest, ZPE corrected, solvated energy generated rotamers were used. The three C5-C6 bond rotamers (not constrained) bring the total conformations for each pyranosyl oxocarbenium ion configuration to 2187 geometries. The final denoted free Gibbs energy was calculated using Equation (1) in which ΔE_{gas} is the gas-phase energy (electronic energy), $\Delta G_{gas,OH}^T$ (T = reaction temperature and pressure = 1 atm.) is the sum of corrections from the electronic energy to free Gibbs energy in the quasi-harmonic oscillator approximation also including ZPE, and ΔG_{solv} is their corresponding free solvation Gibbs energy. The $\Delta G_{aas,OH}^{F}$ were computed using the quasi-harmonic approximation in the gas phase according to the work of Truhlar. [R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. J. Phys. Chem. B. 115, 14556-14562 (2011)]

$$\Delta G_{in \, solution}^{T} = \Delta E_{gas} + \Delta G_{gas,QH}^{T} + \Delta G_{solv} \tag{1}$$
$$= \Delta G_{gas}^{T} + \Delta G_{solv}$$

The quasi-harmonic approximation is the same as the harmonic oscillator approximation except that vibrational frequencies lower than 100 cm⁻¹ were raised to 100 cm⁻¹ as a way to correct for the breakdown of the harmonic oscillator model for the free energies of low-frequency vibrational modes.

All found minima were checked for imaginary frequencies. To visualise the energy levels of the conformers on the Cremer-Pople sphere, we have generated slices dissecting the sphere that combine closely associated conformers (Figure 1). The OriginPro software was employed to produce the energy heat maps, contoured at 0.5 kcal/mol. For ease of visualisation, the Cremer-Pople globe is turned 180° with respect to its common representation and both poles (the ${}^{4}C_{1}$ and ${}^{1}C_{4}$ structures) are omitted as these conformations are very high in energy. Visualisation of conformations of interest was done with CYLview.

Figure 1| "Deconvolution" of the CEL map of the pyranosyl oxocarbenium ion I showing a top view of the most important slices that have been combined to generate the full CEL map.

General procedure II: computation of stereochemical preference based on the calculated CEL

To convert the relative energies of the continuum of conformers into the stereoselectivity of reactions the Boltzmann equation was used (Equation 2). The temperature used in the Boltzmann equation was equal to the reaction temperature. Inspection of the generated energy maps led to the realisation that two families of structures are most relevant: the continuum of $({}^{3}E, {}^{3}H_{4}, E_{4} \text{ and } B_{2,5})$ -like structures and the 'opposite' family of structures, composed of the range of $(E_{3}, {}^{4}H_{3}, {}^{4}E \text{ and } {}^{2,5}B)$ -like conformers.

$$\frac{N_{\rm i}}{N_{\rm total}} = \frac{e^{-E_{\rm rel}/RT}}{\sum_{k=1}^{N_{\rm total}} e^{-E_k/RT}}$$
(2)

To discriminate both families, a selection criterion was set to separate both conformational families. This selection was based on the H2_{a/b}-C2-C1-O5 dihedral angle of the oxocarbenium of interest (Figure 2). For the top-half of the CEL map, conformations with an H2_a-C2-C1-O5 angle larger than 105° were regarded as top face-selective, while a smaller angle was considered as bottom face-selective and *vice versa* for the bottom of the CEL map, but with the H2_b-C2-C1-O5 dihedral angle. This yields a top face- and bottom face-selective group with a corresponding fractional population, which was considered as the computed stereoselectivity of the calculated pyranosyl oxocarbenium. Only calculated structures with a relative energy of <5 kcal/mol were taken into account for calculating the Boltzmann distribution.

Figure 2| Stereotopic face differentiation of the relevant oxocarbenium ion conformations. CEL map of pyranosyl oxocarbenium ion I with marked areas for the top- and bottom face-selective family of conformations.

General procedure III: simulation of NMR spectra based on the calculated CEL map

To convert the relative energies of the continuum of conformers into simulated NMR spectra the Boltzmann equation was used (Equation 2). Based on all relevant geometries ($\Delta G_{gas/solution}^T < 2$ kcal/mol) the spin-spin coupling constants were calculated according to the work of Rablen and Bally.[Bally, T.; Rablen, P. R., Quantum-chemical simulation of ¹H NMR spectra. Comparison of DFT-based procedures for computing proton–proton coupling constants in organic molecules. *The Journal of organic chemistry* 2011, *76* (12), 4818-4830] with the use of 6-311g(d,p) u+1s as basis set and a scaling factor of 0.92. The computed total nuclear spin-spin coupling terms were used as calculated spin-spin coupling constants. Spectra were simulated with the use of MestReNova 9 with a line width of 4.0 Hz. The used chemical shift in the simulated spectra were acquired from the experimental spectra.

CEL maps

All CEL maps that are described in the article are summarised in the following section. The displayed CEL maps are based on the ΔG_{DCM}^T and relevant structures are added with their respective relative energy. Also additional information is given of the found local minima including detailed energy output from Gaussian 03 or Gaussian 09, ring dihedral angles and the geometrical output (coordinates in cartesian style).

Mono-substituted pyranosyl oxocarbenium ions

C-4 Mono-substituted pyranosyl oxocarbenium ions

4-Benzyloxy-pyranosyl oxocarbenium ion (1)

Figure 3 | CEL map of 4-benzyloxy-pyranosyl oxocarbenium ion (1).

Local minima

⁴*H*₃ conformation (0.0 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -616.623325104 \text{ a.u.} \\ E_{solv}(B3LYP) &= -616.694267615 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.247268 \text{ a.u.} \end{split}$$

Н	1.840685	-1.084953	-1.846118
С	1.880525	-0.580839	-0.873473
С	2.724070	-0.663924	1.464760
0	3.012367	1.381259	0.214744
С	3.064575	0.749351	1.296945
С	2.582456	0.752846	-1.082561
С	2.656488	-1.422841	0.139439
Н	1.745329	-0.648037	1.974048

Н	3.508946	0.671512	-1.648380
Н	3.663420	-1.623958	-0.232881
Н	3.413914	-1.096732	2.195663
Н	3.368492	1.366726	2.141893
Н	1.949570	1.522418	-1.515151
Н	2.153289	-2.377619	0.282799
0	0.579209	-0.390756	-0.336668
С	-0.452938	-0.131385	-1.311201
Н	-0.470931	-0.957319	-2.031811
Н	-0.238844	0.795611	-1.854322
С	-1.767627	-0.020607	-0.588854
С	-4.190109	0.173083	0.803312
С	-2.456843	-1.174498	-0.201102
С	-2.303082	1.229783	-0.269232
С	-3.509716	1.328120	0.421967
С	-3.661480	-1.079742	0.490861
Н	-2.049092	-2.149285	-0.447520
Н	-1.776395	2.130347	-0.567458
Н	-3.918510	2.303588	0.659635
Н	-4.190228	-1.980252	0.781824
Н	-5.130155	0.247850	1.337995

⁴*E* conformation (0.1 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -616.623113259 \text{ a.u.} \\ E_{solv}(B3LYP) &= -616.694041865 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.247277 \text{ a.u.} \end{split}$$

Atom coordinates

Н	1.875662	-1.356470	-1.671397
С	1.916356	-0.719569	-0.779783
С	2.785724	-0.450575	1.536800
0	2.725997	1.459206	0.038948
С	2.785483	0.974373	1.195516
С	2.645349	0.562483	-1.161400
С	2.699076	-1.405947	0.337540
Н	1.939418	-0.560493	2.231955
Н	3.674173	0.402558	-1.477580
Н	3.696749	-1.664627	-0.019947
Н	3.664695	-0.619987	2.173820
Н	2.820295	1.730719	1.979266
Н	2.123556	1.183297	-1.883024
Н	2.197603	-2.325632	0.635174
0	0.620954	-0.444063	-0.277813
С	-0.387450	-0.182366	-1.278096
Н	-0.397019	-1.014897	-1.991179
Н	-0.152915	0.737579	-1.823449
С	-1.715855	-0.052840	-0.584791
С	-4.166936	0.175035	0.750504
С	-2.399061	-1.196213	-0.156779
С	-2.271686	1.204209	-0.334404
С	-3.492943	1.319354	0.328457
С	-3.617563	-1.084459	0.507122
Н	-1.974777	-2.176014	-0.349311
Н	-1.749301	2.096579	-0.663433
Н	-3.917342	2.299686	0.512776
Н	-4.141391	-1.976990	0.829817
Н	-5.117992	0.262628	1.263305

³*H*₄ conformation (1.9 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -616.616883031 \text{ a.u.} \\ E_{solv}(B3LYP) &= -616.690653461 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.246889 \text{ a.u.} \end{split}$$

Н	1.753783	-0.308573	1.413036
С	1.649078	-0.093552	0.341406
С	3.861995	1.123097	0.083486
0	3.741940	-1.228735	-0.471168
С	4.408465	-0.192991	-0.236428
С	2.247292	-1.247947	-0.452511
С	2.335786	1.236605	0.010203
Н	4.381939	1.846489	-0.558333
Н	2.016075	-2.223576	-0.036726
Н	1.995830	2.020012	0.686675
Н	4.267056	1.344078	1.085822
Н	5.485170	-0.353561	-0.276411
Н	1.960392	-1.205400	-1.502349
Н	2.040027	1.523754	-1.001854
0	0.286084	-0.110655	-0.033793
С	-0.628263	0.380529	0.971733
Н	-0.430627	1.439197	1.167875
Н	-0.470904	-0.181789	1.899249
С	-2.028933	0.190565	0.458188
С	-4.607926	-0.192696	-0.564647
С	-2.693020	1.230530	-0.197906
С	-2.669389	-1.045513	0.594357
С	-3.951969	-1.237254	0.086965
С	-3.977089	1.042227	-0.706128
Н	-2.203406	2.192441	-0.308632
Н	-2.162610	-1.858757	1.103376
Н	-4.441211	-2.197742	0.202343
Н	-4.484188	1.857295	-1.209739
Н	-5.607676	-0.340342	-0.956960

4-Methoxy-pyranosyl oxocarbenium ion (S1)

Figure 4| CEL map of 4-methoxy-pyranosyl oxocarbenium ion (S1).

Local minima

⁴*H*₃ conformation (0.0 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -385.514115506 \text{ a.u.} \\ E_{solv}(B3LYP) &= -385.589118697 \text{ a.u.} \\ Zero-point energy correction &= 0.166311 \text{ a.u.} \end{split}$$

Atom coordinates

Н	1.243834	-0.259962	1.594774
С	0.578940	-0.185120	0.721384
С	-1.446453	-1.073113	-0.417436
0	-1.221332	1.318087	-0.184823
С	-1.809794	0.321213	-0.670365
С	-0.040359	1.204011	0.740289
С	-0.522704	-1.242578	0.788004
Н	-0.959714	-1.397924	-1.356445
Н	-2.631192	0.588245	-1.347337
Н	-0.448411	1.480357	1.713950
Н	-1.089768	-1.131817	1.716785

Н	-2.370615	-1.661490	-0.363401
Н	0.616624	1.991683	0.376054
Н	-0.076936	-2.237358	0.780254
0	1.286007	-0.409293	-0.490071
С	2.621206	0.094058	-0.513035
Н	3.038206	-0.178134	-1.481797
Н	3.222285	-0.360219	0.283183
Н	2.653259	1.185451	-0.409915

⁴*E* conformation (0.2 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

 $E_{gas}(B3LYP) = -385.513759513 \text{ a.u.}$ $E_{solv}(B3LYP) = -385.588894859 \text{ a.u.}$ Zero-point energy correction = 0.166329 a.u.

H	-1.217671	0.619884	1.543509
С	-0.541834	0.360351	0.715003
С	1.573366	0.903727	-0.478872
0	0.955415	-1.414131	-0.113889
С	1.613909	-0.538765	-0.729676

0.019326	-1.027578	0.993522
0.623136	1.344874	0.643972
1.305580	1.334814	-1.459090
2.244482	-0.949611	-1.528020
0.607601	-1.083305	1.910409
1.145440	1.361560	1.603530
2.616349	1.226494	-0.332880
-0.715048	-1.829724	0.969668
0.253509	2.350420	0.441538
-1.205682	0.401284	-0.535397
-2.546290	-0.091451	-0.529640
-2.932255	0.053407	-1.537755
-3.162833	0.470527	0.181073
-2.592704	-1.158645	-0.283549
	0.019326 0.623136 1.305580 2.244482 0.607601 1.145440 2.616349 -0.715048 0.253509 -1.205682 -2.546290 -2.932255 -3.162833 -2.592704	0.019326 -1.027578 0.623136 1.344874 1.305580 1.334814 2.244482 -0.949611 0.607601 -1.083305 1.145440 1.361560 2.616349 1.226494 -0.715048 -1.829724 0.253509 2.350420 -1.205682 0.401284 -2.546290 -0.091451 -2.932255 0.053407 -3.162833 0.470527 -2.592704 -1.158645

³*H*₄ conformation (1.9 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) = -385.508192468 \mbox{ a.u.} \\ E_{solv}(B3LYP) = -385.585504725 \mbox{ a.u.} \end{split}$$

4-Fluoro-pyranosyl oxocarbenium ion (2)

Zero-point energy correction = 0.166015 a.u.

Atom coordinates

-0.649778	-0.053540	1.298088
-0.560131	-0.104543	0.201311
1.551097	1.293995	0.040984
1.738560	-1.116543	0.081990
2.258561	0.022810	0.163553
0.279099	-1.323680	-0.159228
0.068165	1.190506	-0.326420
2.132201	1.912057	-0.660700
3.338223	-0.003680	0.357479
0.048089	-2.200524	0.441499
-0.464833	2.061101	0.058368
1.726726	1.791188	1.013893
0.207954	-1.561233	-1.222228
-0.037578	1.193284	-1.415597
-1.815276	-0.377786	-0.386730
-2.929987	0.212970	0.284867
-3.819387	-0.113263	-0.252580
-2.881695	1.307060	0.264968
-2.987016	-0.130161	1.324324
	-0.649778 -0.560131 1.551097 1.738560 2.258561 0.279099 0.068165 2.132201 3.338223 0.048089 -0.464833 1.726726 0.207954 -0.037578 -1.815276 -2.929987 -3.819387 -2.881695 -2.987016	-0.649778-0.053540-0.560131-0.1045431.5510971.2939951.738560-1.1165432.2585610.0228100.279099-1.3236800.0681651.1905062.1322011.9120573.338223-0.0036800.048089-2.200524-0.4648332.0611011.7267261.7911880.207954-1.561233-0.0375781.193284-1.815276-0.377786-2.9299870.212970-3.819387-0.113263-2.8816951.307060-2.987016-0.130161

Figure 5 | CEL map of 4-fluoro-pyranosyl oxocarbenium ion (2).

Local minima

⁴*H*₃ conformation (0.0 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -370.218949634 \text{ a.u.} \\ E_{solv}(B3LYP) &= -370.301652263 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.126027 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-2.060363	0.022033	0.937700
С	-1.144241	0.037433	0.337076
С	1.060022	1.174897	-0.090185
0	0.959312	-1.242704	-0.063832
С	1.567964	-0.175584	-0.320716
С	-0.414195	-1.265669	0.533045
С	-0.284518	1.253748	0.636194
Н	1.029936	1.620098	-1.102500
Н	-0.249855	-1.506624	1.584829
Н	-0.119400	1.303270	1.717015
Н	1.862965	1.737464	0.408952
Н	2.555087	-0.335015	-0.773139
Н	-0.893553	-2.096152	0.018148
Н	-0.822779	2.156413	0.345284
F	-1.520747	0.099022	-1.022013

⁴*E* conformation (1.0 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -370.218283291 \text{ a.u.} \\ E_{solv}(B3LYP) &= -370.300474245 \text{ a.u.} \\ Zero-point energy correction &= 0.126221 \text{ a.u.} \end{split}$$

Atom coordinates

Н	2.153740	0.101463	-0.707760
С	1.156841	0.078628	-0.253714
С	-1.052658	1.148665	0.050166
0	-0.869551	-1.272591	0.040783
С	-1.496447	-0.221035	0.328253
С	0.460656	-1.200254	-0.650458
С	0.303924	1.267455	-0.663136
Н	-1.066372	1.644318	1.036407

Н	0.251775	-1.264943	-1.718909
Η	0.179073	1.258247	-1.748710
Η	-1.879663	1.636530	-0.490305
Η	-2.444162	-0.406283	0.849979
Η	0.962472	-2.098317	-0.295550
Η	0.789041	2.204653	-0.387196
F	1.308512	0.073812	1.141012

⁴*H*₃ conformation (3.2 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -370.212239019 \text{ a.u.} \\ E_{solv}(B3LYP) &= -370.296637511 \text{ a.u.} \\ Zero-point energy correction &= 0.126128 \text{ a.u.} \end{split}$$

Н	-1.011443	0.079286	1.469318
С	-0.977200	0.059228	0.373364
С	1.256393	1.172725	0.023041
0	1.123418	-1.240929	-0.031694
С	1.797404	-0.182754	0.024651
С	-0.364593	-1.249401	-0.110044
С	-0.257901	1.279028	-0.178327
Н	1.832323	1.743565	-0.721503
Н	-0.644770	-2.112108	0.491066
Н	-0.638733	2.184199	0.296394
Н	1.599996	1.598580	0.985009
Н	2.878647	-0.358337	0.093172
Н	-0.586998	-1.428999	-1.163866
Н	-0.478178	1.344542	-1.248436
F	-2.295867	0.044860	-0.082635

4-tert-Butyldimethylsilyloxy-pyranosyl oxocarbenium ion (3)

Figure 6| CEL map of 4-tert-butyldimethylsilyloxy-pyranosyl oxocarbenium ion (3).

Local n	ninima	Н	1.230775	-3.142851	-1.394843
		Н	2.631833	-2.875330	0.605074
${}^{4}H_{3}$ cor	1formation (0.0 kcal / mol)	О	0.942518	-0.932871	0.025970
		Si	-0.366173	0.032815	0.524964
D1 = -4	45°	С	-0.414361	-0.242242	2.419123
D3 = -4	45°	С	-1.925890	-0.620715	-0.314088
$D5 = 0^{\circ}$	0	С	-4.296633	-1.646613	-1.450253
		С	-2.006183	-1.953988	-0.751345
Egas(B3	LYP) = -1256.49920614 a.u.	С	-3.070600	0.183015	-0.459299
Esolv(B3	3LYP) = -1256.56402908 a.u.	С	-4.243441	-0.322502	-1.017758
Zero-po	bint energy correction $= 0.432346$ a.u.	С	-3.174539	-2.462559	-1.316444
		Н	-1.148760	-2.609293	-0.642851
Atom c	oordinates	Н	-3.050323	1.219594	-0.139604
		Н	-5.113123	0.317318	-1.117972
Η	0.824727 -0.752813 -2.056319	Н	-3.210106	-3.494098	-1.648997
С	1.533353 -1.008525 -1.261486	Н	-5.207094	-2.040104	-1.888190
С	3.095865 -2.740874 -0.386737	С	-0.066200	1.812663	-0.055558
0	3.903016 -0.476755 -0.602683	С	0.477607	4.401451	-1.057611
С	4.053981 -1.651366 -0.191444	С	0.590969	2.778670	0.728281
С	2.687936 -0.024704 -1.368582	С	-0.444059	2.190206	-1.358803
С	2.054391 -2.434025 -1.462143	С	-0.174193	3.464141	-1.856327
Η	4.977419 -1.798084 0.368456	С	0.857666	4.055946	0.238015
Н	3.058767 0.094003 -2.385328	Н	0.901041	2.544195	1.738973
Н	2.497951 -2.532028 -2.455794	Н	-0.966769	1.485490	-1.996482
Н	3.658574 -3.663525 -0.559854	Н	-0.478538	3.725142	-2.863788
Н	2.475127 0.943533 -0.926123	Н	1.359792	4.780889	0.868818

Н	0.684472	5.394613	-1.439960
С	-0.903228	-1.683330	2.696643
Н	-0.921220	-1.860377	3.778560
Н	-0.242024	-2.432381	2.251568
Н	-1.912708	-1.854984	2.316174
С	-1.404386	0.746576	3.072690
Н	-1.096626	1.787806	2.949433
Н	-1.470630	0.546316	4.148549
Н	-2.412753	0.644422	2.660470
С	0.984601	-0.084043	3.053930
Н	1.392012	0.923224	2.941907
Н	1.700558	-0.785444	2.618517
Н	0.923848	-0.290730	4.128982

⁴*E* conformation (0.1 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -1256.49903868 \text{ a.u.} \\ E_{solv}(B3LYP) &= -1256.56394510 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.432431 \text{ a.u.} \end{split}$$

Atom coordinates

Н	0.797692	-0.659177	-2.076817
С	1.515299	-0.974998	-1.312138
С	3.065339	-2.783933	-0.577555
0	3.753166	-0.462685	-0.412687
С	3.869914	-1.666190	-0.077213
С	2.714834	-0.046759	-1.416100
С	1.987851	-2.401496	-1.601840
Н	4.645493	-1.833871	0.669663
Н	3.215787	-0.081412	-2.381742
Н	2.389138	-2.453298	-2.615353
Н	3.776109	-3.535811	-0.948240
Н	2.501868	0.977395	-1.126838
Н	1.154675	-3.099456	-1.538436
Н	2.652672	-3.249106	0.330122
0	0.972454	-0.918452	-0.006151
Si	-0.330468	0.041060	0.528141
С	-0.329187	-0.219813	2.424212
С	-1.904585	-0.634410	-0.267320
С	-4.287544	-1.684619	-1.355118
С	-1.985118	-1.972825	-0.688546
С	-3.055690	0.161788	-0.403045
С	-4.234467	-0.355737	-0.937531
С	-3.159382	-2.493454	-1.229932
Н	-1.122223	-2.621933	-0.587976
Н	-3.035462	1.202144	-0.096027
Н	-5.108771	0.278700	-1.031429
Н	-3.194438	-3.528559	-1.551277

Н	-5.202431	-2.087186	-1.775224
С	-0.065570	1.817308	-0.076811
С	0.410466	4.404147	-1.118221
С	0.570147	2.810404	0.690286
С	-0.457939	2.167059	-1.383597
С	-0.221141	3.439689	-1.900781
С	0.803097	4.086703	0.180699
Н	0.887804	2.599405	1.703533
Н	-0.968265	1.441953	-2.008518
Н	-0.536105	3.678618	-2.910433
Н	1.288789	4.832863	0.799542
Н	0.591134	5.396633	-1.515312
С	-0.742757	-1.680607	2.720230
Н	-0.742745	-1.847082	3.803931
Н	-0.048105	-2.399330	2.276256
Н	-1.745545	-1.906105	2.350485
С	-1.357187	0.726576	3.082746
Н	-1.101568	1.780161	2.944348
Н	-1.397729	0.535040	4.161464
Н	-2.365146	0.571238	2.686703
С	1.067402	0.014572	3.040294
Н	1.416492	1.042658	2.925108
Н	1.817769	-0.644380	2.597177
Н	1.031995	-0.196274	4.115718

³H₄ conformation (1.5 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -1256.49401966 \text{ a.u.} \\ E_{solv}(B3LYP) &= -1256.56133477 \text{ a.u.} \\ Zero-point energy correction &= 0.432301 \text{ a.u.} \end{split}$$

Н	1.622974	-0.766984	-0.974710
С	1.834967	-1.034754	0.067974
С	3.594085	-2.771444	-0.502930
0	4.307034	-0.523474	0.034006
С	4.545574	-1.666106	-0.422307
С	2.963490	-0.137293	0.573653
С	2.224098	-2.511986	0.131350
Н	5.565540	-1.781731	-0.787279
Н	2.862666	0.900535	0.270262
Н	1.466016	-3.115298	-0.366418
Н	3.535202	-2.996302	-1.581310
Н	3.077640	-0.209590	1.654264
Н	2.246416	-2.812009	1.181778
Н	4.100126	-3.655133	-0.092802
0	0.725159	-0.783208	0.899555
Si	-0.623582	0.201808	0.564671

С	-1.339938	0.581391	2.298725
С	-1.835374	-0.806672	-0.474127
С	-3.719413	-2.323928	-1.927047
С	-1.795612	-2.211352	-0.471622
С	-2.849093	-0.183742	-1.223643
С	-3.781940	-0.931279	-1.940523
С	-2.723253	-2.963364	-1.191088
Н	-1.035085	-2.727215	0.104514
Н	-2.911837	0.898990	-1.257758
Н	-4.554472	-0.427373	-2.510708
Н	-2.670475	-4.046432	-1.175020
Н	-4.442851	-2.906773	-2.486063
С	-0.041371	1.687768	-0.456392
С	0.935852	3.808279	-2.052923
С	0.381540	2.901321	0.116408
С	0.041403	1.574132	-1.857506
С	0.525684	2.616391	-2.646622
С	0.860537	3.949046	-0.668337
Н	0.336401	3.045104	1.188696
Н	-0.287089	0.663162	-2.345796
Н	0.575501	2.499400	-3.723467
Н	1.171985	4.875134	-0.198264
Н	1.307190	4.623034	-2.664203
С	-1.940289	-0.723095	2.874435

Н	-2.345015	-0.527874	3.874551
Н	-1.186871	-1.509981	2.971186
Н	-2.754722	-1.108068	2.256488
С	-2.461739	1.636610	2.187371
Н	-2.092984	2.597017	1.817691
Н	-2.905413	1.810551	3.174766
Н	-3.266266	1.307321	1.522997
С	-0.251657	1.075997	3.276704
Н	0.186550	2.030800	2.977597
Н	0.558893	0.350169	3.375906
Н	-0.692756	1.222170	4.269918

4-Azido-pyranosyl oxocarbenium ion (4)

Figure 7 | CEL map of 4-azido-pyranosyl oxocarbenium ion (4).

Local minima

⁴*H*₃ conformation (0.0 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -434.578260670 \text{ a.u.} \\ E_{solv}(B3LYP) &= -434.660276705 \text{ a.u.} \\ Zero-point energy correction &= 0.136964 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-0.830507	-0.803989	1.555667
С	-0.258002	-0.413150	0.703537
С	1.197901	1.427977	-0.144349
0	1.924760	-0.849746	-0.465210
С	2.055342	0.377294	-0.696663
С	0.850422	-1.407971	0.425954
С	0.356392	0.953464	1.040449
Н	0.576474	1.752466	-1.000252
Н	1.388922	-1.697053	1.329113
Н	0.979540	0.859446	1.935075
Н	1.831755	2.295152	0.080002
Н	2.873839	0.605825	-1.391168
Н	0.517158	-2.286695	-0.122720
Н	-0.425440	1.682576	1.259682
Ν	-1.106453	-0.336181	-0.512499
Ν	-2.290108	-0.045016	-0.327751
Ν	-3.392318	0.204705	-0.287934

⁴*E* conformation (0.3 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -434.577729036 \text{ a.u.} \\ E_{solv}(B3LYP) &= -434.659826837 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.137046 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-0.780479	-0.819030	1.635075
С	-0.218546	-0.425917	0.776659
С	1.179798	1.444850	-0.105389
0	1.778307	-0.852813	-0.604232
С	1.847562	0.376519	-0.855192
С	0.957753	-1.349681	0.551007
С	0.328433	0.976089	1.084164

Н	0.601714	1.994750	-0.867447
Н	1.639594	-1.387436	1.400919
Н	0.929708	0.928982	1.995622
Н	1.969800	2.159657	0.177063
Н	2.463257	0.609622	-1.733125
Н	0.675491	-2.349919	0.230321
Н	-0.482335	1.685229	1.261075
Ν	-1.040421	-0.455431	-0.454897
Ν	-2.208849	-0.080323	-0.333655
Ν	-3.295474	0.231395	-0.350469

³*H*₄ conformation (1.0 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=30^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -434.574088324 \text{ a.u.} \\ E_{solv}(B3LYP) &= -434.658158122 \text{ a.u.} \\ Zero-point energy correction &= 0.136706 \text{ a.u.} \end{split}$$

Н	0.475472	0.066983	-1.181720
С	0.296892	0.043850	-0.098132
С	-1.966480	1.184234	-0.159723
0	-1.873394	-1.230282	-0.098793
С	-2.512508	-0.164742	-0.272827
С	-0.419740	-1.255102	0.259271
С	-0.515338	1.273779	0.319242
Н	-2.666140	1.756206	0.469069
Н	-0.047545	-2.121720	-0.283473
Н	-0.046429	2.175867	-0.075869
Н	-2.120445	1.620640	-1.164887
Н	-3.563686	-0.325002	-0.544158
Н	-0.413199	-1.446294	1.333842
Н	-0.495898	1.346503	1.410814
Ν	1.572952	0.011666	0.644390
Ν	2.603805	0.012096	-0.034958
N	3.618681	0.015804	-0.532326

4-Chloro-pyranosyl oxocarbenium ion (5)

Figure 8| CEL map of 4-chloro-pyranosyl oxocarbenium ion (5).

Local minima	Н	-0.397047	-2.176948	0.384380
	Н	-0.408836	2.101940	0.835274
⁴ H ₃ conformation (0.0 kcal / mol)	Cl	-1.814076	0.048680	-0.597216

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -730.576282791 \ a.u. \\ E_{solv}(B3LYP) &= -730.658978382 \ a.u. \\ Zero-point \ energy \ correction &= 0.124718 \ a.u. \end{split}$$

Atom coordinates

Н	-1.295445	-0.125024	1.711806
С	-0.657487	-0.045122	0.828332
С	1.243227	1.223349	-0.256008
0	1.255736	-1.194947	-0.298555
С	1.701269	-0.091422	-0.698916
С	0.163670	-1.306102	0.715928
С	0.211267	1.206645	0.872434
Н	0.872281	1.705942	-1.179401
Н	0.689588	-1.526551	1.648527
Н	0.728453	1.209930	1.838594
Н	2.143694	1.807349	-0.011901
Н	2.489039	-0.188704	-1.456783

${}^{4}E$	conformation ((1.1	kcal/	mol))
-----------	----------------	------	-------	------	---

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

 $E_{gas}(B3LYP) = -730.575364028 a.u.$ $E_{solv}(B3LYP) = -730.657586289 a.u.$ Zero-point energy correction = 0.124901 a.u.

Н	-1.315598	-0.015801	1.713757
С	-0.648125	0.016723	0.848430
С	1.213003	1.189573	-0.318698
0	1.131314	-1.237439	-0.313033
С	1.546096	-0.155056	-0.802808
С	0.212327	-1.224519	0.870984
С	0.270312	1.233514	0.894618
Н	0.816079	1.717191	-1.202502
Н	0.860294	-1.257935	1.749027
Н	0.839089	1.190290	1.827762

Н	2.177134	1.693181	-0.137540
Н	2.197837	-0.290894	-1.675285
Н	-0.337195	-2.156793	0.761163
Н	-0.299050	2.163275	0.891361
Cl	-1.738281	0.029152	-0.610508

³*H*₄ conformation (1.4 kcal / mol)

 $\begin{array}{l} D1=45^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -730.573210787 \text{ a.u.} \\ E_{solv}(B3LYP) &= -730.656940733 \text{ a.u.} \\ Zero-point energy correction &= 0.124818 \text{ a.u.} \end{split}$$

Atom coordinates

	0 -1 - (0 (0 4 0 0 4	1 1-1000
Н	-0.515606	0.157994	1.474390
С	-0.555851	0.072301	0.384870
С	1.637253	1.179645	0.101365
0	1.538951	-1.224025	-0.074223
С	2.208490	-0.165111	0.002094
С	0.035227	-1.251669	-0.073758
С	0.154989	1.240417	-0.282284
Н	2.266359	1.855373	-0.492874
Н	-0.193683	-2.089361	0.582635
Н	-0.272664	2.188216	0.046938
Н	1.822252	1.487098	1.148670
Н	3.293139	-0.333183	0.012304
Н	-0.215004	-1.494329	-1.107537
Н	0.047853	1.178666	-1.369193
Cl	-2.319112	0.022837	-0.029133

4-Bromo-pyranosyl oxocarbenium ion (6)

Figure 9| CEL map of 4-bromo-pyranosyl oxocarbenium ion (6).

Local minima

⁴*H*₃ conformation (0.0 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -2844.49849824 \text{ a.u.} \\ E_{solv}(B3LYP) &= -2844.58017057 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.124093 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-0.503970	-0.188831	2.005759
С	-0.022993	-0.080802	1.031329
С	1.638780	1.243284	-0.342427
0	1.681509	-1.173516	-0.437381
С	2.032361	-0.054665	-0.885965
С	0.785507	-1.322824	0.750965
С	0.820848	1.185484	0.947942
Н	1.103669	1.735317	-1.175660
Н	1.474573	-1.544156	1.571228
Н	1.502514	1.175569	1.807179
Н	2.559052	1.839221	-0.245487
Н	2.677570	-0.122958	-1.771231
Н	0.196073	-2.203869	0.509012
Н	0.197024	2.073488	1.043413
Br	-1.548160	0.022899	-0.264464

E4 conformation (0.7 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -2844.49612987 \text{ a.u.} \\ E_{solv}(B3LYP) &= -2844.57896606 \text{ a.u.} \\ Zero-point energy correction &= 0.123992 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-0.145821	0.027657	-1.448848
С	-0.051564	0.044970	-0.359372
С	-2.223351	1.177679	-0.013533
0	-2.114057	-1.244366	-0.008776
С	-2.769380	-0.177904	-0.118434
С	-0.628020	-1.210888	0.254677
С	-0.710151	1.267509	0.262121
Н	-2.835520	1.698913	0.740632
Н	-0.282840	-2.134597	-0.203589
Н	-0.316767	2.190123	-0.165570
Н	-2.516359	1.668084	-0.959235

Н	-3.837050	-0.336973	-0.317614
Н	-0.533227	-1.252393	1.340801
Н	-0.522276	1.284995	1.338618
Br	1.891346	0.005741	-0.011650

³*H*₄ conformation (0.7 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

 $E_{gas}(B3LYP) = -2844.49634173 a.u.$ $E_{solv}(B3LYP) = -2844.57874639 a.u.$ Zero-point energy correction = 0.124024 a.u.

H	0.047769	0.065952	1.512746
С	0.027765	0.046972	0.419314
С	2.240032	1.179175	0.008059
0	2.123460	-1.234728	-0.048332
С	2.790010	-0.173103	-0.010846
С	0.618837	-1.256359	-0.079841
С	0.717754	1.280939	-0.151513
H	2.789782	1.756591	-0.750988
H	0.373891	-2.114568	0.542241
H	0.351766	2.178855	0.346882
H	2.604917	1.603689	0.962622
H	3.875054	-0.338147	0.018459
H	0.393810	-1.464011	-1.127204
H	0.480078	1.373053	-1.215263
Br	-1.893461	0.010019	-0.028968

4-Iodo-pyranosyl oxocarbenium ion (7)

Figure 10 | CEL map of 4-iodo-pyranosyl oxocarbenium ion (7).

Local minima

³*H*₄ conformation (0.0 kcal / mol)

D1 = 45° D3 = 45° D5 = 0°

 $E_{gas}(B3LYP) = -281.732948791$ a.u. $E_{solv}(B3LYP) = -281.814132574$ a.u. Zero-point energy correction = 0.123599 a.u.

Atom coordinates

Н	0.544334	0.151937	1.497513
С	0.500963	0.067779	0.408846
С	2.686286	1.182236	0.094222
0	2.595785	-1.222210	-0.083201
С	3.260470	-0.161457	-0.016764
С	1.075954	-1.251111	-0.056565
С	1.196666	1.240065	-0.267156
Н	3.304598	1.860878	-0.508207
Н	0.869764	-2.089545	0.605966
Н	0.778668	2.189225	0.069189
Н	2.882766	1.486815	1.139959
Н	4.346967	-0.321536	-0.026923
Н	0.829960	-1.504275	-1.088421

Н	1.078560	1.185889	-1.353313
I	-1.655168	0.006664	-0.012182

E4 conformation (0.0 kcal / mol)

D1 = 30° $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

Ι

 $E_{gas}(B3LYP) = -281.732444874$ a.u. $E_{solv}(B3LYP) = -281.813970162$ a.u. Zero-point energy correction = 0.123461 a.u.

Н	-0.603565	0.024959	-1.455880
С	-0.517073	0.043698	-0.366255
С	-2.687423	1.178113	-0.012589
0	-2.582307	-1.244491	-0.007494
С	-3.235467	-0.177583	-0.113845
С	-1.085412	-1.208965	0.249488
С	-1.172452	1.267366	0.256699
Н	-3.296414	1.700793	0.743154
Н	-0.751075	-2.135314	-0.211155
Н	-0.785054	2.191572	-0.172655
Н	-2.982637	1.666187	-0.958792
Н	-4.305228	-0.332809	-0.307287

Н	-0.994349	-1.253598	1.335706
Н	-0.983443	1.288572	1.332955
Ι	1.651834	0.003581	-0.006171

⁴*H*₃ conformation (0.2 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -281.732792047 \text{ a.u.} \\ E_{solv}(B3LYP) &= -281.813862889 \text{ a.u.} \\ Zero-point energy correction &= 0.123549 \text{ a.u.} \end{split}$$

Atom coordinates

Н	0.059911	-0.238655	2.108722
С	0.461607	-0.108357	1.102314
С	1.990779	1.258505	-0.381159
0	2.050487	-1.156046	-0.521649
С	2.351484	-0.025862	-0.978134

С	1.257157	-1.334124	0.734497
С	1.282914	1.168412	0.970550
Н	1.384825	1.759621	-1.158710
Н	2.019024	-1.553950	1.489322
Н	2.036371	1.149853	1.768501
Н	2.910193	1.862889	-0.349212
Н	2.922862	-0.071886	-1.914100
Н	0.668876	-2.225464	0.531402
Н	0.667205	2.051757	1.135395
Ι	-1.379940	0.014392	-0.153331

4-Phenylthio-pyranosyl oxocarbenium ion (8)

Figure 11 | CEL map of 4-phenylthio-pyranosyl oxocarbenium ion (8).

Local minima				
³ H ₄ conform	mation (0.0	kcal / mol)		
$D1 = 30^{\circ}$ $D3 = 45^{\circ}$ $D5 = 0^{\circ}$				
E _{gas} (B3LYF E _{solv} (B3LYF Zero-point	P) = -900.279 P) = -900.35 energy corre	9025046 a.u. 0623170 a.u ction = 0.21	1. 5238 a.u.	
Atom coord	linates			
Н	-0.810749	-0.353051	1.008057	
С	-1.211712	-0.337765	-0.007048	
С	-3.647725	-0.535002	0.661735	
0	-2.735042	1.659389	0.212735	
С	-3.643599	0.926838	0.664866	
С	-1.479053	1.097053	-0.417888	
С	-2.475585	-1.201882	-0.066270	
Н	-4.627926	-0.847306	0.278758	
Н	-0.717600	1.798832	-0.092195	
Н	-2.276189	-2.177209	0.375090	
н	-3 697007	-0.806536	1 729520	

•	0.0.7720	0.00000	0.001/00
0	-2.735042	1.659389	0.212735
С	-3.643599	0.926838	0.664866
С	-1.479053	1.097053	-0.417888
С	-2.475585	-1.201882	-0.066270
Н	-4.627926	-0.847306	0.278758
Н	-0.717600	1.798832	-0.092195
Н	-2.276189	-2.177209	0.375090
Н	-3.697007	-0.806536	1.729520
Н	-4.477241	1.481405	1.094997
Н	-1.669502	1.211135	-1.483678
Н	-2.758646	-1.370256	-1.109050
S	0.096157	-1.044440	-1.104553
С	1.594421	-0.384922	-0.352602
С	3.962101	0.584227	0.756163
С	2.113036	-0.970410	0.807203
С	2.269441	0.674403	-0.965585
С	3.454063	1.155032	-0.409102
С	3.290724	-0.477038	1.363383
Н	1.601198	-1.808261	1.265452
Н	1.870954	1.117161	-1.870237
Н	3.976263	1.975973	-0.886412
Н	3.689565	-0.929902	2.263611
Н	4.882036	0.960737	1.187933

*E*⁴ conformation (0.1 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} & E_{gas}(B3LYP) = -900.278985368 \text{ a.u.} \\ & E_{solv}(B3LYP) = -900.350630122 \text{ a.u.} \\ & \text{Zero-point energy correction} = 0.215326 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-0.921162	-0.139333	1.061495
С	-1.244576	-0.381913	0.048036
С	-3.638613	-0.249820	0.709702
0	-2.516893	1.735758	-0.119435
С	-3.455364	1.192313	0.510314
С	-1.437248	0.882246	-0.759342
С	-2.566167	-1.151766	0.074670
Н	-4.659579	-0.478584	0.372581
Н	-0.583904	1.552489	-0.759305
Н	-2.473943	-2.068047	0.656835
Н	-3.701181	-0.371543	1.802560
Н	-4.165239	1.901672	0.934868
Н	-1.790660	0.705349	-1.773456
Н	-2.861000	-1.428533	-0.939790
S	0.083519	-1.400080	-0.734365
С	1.561014	-0.510801	-0.211358
С	3.893158	0.808317	0.562707
С	2.039189	-0.646872	1.096391
С	2.259915	0.271931	-1.134973
С	3.426836	0.927870	-0.744853
С	3.198344	0.021950	1.481811
Н	1.511975	-1.275987	1.803598
Н	1.893898	0.363901	-2.150275
Н	3.967205	1.532979	-1.463371
Н	3.564744	-0.081313	2.496526
Η	4.798766	1.321431	0.864408

⁴*H*₃ conformation (0.6 kcal / mol)

 $\begin{array}{l} D1 = -30^\circ\\ D3 = -45^\circ\\ D5 = 0^\circ\end{array}$

$$\begin{split} & E_{gas}(B3LYP) = -900.279992470 \text{ a.u.} \\ & E_{solv}(B3LYP) = -900.350188889 \text{ a.u.} \\ & \text{Zero-point energy correction} = 0.215661 \text{ a.u.} \end{split}$$

Н	-0.765971	-1.460876	1.299222
С	-1.236735	-0.767092	0.602592
С	-3.468271	-0.171188	-0.465162
0	-2.157312	1.570718	0.584082
С	-3.105222	1.209263	-0.151803
С	-1.241445	0.596258	1.261499
С	-2.660971	-1.238559	0.277247
Н	-3.376423	-0.235741	-1.561658
Н	-1.618892	0.562545	2.283999
Н	-3.164520	-1.475783	1.217563
Н	-4.549740	-0.259101	-0.298950
Н	-3.664974	2.042087	-0.576302
Н	-0.284385	1.108868	1.239163
Н	-2.633279	-2.157112	-0.307401

S	-0.255736	-0.790682	-0.982977
С	1.378691	-0.290093	-0.428045
С	3.953954	0.464957	0.333043
С	2.183592	-1.179026	0.293434
С	1.868820	0.972202	-0.777033
С	3.158607	1.343981	-0.398911
С	3.464312	-0.794275	0.680973
Н	1.812950	-2.166502	0.541180
Н	1.246219	1.654092	-1.343432
Н	3.537870	2.320747	-0.675512
Н	4.084296	-1.483441	1.242380
Н	4.955137	0.756824	0.627715

4-Methylthio-pyranosyl oxocarbenium ion (9)

Figure 12 | CEL map of 4-methylthio-pyranosyl oxocarbenium ion (9).

Local minima

³*H*₄ conformation (0.0 kcal / mol) 0.318138 -0.023517 1.296666 Η С 0.215161 -0.140236 0.211274 D1 = 30° С -2.161913 -1.021651 0.288098 $D3 = 45^{\circ}$ 0 -1.806618 1.333817 -0.122463 D5 = 0° С -2.563884 0.377217 0.162227 С -0.326617 1.148007 -0.380258 $E_{gas}(B3LYP) = -708.496637991$ a.u. С -0.705998 -1.332932 -0.072709 $E_{solv}(B3LYP) = -708.574002348$ a.u. -2.888505 -1.612033 -0.290739 Η Zero-point energy correction = 0.162168 a.u. Н 0.097631 2.052742 0.049675

Н	-0.364349	-2.203061	0.488583
Н	-2.408695	-1.276804	1.336069
Н	-3.606253	0.676631	0.330464
Н	-0.262837	1.179850	-1.468997
Н	-0.653838	-1.591573	-1.135653
S	1.893350	-0.455060	-0.470036
С	2.943119	0.521156	0.667520
Н	3.970692	0.320213	0.362190
Н	2.805558	0.188365	1.696448
Н	2.752605	1.590236	0.578653

*E*⁴ conformation (0.0 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -708.496343268 \text{ a.u.} \\ E_{solv}(B3LYP) &= -708.574155241 \text{ a.u.} \\ Zero-point energy correction &= 0.162239 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-0.215831	-0.036695	1.261603
С	-0.191421	0.160251	0.183171
С	2.156225	0.986359	0.315490
0	1.743841	-1.362857	-0.121115
С	2.503413	-0.437183	0.255178
С	0.326409	-1.048804	-0.566503
С	0.727519	1.345031	-0.126706
Н	2.939662	1.516417	-0.250554
Н	-0.188839	-1.981807	-0.351228
Н	0.399072	2.241205	0.401312
Н	2.363431	1.275065	1.361464
Н	3.499054	-0.780792	0.563802
Н	0.404652	-0.890561	-1.642873
Н	0.708183	1.562466	-1.198588
S	-1.904677	0.519561	-0.378500
С	-2.873755	-0.634170	0.659018
Н	-3.919209	-0.439906	0.416787
Н	-2.708472	-0.429330	1.716938
Н	-2.647928	-1.675081	0.428368

⁴*H*₃ conformation (0.9 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -708.496387444 \text{ a.u.} \\ E_{solv}(B3LYP) &= -708.572955202 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.162492 \text{ a.u.} \end{split}$$

Н	0.778282	-0.279518	1.795293
С	0.234686	-0.190852	0.848345
С	-1.898146	-0.942894	-0.327928
0	-1.339216	1.408320	-0.290454
С	-2.018511	0.453574	-0.738066
С	-0.282888	1.231827	0.756607
С	-0.922512	-1.201667	0.822197
Н	-1.634000	-1.476994	-1.259565
Н	-0.782871	1.550176	1.675338
Н	-1.464216	-1.122652	1.769948
Н	-2.918513	-1.298891	-0.117808
Н	-2.739146	0.754459	-1.508820
Н	0.456369	1.976171	0.472010
Н	-0.534207	-2.218722	0.760710
S	1.402790	-0.615947	-0.525373
С	2.835865	0.446735	-0.133059
Н	3.615294	0.167085	-0.842616
Н	3.190270	0.251368	0.879731
Н	2.610859	1.505767	-0.263190

4-Methyl-pyranosyl oxocarbenium ion (10)

Figure 13 | CEL map of 4-methyl-pyranosyl oxocarbenium ion (10).

Local minima

³H₄ conformation (0.0 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$E_{gas}(B3LYP) = -310.290863856 a.u.$
$E_{solv}(B3LYP) = -310.367104766$ a.u.
Zero-point energy correction $= 0.161773$ a.u.

Atom coordinates

Н	0.874308	0.054850	-1.449280
С	0.952939	0.041600	-0.352547
С	-1.300418	1.179986	-0.027732
0	-1.188646	-1.235147	0.025533
С	-1.851307	-0.173193	-0.040309
С	0.313095	-1.246865	0.129587
С	0.210231	1.270856	0.193103
Н	-1.890189	1.752425	0.704415
Н	0.581321	-2.121062	-0.461272
Н	0.594766	2.175864	-0.280598
Н	-1.623484	1.605777	-0.996618
Н	-2.932957	-0.337663	-0.124795

Н	0.483253	-1.448578	1.190214
Н	0.405945	1.365192	1.267083
С	2.437680	0.042154	0.028312
Н	2.921721	0.937815	-0.367104
Н	2.955857	-0.827610	-0.383553
Н	2.565306	0.036940	1.114755

E4 conformation (0.3 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -310.290332509 \text{ a.u.} \\ E_{solv}(B3LYP) &= -310.366855792 \text{ a.u.} \\ Zero-point energy correction &= 0.161795 \text{ a.u.} \end{split}$$

H	0.734110	0.006967	-1.420984
С	0.920274	0.030887	-0.337861
С	-1.277910	1.183310	-0.017058
0	-1.183993	-1.240400	-0.018640
С	-1.829369	-0.169900	-0.138913
С	0.294958	-1.204126	0.277930
С	0.227458	1.254454	0.278078

Н	-1.907439	1.702497	0.724146				
Н	0.638323	-2.144489	-0.149648	At	com coordinates		
Н	0.630850	2.181479	-0.134087				
Н	-1.553529	1.675919	-0.966823	Н	-1.833313	-0.023515	1.261331
Н	-2.892349	-0.321619	-0.365151	С	-1.094072	0.012726	0.451792
Н	0.358189	-1.237561	1.367828	С	1.096034	1.188396	-0.148480
Н	0.400582	1.272843	1.358506	0	1.028649	-1.226608	-0.138487
С	2.433171	0.022661	-0.090695	С	1.599731	-0.151893	-0.437434
Н	2.886933	0.909197	-0.539007	С	-0.295555	-1.273223	0.581718
Н	2.904575	-0.857891	-0.534027	С	-0.189093	1.240489	0.680861
Н	2.660204	0.032136	0.979479	Н	1.003148	1.662313	-1.143403
				Н	-0.001588	-1.501477	1.607946
$^{4}H_{3}$ cor	nformation (1.6	kcal / mol)		Н	0.083828	1.293479	1.739146
				Н	1.931309	1.742527	0.307231
D1 = -3	30°			Н	2.549816	-0.293705	-0.967990
D3 = -4	15°			Н	-0.771184	-2.143189	0.132164
$D5 = 0^{\circ}$	0			Н	-0.736972	2.155397	0.450179
				С	-1.840736	0.084280	-0.891551
Eggs(B3	LYP) = -310.288	8319427 a.u		Н	-2.446909	0.991572	-0.938284
Esolv(B?	3LYP) = -310.36	4609593 a.u	1.	Н	-2.506525	-0.773381	-1.013947
Zero-po	oint energy corre	ction = 0.16	1825 a.u.	Н	-1.158657	0.098191	-1.747910

C-3 Mono-substituted pyranosyl oxocarbenium ions

3-Benzyloxy-pyranosyl oxocarbenium ion (11)

Figure 14 | CEL map of 3-benzyloxy-pyranosyl oxocarbenium ion (11).

Local minima

³H₄ conformation (0.0 kcal / mol)

D1 = 45° D3 = 45°

 $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -616.624062185 \text{ a.u.} \\ E_{solv}(B3LYP) &= -616.695303498 \text{ a.u.} \\ Zero-point energy correction &= 0.247342 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-3.602634	0.556832	1.472451
С	-2.601041	0.734254	1.073154
С	-2.647947	-1.429296	-0.154861
0	-3.070097	0.608668	-1.390215
С	-3.052859	-0.641299	-1.327086
С	-2.665171	1.489924	-0.236112
С	-1.876677	-0.605741	0.873011
Н	-2.069986	-2.288071	-0.510548
Н	-3.413085	2.276837	-0.267208
Н	-1.826192	-1.155772	1.817555
Н	-3.575443	-1.855229	0.259064
Н	-3.388865	-1.127165	-2.242830
Н	-1.700622	1.873848	-0.561721
Н	-2.075742	1.365543	1.792459
0	-0.578580	-0.428977	0.322016
С	0.438207	-0.067507	1.279329
Н	0.456393	-0.824716	2.072456
Н	0.207270	0.901165	1.733957
С	1.760934	-0.005475	0.564734
С	4.206218	0.097558	-0.797800
С	2.416930	-1.184701	0.194477
С	2.341351	1.223649	0.242494
С	3.560036	1.276872	-0.433444
С	3.631797	-1.134866	-0.483330
Н	1.974965	-2.143923	0.442822
Н	1.841072	2.143961	0.526145
Н	4.003205	2.236627	-0.673411
Н	4.133777	-2.054540	-0.761603
Н	5.154623	0.136838	-1.321389

*E*⁴ conformation (0.1 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

$E_{gas}(B3LYP) = -616.623640631 a.u.$
$E_{solv}(B3LYP) = -616.695139930$ a.u.
Zero-point energy correction = 0.247262 a.u

Atom coordinates

Н	-3.553451	0.527176	1.495321
С	-2.563272	0.714966	1.072092
С	-2.595740	-1.424004	-0.201143
0	-3.418832	0.610998	-1.237140
С	-3.357949	-0.639994	-1.181450
С	-2.666463	1.453894	-0.238733
С	-1.812275	-0.604852	0.831486
Н	-1.932684	-2.089709	-0.770903
Н	-3.254878	2.365067	-0.206356
Н	-1.737867	-1.179898	1.759523
Н	-3.324264	-2.103159	0.264553
Н	-3.945578	-1.140240	-1.950731
Н	-1.701127	1.628688	-0.710168
Н	-2.025873	1.351029	1.778140
0	-0.523584	-0.386818	0.278511
С	0.493274	-0.042229	1.243560
Н	0.498834	-0.803994	2.032320
Н	0.270850	0.926360	1.702604
С	1.820447	0.007526	0.536558
С	4.275556	0.086625	-0.809831
С	2.483437	-1.177758	0.199794
С	2.398646	1.230678	0.188366
С	3.621943	1.272069	-0.479840
С	3.703494	-1.139906	-0.469544
Н	2.043364	-2.132324	0.468621
Н	1.892766	2.155571	0.445703
Н	4.063404	2.227324	-0.740014
Н	4.211198	-2.064179	-0.720886
Н	5.228035	0.116766	-1.326589

⁴*H*₃ conformation (1.2 kcal / mol)

 $\begin{array}{l} D1 = -30^{\circ} \\ D3 = -45^{\circ} \\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -616.618875647 \text{ a.u.} \\ E_{solv}(B3LYP) &= -616.692839321 \text{ a.u.} \\ Zero-point energy correction &= 0.246870 \text{ a.u.} \end{split}$$

Н	1.962885	-1.976196	0.714710
С	2.321618	-1.174853	0.066015
С	2.314036	1.315907	-0.327302
0	4.418047	0.121206	-0.394476
С	3.738576	1.150114	-0.611163
С	3.825877	-1.122247	0.209992
С	1.639370	0.159815	0.410456
Н	1.839940	1.460337	-1.313015
Н	4.175343	-1.079725	1.240931
Н	1.718105	0.337809	1.490958
Н	2.185280	2.284915	0.169616
Н	4.310305	1.962559	-1.058526

Н	4.344812	-1.914617	-0.321031	С	-2.704904	-1.222419	-0.311171
Н	2.055421	-1.438711	-0.961786	С	-3.992926	-0.988767	-0.791079
0	0.283905	0.190193	0.012070	С	-3.944458	1.224215	0.170451
С	-0.626790	-0.477776	0.908820	Н	-2.141918	1.755782	1.214405
Н	-0.492229	-0.069632	1.918058	Н	-2.223017	-2.175903	-0.500623
Н	-0.411569	-1.550700	0.938491	Н	-4.509527	-1.760587	-1.350178
С	-2.028258	-0.239709	0.415468	Н	-4.425910	2.176379	0.362493
С	-4.614077	0.235391	-0.551310	Н	-5.616314	0.418299	-0.921816
С	-2.659267	0.986796	0.650248				

3-Methoxy-pyranosyl oxocarbenium ion (S2)

Figure 15 | CEL map of 3-methoxy-pyranosyl oxocarbenium ion (S2).

Local minima

³*H*₄ conformation (0.0 kcal / mol)

 $\begin{array}{l} D1=45^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$E_{gas}(B3LYP) = -385.515056186 a.u.$
$E_{solv}(B3LYP) = -385.590288877$ a.u.
Zero-point energy correction $= 0.166313$ a.u.

Н	-0.609748	0.914211	1.922771
С	-0.035280	0.971060	0.992757
С	-0.587752	-1.393454	0.461960
0	-1.822028	0.358500	-0.661015
С	-1.661190	-0.852293	-0.381875
С	-0.907235	1.441925	-0.150683
С	0.558270	-0.409198	0.671152
Н	-0.246663	-2.332751	0.008848
Н	-2.424070	-1.507761	-0.820901
Н	-1.604815	2.235371	0.110849
Н	1.190988	-0.754634	1.499087
Н	-1.069810	-1.686678	1.411159
Н	-0.345607	1.714678	-1.044089

Н	0.746131	1.720856	1.143942
0	1.282586	-0.405538	-0.551564
С	2.604308	0.126089	-0.456819
Н	3.058939	0.000669	-1.438708
Н	3.191116	-0.423676	0.288262
Н	2.602348	1.191245	-0.199542

*E*⁴ conformation (0.1 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -385.514657227 \text{ a.u.} \\ E_{solv}(B3LYP) &= -385.590140865 \text{ a.u.} \\ Zero-point energy correction &= 0.166238 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-0.667092	0.848627	1.857214
С	-0.044202	0.925992	0.959758
С	-0.577558	-1.408868	0.291728
0	-1.953531	0.420991	-0.513535
С	-1.786665	-0.799773	-0.275508
С	-0.856224	1.409915	-0.215414
С	0.567142	-0.439770	0.606122
Н	-0.257560	-2.196541	-0.408577
Н	-2.655520	-1.420492	-0.528532
Н	-1.406865	2.331588	-0.042813
Н	1.149122	-0.834294	1.449065
Н	-0.919131	-1.962902	1.182206
Н	-0.286954	1.465160	-1.143483
Н	0.730169	1.669122	1.168671
0	1.365944	-0.373392	-0.565521
С	2.684452	0.135528	-0.356604
Н	3.200480	0.056119	-1.312552
Н	3.215759	-0.460783	0.394201
Н	2.676615	1.185472	-0.043440

⁴*E* conformation (1.3 kcal / mol)

D1	=	-30°
D3	=	-60°
D5	=	0°

$$\begin{split} E_{gas}(B3LYP) &= -385.510315860 \text{ a.u.} \\ E_{solv}(B3LYP) &= -385.587882792 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.165969 \text{ a.u.} \end{split}$$

Atom coordinates

Н	0.548260	1.980161	-0.258626
С	-0.055565	1.080951	-0.410128
С	-0.362314	-1.335970	0.055370
0	-2.294256	0.129412	0.005730

С	-1.789749	-1.018230	-0.053781
С	-1.409271	1.333682	0.206159
С	0.577147	-0.142484	0.267618
Н	-0.106912	-1.852570	-0.887951
Н	-2.526582	-1.816704	-0.207688
Н	-1.393674	1.478096	1.288382
Н	0.687892	0.055615	1.345060
Н	-0.264498	-2.122922	0.819123
Н	-1.978938	2.128363	-0.270595
Н	-0.146124	0.914780	-1.488877
0	1.814947	-0.525109	-0.291805
С	2.927743	0.258387	0.138753
Н	3.812444	-0.191076	-0.310391
Н	3.023522	0.234535	1.231002
Н	2.851140	1.299276	-0.194774

⁴*H*₃ conformation (1.3 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -385.510440376 \text{ a.u.} \\ E_{solv}(B3LYP) &= -385.587748071 \text{ a.u.} \\ Zero-point energy correction &= 0.165967 \text{ a.u.} \end{split}$$

Η	0.540494	2.007755	0.023717
С	-0.026376	1.129733	-0.297023
С	-0.351991	-1.347431	0.027701
0	-2.291510	0.100006	0.011178
С	-1.780758	-1.043507	-0.028185
С	-1.461209	1.348256	0.125359
С	0.578561	-0.162198	0.277503
Η	-0.123287	-1.808311	-0.952429
Н	-2.518426	-1.850692	-0.120552
Н	-1.581135	1.623641	1.175184
Η	0.713871	-0.045720	1.364465
Η	-0.215534	-2.171441	0.742452
Н	-2.001375	2.052579	-0.504193
Н	0.034610	1.077767	-1.389861
0	1.807517	-0.499894	-0.331228
С	2.929263	0.247106	0.139151
Н	3.807109	-0.178720	-0.345161
Н	3.033350	0.152992	1.226819
Н	2.857326	1.307494	-0.127075

3-Methyl-pyranosyl oxocarbenium ion (12)

Figure 16 | CEL map of 3-methyl-pyranosyl oxocarbenium ion (12).

Local minima

⁴*H*₃ conformation (0.0 kcal / mol)

D1 = -45° D3 = -45° D5 = 0°

 $E_{gas}(B3LYP) = -310.290760538$ a.u. $E_{solv}(B3LYP) = -310.367315448$ a.u. Zero-point energy correction = 0.161763 a.u.

Atom coordinates

Н	0.648671	-2.165604	-0.000874
С	0.215727	-1.208233	0.306390
С	0.267664	1.259978	0.105496
0	-1.871073	0.147186	-0.047841
С	-1.196785	1.199883	0.044291
С	-1.238291	-1.225146	-0.108632
С	0.957200	-0.033158	-0.347336
Н	-1.810321	2.108582	0.099424
Н	-1.395913	-1.511389	-1.149762

Н	0.844771	-0.109447	-1.437335
Н	0.583093	2.150148	-0.455142
Н	-1.890349	-1.807686	0.540218
Н	0.299559	-1.147324	1.397395
Н	0.494205	1.506723	1.161424
С	2.447065	-0.018520	-0.003653
Н	2.599368	0.040288	1.078587
Н	2.947862	0.837224	-0.464076
Н	2.932156	-0.927821	-0.366466

⁴*E* conformation (0.2 kcal / mol)

D1 = -30° $D3 = -60^{\circ}$ D5 = 0°

Η Η

Н

 $E_{gas}(B3LYP) = -310.290417092 a.u.$ $E_{solv}(B3LYP) = -310.367082722 a.u.$ Zero-point energy correction = 0.161743 a.u.

Н	-0.623457	-2.167031	-0.122382
С	-0.182480	-1.186451	-0.328392

С	-0.264956	1.259153	0.063121
0	1.882897	0.134807	-0.065141
С	1.188911	1.179579	-0.119261
С	1.226568	-1.196812	0.208959
С	-0.983617	-0.071481	0.358867
Н	1.772833	2.082687	-0.337788
Н	1.291662	-1.312833	1.292218
Н	-0.947757	-0.244903	1.441705
Н	-0.436273	2.037228	0.824994
Н	1.898714	-1.894075	-0.286960
Н	-0.170502	-1.055880	-1.416938
Н	-0.624975	1.737242	-0.867458
С	-2.445748	-0.021782	-0.085599
Н	-2.523575	0.127276	-1.167232
Н	-2.978793	0.794659	0.408717
Н	-2.953128	-0.956062	0.166090

³*H*₄ conformation (1.6 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -310.288704117 \text{ a.u.} \\ E_{solv}(B3LYP) &= -310.364812938 \text{ a.u.} \\ Zero-point energy correction &= 0.161837 \text{ a.u.} \end{split}$$

Н	0.154441	-1.152130	1.746032
С	-0.225477	-1.159892	0.718550
С	-0.185371	1.338107	0.403920
0	1.684126	0.019829	-0.393715
С	1.166274	1.126348	-0.111069
С	0.946157	-1.279583	-0.230318
С	-1.086951	0.096638	0.481298
Н	1.841185	1.976417	-0.272461
Н	1.727020	-1.953812	0.116207
Н	-1.743135	0.218027	1.348117
Н	-0.011988	1.801100	1.394893
Н	0.673738	-1.534984	-1.255846
Н	-0.828807	-2.065925	0.610428
Н	-0.618437	2.165662	-0.178521
С	-1.963082	-0.027640	-0.775013
Н	-1.365707	-0.139995	-1.686212
Н	-2.589404	0.859172	-0.900905
Н	-2.621208	-0.896027	-0.696215

C-2 Mono-substituted pyranosyl oxocarbenium ions

2-Benzyloxy-pyranosyl oxocarbenium ion (13)

Figure 17 | CEL map of 2-benzyloxy-pyranosyl oxocarbenium ion (13).

а				Н
				Н
nation (0.0	kcal / mol)			Н
				Н
				Н
				Н
				0
				С
) = -616.619	9838318 a.u			Н
(-616.68) = -616.68	6921058 a.u	l.		Н
nergy corre	ction = 0.24	7498 a.u.		С
				С
Atom coordinates				С
				С
2.560292	1.004586	-1.863595		С
3.138842	0.965699	-0.936800		С
1.186977	0.077357	0.321351		Н
2.928650	-1.474532	-0.397819		Н
1.798185	-1.259791	0.088793		Н
3.857405	-0.358796	-0.829914		Н
2.229245	1.199615	0.274852		Н
4.253274	-0.738027	-1.767642		
	a hation (0.0) = -616.619) = -616.68 nergy corre inates 2.560292 3.138842 1.186977 2.928650 1.798185 3.857405 2.229245 4.253274	a hation (0.0 kcal / mol)) = -616.619838318 a.u) = -616.686921058 a.u nergy correction = 0.24 inates 2.560292 1.004586 3.138842 0.965699 1.186977 0.077357 2.928650 -1.474532 1.798185 -1.259791 3.857405 -0.358796 2.229245 1.199615 4.253274 -0.738027	a hation (0.0 kcal / mol) P = -616.619838318 a.u. P = -616.686921058 a.u. nergy correction = 0.247498 a.u. inates 2.560292 1.004586 -1.863595 3.138842 0.965699 -0.936800 1.186977 0.077357 0.321351 2.928650 -1.474532 -0.397819 1.798185 -1.259791 0.088793 3.857405 -0.358796 -0.829914 2.229245 1.199615 0.274852 4.253274 -0.738027 -1.767642	a hation (0.0 kcal / mol) P = -616.619838318 a.u. P = -616.686921058 a.u. hergy correction = 0.247498 a.u. inates 2.560292 1.004586 -1.863595 3.138842 0.965699 -0.936800 1.186977 0.077357 0.321351 2.928650 -1.474532 -0.397819 1.798185 -1.259791 0.088793 3.857405 -0.358796 -0.829914 2.229245 1.199615 0.274852 4.253274 -0.738027 -1.767642

[1.730047	2.164796	0.199059
[0.494458	0.183225	-0.540100
[1.246856	-2.153860	0.379303
[4.628259	-0.385809	-0.061083
[3.901685	1.744531	-1.002350
[2.799379	1.187075	1.207315
)	0.472393	-0.037492	1.526538
2	-0.727249	0.778583	1.614197
[-1.053626	0.631101	2.643321
[-0.465624	1.832704	1.484382
2	-1.795131	0.365613	0.634020
2	-3.781156	-0.415130	-1.181283
2	-2.385743	-0.901903	0.729172
2	-2.210336	1.233067	-0.380758
2	-3.202036	0.846671	-1.283560
2	-3.370185	-1.290349	-0.172875
[-2.074673	-1.579941	1.516803
[-1.764498	2.219284	-0.458355
[-3.519228	1.530456	-2.062365
[-3.825309	-2.270422	-0.087397
[-4.552548	-0.717325	-1.880204

⁴*H*₃ conformation (0.5 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -616.622587644 \text{ a.u.} \\ E_{solv}(B3LYP) &= -616.686762545 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.248108 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-4.646680	0.415596	-0.349683
С	-3.583679	0.167833	-0.375451
С	-1.318713	0.652619	0.525424
0	-2.023954	-1.672222	0.331307
С	-1.123120	-0.830649	0.549397
С	-3.452246	-1.288148	0.009641
С	-2.783618	1.048682	0.589833
Н	-3.981927	-1.550429	0.924903
Н	-3.141393	0.930761	1.617195
Н	-0.720538	1.112667	1.339937
Н	-0.131886	-1.257380	0.692495
Н	-3.702648	-1.992347	-0.778569
Н	-3.231738	0.323286	-1.397077
Н	-2.871816	2.102977	0.325790
0	-0.764130	0.934227	-0.765237
С	0.525816	1.607211	-0.781701
Н	0.620010	1.932925	-1.817689
Н	0.468639	2.488138	-0.136078
С	1.674545	0.714916	-0.384165
С	3.788255	-0.968891	0.352827
С	2.030547	-0.373968	-1.192773
С	2.394064	0.953038	0.790355
С	3.447671	0.115473	1.157599
С	3.077877	-1.212442	-0.824407
Н	1.487298	-0.559708	-2.113362
Н	2.137527	1.800818	1.416979
Н	4.000081	0.311449	2.069179
Н	3.347993	-2.049175	-1.458165
Н	4.607353	-1.619668	0.636113

⁴*E* conformation (1.1 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = -15^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -616.621695713 \text{ a.u.} \\ E_{solv}(B3LYP) &= -616.685802355 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.248223 \text{ a.u.} \end{split}$$

TT	4 714414	0 277220	0 102620
п	-4./14414	0.577558	-0.192620
C	-3.658327	0.118919	-0.295090
С	-1.326927	0.617290	0.488872
0	-2.027205	-1.690400	0.053717
С	-1.126138	-0.860746	0.326037
С	-3.478091	-1.295021	0.195691
С	-2.786085	1.066509	0.535004
Н	-3.694231	-1.432139	1.254559
Н	-3.123389	1.065928	1.575544
Н	-0.734969	0.994511	1.349207
Н	-0.113980	-1.255811	0.275809
Н	-3.987359	-2.047716	-0.397255
Н	-3.408544	0.178644	-1.357174
Н	-2.834949	2.091431	0.167374
0	-0.735511	0.977598	-0.767427
С	0.557520	1.651335	-0.708854
Н	0.678809	2.036339	-1.720932
Н	0.472673	2.490994	-0.013375
С	1.696988	0.741092	-0.329395
С	3.785696	-0.986687	0.375759
С	2.145483	-0.235648	-1.229641
С	2.312850	0.846620	0.921323
С	3.353713	-0.013029	1.272976
С	3.180768	-1.096098	-0.877839
Н	1.684226	-0.316880	-2.208317
Н	1.987867	1.610374	1.619969
Н	3.826258	0.080969	2.243712
Н	3.523266	-1.844968	-1.582487
Н	4.595772	-1.653813	0.646612

2-Methoxy-pyranosyl oxocarbenium ion (S3)

Figure 18 | CEL map of 2-methoxy-pyranosyl oxocarbenium ion (S3).

Local minima

³H₄ conformation (0.0 kcal / mol)

 $\begin{array}{l} D1=45^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -385.505750957 \text{ a.u.} \\ E_{solv}(B3LYP) &= -385.580559380 \text{ a.u.} \\ Zero-point energy correction &= 0.166162 \text{ a.u.} \end{split}$$

Atom coordinates

Н	-1.713098	1.092104	1.422691
С	-1.736480	1.062267	0.328261
С	0.591882	0.185783	0.229276
0	-1.277209	-1.372646	-0.051015
С	-0.055101	-1.158707	0.107044
С	-2.297155	-0.258997	-0.142461
С	-0.337509	1.300887	-0.249218
Н	0.559891	-2.067809	0.102771
Н	-3.119102	-0.645266	0.457700
Н	0.063851	2.263269	0.069985
Н	0.805121	0.317515	1.317408

Н	-2.564770	-0.276644	-1.200515
Η	-2.427436	1.844409	0.000183
Η	-0.357630	1.289990	-1.343562
0	1.770567	0.131130	-0.542641
С	2.984558	-0.059831	0.196682
Η	3.792380	-0.015538	-0.531665
Η	3.003454	-1.034125	0.697509
Н	3.109304	0.735820	0.939245

⁴*H*₃ conformation (0.6 kcal / mol)

 $\begin{array}{l} D1 = -45^\circ \\ D3 = -45^\circ \\ D5 = 0^\circ \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -385.506898380 \text{ a.u.} \\ E_{solv}(B3LYP) &= -385.579980759 \text{ a.u.} \\ Zero-point energy correction &= 0.166586 \text{ a.u.} \end{split}$$

Atom coordinates

$$\begin{split} E_{gas}(B3LYP) &= -385.506898380 \text{ a.u.} \\ E_{solv}(B3LYP) &= -385.579980759 \text{ a.u.} \\ Zero-point energy correction &= 0.166586 \text{ a.u.} \end{split}$$

Н	-2.087443	1.950834	-0.455062
С	-1.364149	1.130924	-0.466239
С	0.597269	0.080725	0.644810
0	-1.261177	-1.343447	-0.027612
С	-0.089731	-1.225725	0.399128
С	-2.146005	-0.158538	-0.354656
С	-0.370800	1.249126	0.693670
Н	0.444745	-2.176223	0.513768
Н	-2.866446	-0.164711	0.465723
Н	-0.890611	1.237183	1.658656
Н	1.207559	0.003183	1.576685
Н	-2.626158	-0.484561	-1.275527
Н	-0.830671	1.170672	-1.419512
Н	0.196954	2.179969	0.633764
0	1.410639	0.110393	-0.532420
С	2.825653	-0.024945	-0.314070
Н	3.288027	0.059185	-1.296015
Н	3.071627	-0.997349	0.122687
Н	3.183299	0.776853	0.339236

Mono-substituted pyranosyl oxocarbenium ions with dispersion-corrected DFT

Novel corrections and functionals, including B3LYP-D3 and ω B97XD, were used to study the effect of dispersion (Van der Waals interactions) on the conformational preference of the studied oxocarbenium ions, because the used B3LYP functional fails to describe adequately this force. All functionals were used in combination with the 6-311(d,p) as basis set and a PCM model (DCM), according to the general procedure previously described. Analysing several mono-substituted oxocarbenium ions one can conclude that these noncovalent interactions have no significant effect on the conformational preference of these reactive intermediates. The CEL maps are based on the ΔE_{DCM} (Equation 3).

$$\Delta E_{DCM} = \Delta E_{gas} + \Delta G_{solv} \tag{3}$$

Probing the influence of the substituent orientation on the oxocarbenium ion stability

To investigate whether the orientation of the substitutions on the ring have a crucial effect on the stability of the oxocarbenium ion, extra DFT calculations were done in which the dihedral angle of the substituent was systematically rotated. Two key conformations were selected as starting point, including the ${}^{3}H_{4}$ and ${}^{4}H_{3}$, obtained from the 'conformer distribution search' option included in the Spartan 10 program by utilising DFT as the level of theory and B3LYP as hybrid functional in gas phase with $6{-}31G(d)$ as the basis set (*vide supra*). The ring dihdral angles were fixed to counter any conformational changes and the dihedral angle of choice was scanned for a full 360° with a step size of 20° . All calculations were done with Gaussian 09 by using DFT/B3LYP/ $6{-}311G(d,p)$, and further optimised with a polarisable continuum model (PCM) to correct for solvation in CH₂Cl₂. The depicted graphs are based on the relative ΔE_{DCM} .

Figure 19| The influence of the orientation of the C-4 substituent on the oxocarbenium ion stability.

Figure 19 shows the result of the scan for the C-4 substituted oxocarbenium ion and it is clear that the orientation of the substituent has an impact on the overall stability of the ion. Both for the ${}^{3}H_{4}$ and ${}^{4}H_{3}$ conformation a strong preference for geometry **A** and **B** was found to avoid any steric interactions between the substituent and the ring protons. This behaviour was also found for the C-3 and C-2 substituted oxocarbenium ions (Figure 20 and 21). This shows a general trend, in which the orientation of the substituent is crucial, and for both probed conformations the preference for rotamer **A** and **B** is strong. Concluding, the overall geometry of the substituents will be **A** and **B**, and not very flexible.

Figure 20| The influence of the orientation of the C-3 substituent on the oxocarbenium ion stability.

Figure 21 | The influence of the orientation of the C-2 substituent on the oxocarbenium ion stability.

Multi-substituted pyranosyl oxocarbenium ions

2,3,4-Tri-O-methyl-lyxo-D-pyranosyl oxocarbenium ion (14)

 $^{4}H_{3}$ (4.3)

Figure 22 | CEL map of 2,3,4-tri-O-methyl-lyxo-D-pyranosyl oxocarbenium ion (14).

Local mini	ma	С	1.568255 ().174659	1.350675
		С	-0.111249	0.676785	-0.448257
³ H ₄ confor	mation (0.0 kcal / mol)	Н	-0.973321 -	2.039833	1.601917
		Н	2.548577 -	0.237243	1.583268
$D1 = 45^{\circ}$		Н	-0.444273 -	1.392918	-0.948143
$D3 = 45^{\circ}$		Н	1.328019 ().995599	2.027079
$D5 = 0^{\circ}$		Н	1.867001	1.517160	-0.272153
		Ο	-2.196367 -	0.560104	-0.139178
E _{gas} (B3LY)	P) = -614.607306924 a.u.	Ο	1.900535 -(0.461909	-0.963321
E _{solv} (B3LY	(P) = -614.674748497 a.u.	С	-2.927368 -	1.526070	-0.909483
Zero-point	energy correction = 0.230464 a.u.	Н	-3.976538 -	1.250424	-0.820287
		Н	-2.783701 -	2.538876	-0.518292
Atom coor	dinates	Н	-2.621329 -	1.491466	-1.960445
		С	3.298040 -0	0.345297	-1.243756
С	1.381784 0.543617 -0.108570	Н	3.517780 ().619560	-1.714234
С	-0.796472 -0.678291 -0.182856	Н	3.543546 -	1.151628	-1.933355
0	0.634739 -0.914118 1.786596	Н	3.906997 -(0.454477	-0.338969
С	-0.365438 -1.262252 1.120497	Н	-0.224766	0.943195	-1.505423

0	-0.621952	1.668750	0.416691
С	-1.659527	2.495070	-0.123778
Н	-1.871928	3.248882	0.633631
Н	-2.560086	1.912722	-0.326846
Н	-1.319770	2.989463	-1.040882

³*E* conformation (0.5 kcal / mol)

 $D1 = 60^{\circ}$ $D3 = 30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -614.606750845 \text{ a.u.} \\ E_{solv}(B3LYP) &= -614.673678097 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.230219 \text{ a.u.} \end{split}$$

Atom coordinates

С	1.402903	0.439344	-0.238780
С	-0.790596	-0.667196	0.074367
0	0.454713	-0.064387	2.065430
С	-0.568025	-0.561441	1.541391
С	1.601610	0.495473	1.275006
С	-0.086882	0.540213	-0.593692
Н	-1.339375	-0.873276	2.257824
Н	2.453059	-0.089640	1.620992
Н	-0.271682	-1.579377	-0.270676
Н	1.660505	1.513551	1.659511
Н	1.928467	1.300761	-0.674648
0	-2.169490	-0.678944	-0.175587
0	1.860511	-0.785911	-0.780418
С	-2.710663	-1.946551	-0.574663
Н	-3.765084	-1.774359	-0.782332
Н	-2.614168	-2.688975	0.225033
Н	-2.211048	-2.311937	-1.478201
С	3.247376	-0.807297	-1.128249
Н	3.472935	-0.029159	-1.865669
Н	3.441716	-1.787525	-1.560739
Н	3.888861	-0.671827	-0.249554
Н	-0.207559	0.462219	-1.680748
0	-0.556305	1.763412	-0.079976
С	-1.657325	2.355820	-0.784695
Н	-1.820712	3.328979	-0.323685
Н	-2.557257	1.745000	-0.695002
Н	-1.404480	2.492022	-1.841807

E4 conformation (1.9 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -614.603829673 \text{ a.u.} \\ E_{solv}(B3LYP) &= -614.672020586 \text{ a.u.} \\ Zero-point energy correction &= 0.230610 \text{ a.u.} \end{split}$$

Atom coordinates

С	1.331498	0.660684	-0.044764
С	-0.769301	-0.670566	-0.291171
0	0.855790	-1.220249	1.468988
С	-0.109664	-1.535295	0.736782
С	1.475457	0.141006	1.372631
С	-0.159568	0.748896	-0.411225
Н	-0.509228	-2.537802	0.934690
Н	2.499886	-0.034537	1.692209
Н	-0.562751	-1.195357	-1.241082
Н	0.940423	0.753176	2.098734
Н	1.769753	1.668570	-0.086999
0	-2.139174	-0.670034	0.033523
0	1.916554	-0.221583	-0.984980
С	-2.982963	-1.429923	-0.848683
Н	-4.001461	-1.271192	-0.498943
Н	-2.746499	-2.497705	-0.804005
Н	-2.881453	-1.072200	-1.878414
С	3.336173	-0.116128	-1.125122
Н	3.622280	0.909332	-1.383539
Н	3.615518	-0.787556	-1.935608
Н	3.861554	-0.422058	-0.213726
Н	-0.267527	1.110489	-1.440067
0	-0.733181	1.633746	0.525473
С	-1.827167	2.419507	0.044073
Н	-2.092864	3.099217	0.852950
Н	-2.686410	1.791312	-0.200624
Н	-1.527931	3.002188	-0.834737

⁴*H*₃ conformation (4.3 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

		-1.070020	0.116098	0.832058
ı.u.	0	2.289015	-0.281176	-0.035705
230791 a.u.	С	-2.952215	1.046863	1.080372
	Н	-3.176980	0.957786	2.141580
	Н	-3.837086	0.788801	0.492198
	Н	-2.618214	2.059261	0.843902
5 0.191071	С	3.113430	-0.328244	1.135499
1 -0.514874	Н	2.813094	0.441864	1.853384
7 -0.440094	Н	4.131059	-0.134860	0.798705
0 -0.687668	Н	3.076068	-1.311450	1.616648
3 -0.261335	Н	0.358189	0.395244	-1.681476
3 -0.619727	Ο	0.181871	1.779800	-0.132444
3 -0.865619	С	1.096813	2.615260	-0.851633
4 -1.245053	Н	1.084020	3.581596	-0.348802
6 -1.204430	Н	0.772491	2.745017	-1.890867
8 0.450383	Н	2.107153	2.201361	-0.831621
3 1.250329				
	1.u. 230791 a.u. 5 0.191071 1 -0.514874 7 -0.440094 0 -0.687668 3 -0.261335 3 -0.619727 3 -0.865619 4 -1.245053 6 -1.204430 8 0.450383 3 1.250329	n.u. O 230791 a.u. C H H H H 5 0.191071 C 1 -0.514874 H 7 -0.440094 H 0 -0.687668 H 3 -0.261335 H 3 -0.619727 O 3 -0.865619 C 4 -1.245053 H 6 -1.204430 H 8 0.450383 H 3 1.250329 L	N.u. O 2.289015 230791 a.u. C -2.952215 H -3.176980 H -3.837086 H -2.618214 5 0.191071 C 1 -0.514874 H 2.813094 7 -0.440094 H 4.131059 0 -0.687668 H 3.076068 3 -0.261335 H 0.358189 3 -0.619727 O 0.181871 3 -0.865619 C 1.096813 4 -1.245053 H 1.084020 6 -1.204430 H 0.772491 8 0.450383 H 2.107153 3 1.250329	A.u. O 2.289015 -0.281176 230791 a.u. C -2.952215 1.046863 H -3.176980 0.957786 H -3.837086 0.788801 H -2.618214 2.059261 5 0.191071 C 3.113430 -0.328244 1 -0.514874 H 2.813094 0.441864 7 -0.440094 H 4.131059 -0.134860 0 -0.687668 H 3.076068 -1.311450 3 -0.261335 H 0.358189 0.395244 3 -0.619727 O 0.181871 1.779800 3 -0.865619 C 1.096813 2.615260 4 -1.245053 H 1.084020 3.581596 6 -1.204430 H 0.772491 2.745017 8 0.450383 H 2.107153 2.201361

2,3,4-Tri-O-methyl-arabino-D-pyranosyl oxocarbenium ion (15)

Figure 23 | CEL map of 2,3,4-tri-O-methyl-arabino-D-pyranosyl oxocarbenium ion (15).

Local minima ³H₄ conformation (0.0 kcal / mol) D1 = 45° D3 = 45° D5 = 0° $E_{gas}(B3LYP) = -614.603576250 a.u.$ $E_{solv}(B3LYP) = -614.673301059 a.u.$ Zero-point energy correction = 0.230291 a.u. Atom coordinates C -1.386226 -0.125715 -0.412006

C	1.500220	0.125715	0.412000
С	0.983207	-0.553152	0.238091
0	-0.429190	-2.445493	-0.376796
С	0.638464	-1.992588	0.090946
С	-1.540320	-1.561876	-0.867657
С	0.072740	0.350189	-0.602535
Н	1.375209	-2.754539	0.376345
Н	-2.430520	-2.031110	-0.453518
Н	0.765339	-0.343405	1.306496
Н	-1.500952	-1.687126	-1.950715
Н	-2.066891	0.474617	-1.034895
Н	0.359248	0.234629	-1.660789
0	2.344543	-0.428613	-0.069287
0	0.287466	1.669736	-0.165609
0	-1.757970	-0.082968	0.955652
С	3.110691	0.362487	0.856755
Н	4.116487	0.414143	0.443466
Н	3.144674	-0.116581	1.840774
Н	2.687531	1.365583	0.940025
С	0.094503	2.668682	-1.171266
Н	0.769787	2.501511	-2.017490
Н	0.327152	3.624288	-0.703802
Н	-0.940313	2.688554	-1.530906
С	-2.388711	1.128562	1.391249
Н	-1.689161	1.966107	1.379815
Н	-2.726420	0.944687	2.410613
Н	-3.256052	1.357806	0.761443

³*E* conformation (0.7 kcal / mol)

 $\begin{array}{l} D1=60^\circ\\ D3=30^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -614.602235569 \text{ a.u.} \\ E_{solv}(B3LYP) &= -614.672099100 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.230156 \text{ a.u.} \end{split}$$

Atom coordinates

С	-1.428789	0.001219	-0.328825
С	0.878386	-0.699189	0.248779

0	-0.661907	-2.421003	-0.462251
С	0.485060	-2.086250	-0.082910
С	-1.793096	-1.447656	-0.629825
С	0.061374	0.260372	-0.649032
Н	1.219185	-2.901332	-0.045855
Н	-2.558500	-1.822839	0.048198
Н	0.551248	-0.529434	1.296212
Н	-2.083212	-1.610774	-1.667802
Н	-2.062244	0.629244	-0.972992
Н	0.267843	0.019883	-1.703784
0	2.261356	-0.597031	0.077125
0	0.453051	1.571267	-0.341206
0	-1.705111	0.228691	1.041391
С	2.944522	0.168105	1.084189
Н	3.992441	0.181069	0.789317
Н	2.848106	-0.309704	2.065067
Н	2.555293	1.187243	1.120725
С	0.559279	2.447675	-1.467933
Н	1.305567	2.076055	-2.178060
Н	0.879105	3.412295	-1.076800
Н	-0.403225	2.566696	-1.977446
С	-2.130854	1.556169	1.381052
Н	-1.322818	2.277357	1.251422
Н	-2.430332	1.517680	2.427804
Н	-2.992854	1.848497	0.770559

E4 conformation (1.7 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -614.601932846 \text{ a.u.} \\ E_{solv}(B3LYP) &= -614.671359043 \text{ a.u.} \\ Zero-point energy correction &= 0.230576 \text{ a.u.} \end{split}$$

С	-1.320131	-0.295807	-0.512648
С	1.049697	-0.273146	0.275526
0	-0.033461	-2.390281	-0.327168
С	0.870455	-1.759988	0.263654
С	-1.079597	-1.658303	-1.123935
С	0.002286	0.501181	-0.532331
Н	1.608915	-2.394938	0.769418
Н	-1.944296	-2.313194	-1.047414
Н	0.947790	0.020621	1.341484
Н	-0.689034	-1.635427	-2.142673
Н	-2.083803	0.202689	-1.128979
Н	0.359944	0.565190	-1.572592
0	2.359710	-0.077388	-0.216341
0	-0.088520	1.782629	0.045854
0	-1.772538	-0.521668	0.810477
С	3.287435	0.516060	0.708652
Н	4.210754	0.663770	0.151207
Н	3.477352	-0.145139	1.559955

Н	2.903721 1.477684 1.061087	С	-1.607051	-0.553607	-1.205098
С	-0.476679 2.817880 -0.860978	С	0.637895	-1.452338	-1.076274
Н	0.228988 2.885866 -1.696358	С	0.116954	0.666055	0.161056
Н	-0.457380 3.746856 -0.292911	Н	-2.603171	-0.676702	-1.647393
Н	-1.487621 2.659636 -1.252978	Н	1.256235	-1.017265	-1.860787
С	-2.677008 0.459424 1.333475	Н	-1.838918	1.423041	-0.416815
Н	-2.184483 1.425390 1.459310	Н	0.808598	-2.523765	-0.995708
Н	-3.002751 0.084266 2.303021	Н	0.327131	-1.287744	1.049578
Н	-3.548386 0.566582 0.677361	Н	0.222957	1.217749	1.104642
		0	-2.035850	-0.199946	0.944672
⁴ H ₃ con	formation (0.0 kcal / mol)	Ο	0.587901	1.412057	-0.947745
		Ο	2.198769	-0.629718	0.425103
D1 = -4	5°	С	-3.218957	0.455052	1.441648
D3 = -4	5°	Н	-3.564784	-0.152251	2.275973
$D5 = 0^{\circ}$		Н	-3.996394	0.502111	0.674028
		Η	-2.971683	1.463654	1.785693
Egas(B3	LYP) = -614.602632241 a.u.	С	1.702920	2.276540	-0.691593
Esolv(B3	LYP) = -614.670512660 a.u.	Н	1.474178	2.962267	0.132226
Zero-po	bint energy correction $= 0.230717$ a.u.	Н	1.856854	2.850691	-1.604606
		Н	2.601240	1.702976	-0.457784
Atom c	oordinates	С	2.634250	-0.763525	1.781656
		Н	2.258201	0.052763	2.408029
С	0.801026 -0.708912 0.243411	Н	3.722393	-0.725381	1.758909
С	-1.370641 0.458073 -0.129578	Н	2.311276	-1.722553	2.201301
0	-0.756133 -1.374095 -1.616861				

2,3,4-Tri-O-methyl-xylo-D-pyranosyl oxocarbenium ion (16)

Figure 24| CEL map of 2,3,4-tri-O-methyl-xylo-D-pyranosyl oxocarbenium ion (16).

*E*₄-^{2,5}*B* conformation (0.0 kcal / mol)

 $D1 = 0^{\circ}$ D3 = 60° D5 = -15°

 $E_{gas}(B3LYP) = -614.603022464$ a.u. $E_{solv}(B3LYP) = -614.672507024 a.u.$ Zero-point energy correction = 0.230040 a.u.

Atom coordinates

С	-1.127110	0.660270	-0.022565
С	0.943030	-0.808092	-0.241443
0	-1.136779	-1.453326	-1.267601
С	-0.087286	-1.774172	-0.661891
С	-1.567247	-0.025095	-1.310270
С	0.403779	0.600116	0.135568
Н	0.084547	-2.852089	-0.550573
Н	-2.642036	-0.095350	-1.455539
Н	-1.093356	0.416050	-2.190432
Н	-1.472250	1.702752	-0.069610
0	-1.623017	-0.016282	1.116025
С	-3.030735	0.086692	1.351445
Н	-3.347471	1.135473	1.350002
Н	-3.206113	-0.344501	2.335756
Н	-3.613194	-0.472683	0.611397
Н	1.477765	-0.657478	-1.215755
0	1.760730	-1.428005	0.703479
С	3.091748	-0.896728	0.770702
Н	3.579838	-0.952608	-0.208422
Н	3.627488	-1.518466	1.485353
Н	3.090764	0.139447	1.121953
Н	0.631062	0.767684	1.196318
0	1.066019	1.521040	-0.706428
С	1.163899	2.849806	-0.184714
Н	1.747306	3.418700	-0.907018
Н	1.678680	2.849391	0.782684
Н	0.180877	3.319476	-0.070913

*E*₄-^{2,5}*B* conformation (0.1 kcal / mol)

 $D1 = 15^{\circ}$ $D3 = 60^{\circ}$ D5 = -15°

 $E_{gas}(B3LYP) = -614.603591916$ a.u. $E_{solv}(B3LYP) = -614.672267125 a.u.$ Zero-point energy correction = 0.230072 a.u.

Atom coordinates

С	1.106815	0.634820	-0.196580
С	-0.963341	-0.692664	0.384366
0	1.089885	-1.000511	1.636381
С	0.037275	-1.470641	1.145189
С	1.596858	0.340423	1.213924
С	-0.431983	0.634115	-0.222234
Н	-0.166448	-2.520255	1.391057
Н	2.673869	0.236390	1.321401
Н	1.207759	1.054979	1.941260
Н	1.504710	1.616693	-0.490078
0	1.477875	-0.384830	-1.100873
С	2.855870	-0.418385	-1.485539
Н	3.168607	0.552030	-1.886115
Н	2.935388	-1.175922	-2.263506
Н	3.508222	-0.696907	-0.650994
Н	-1.642159	-0.379812	1.220571
0	-1.598728	-1.570185	-0.496146
С	-2.959108	-1.225226	-0.792703
Н	-3.560157	-1.199703	0.122634
Н	-3.329973	-2.004876	-1.455198
Н	-3.022712	-0.258694	-1.303087
Н	-0.755210	0.679579	-1.268944
0	-0.966562	1.688112	0.552212
С	-1.095727	2.937632	-0.134083
Н	-1.577790	3.620545	0.563761
Н	-1.721119	2.825296	-1.026681
Н	-0.122707	3.349532	-0.422704

*E*₄-^{2,5}*B* conformation (0.4 kcal / mol)

$$\begin{split} E_{gas}(B3LYP) &= -614.601986257 \text{ a.u.} \\ E_{solv}(B3LYP) &= -614.671966644 \text{ a.u.} \\ Zero-point energy correction &= 0.229985 \text{ a.u.} \end{split}$$

Atom coordinates

С	1.161587	0.571443	0.192758
С	-0.972450	-0.837615	0.133884
0	1.092456	-1.774912	0.891069
С	0.033834	-1.908851	0.232354
С	1.507822	-0.405411	1.312808
С	-0.353961	0.572063	-0.101682
Н	-0.153499	-2.910175	-0.175794
Н	2.569978	-0.518659	1.512936
Н	0.970336	-0.181702	2.238356
Н	1.485700	1.568260	0.523676
0	1.769803	0.184799	-1.023608
С	3.182913	0.388574	-1.111604
Н	3.437661	1.431267	-0.891102
Н	3.459735	0.156242	-2.138743
Н	3.738131	-0.273065	-0.437812
Н	-1.367975	-0.805326	1.182897
0	-1.945895	-1.232755	-0.782588
С	-3.225939	-0.607430	-0.609807
Н	-3.586815	-0.744232	0.415420
Н	-3.897924	-1.106506	-1.305579
Н	-3.184243	0.459455	-0.842507
Н	-0.478463	0.807605	-1.167085
0	-1.074074	1.456372	0.729482
С	-1.076824	2.816681	0.286551
Н	-1.702140	3.365406	0.989162
Н	-1.499935	2.896085	-0.721203
Н	-0.070758	3.250586	0.290954

E4 conformation (1.0 kcal / mol)

$E_{gas}(B3LYP) = -614.602238942 a.u.$
$E_{solv}(B3LYP) = -614.671115576$ a.u.
Zero-point energy correction = 0.229944 a.u

С	1.143054	0.576973	-0.138327
С	-1.040285	-0.632773	0.368997
0	1.010984	-1.205324	1.546984
С	-0.135469	-1.509212	1.149852
С	1.591142	0.139028	1.249397
С	-0.393288	0.658928	-0.195903
Н	-0.459844	-2.527299	1.398197
Н	2.659921	-0.024519	1.359487
Н	1.221672	0.804120	2.032140
Н	1.589325	1.562488	-0.332297
0	1.495461	-0.370289	-1.124905
С	2.880031	-0.423289	-1.479247
Н	3.245708	0.569559	-1.764279
Н	2.950107	-1.095042	-2.333321
Н	3.497596	-0.819730	-0.665835
Н	-1.746921	-0.278231	1.164531
0	-1.678073	-1.463386	-0.558545
С	-3.018160	-1.066703	-0.885677
Н	-3.649874	-1.063052	0.008730
Н	-3.385920	-1.806393	-1.594163
Н	-3.034552	-0.077663	-1.354886
Н	-0.689361	0.755251	-1.247255
0	-0.877695	1.724622	0.599665
С	-0.880787	3.005395	-0.038259
Н	-1.344475	3.695189	0.665350
Н	-1.468600	2.975433	-0.962505
Н	0.132356	3.354813	-0.264491

2-Deoxy-3,4-di-O-methyl-xylo-D-pyranosyl oxocarbenium ion (17)

Figure 25 | CEL map of 2-deoxy-3,4-di-O-methyl-xylo-D-pyranosyl oxocarbenium ion (17).

Local minima

³*H*₄ conformation (0.0 kcal / mol)

 $D1 = 45^{\circ}$ $D3 = 45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -500.065627371 \text{ a.u.} \\ E_{solv}(B3LYP) &= -500.137159512 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.198200 \text{ a.u.} \end{split}$$

Atom coordinates

С	-0.328256	1.887274	0.527499
С	-0.661204	-0.581818	0.386349
С	0.740420	0.658596	-1.269496
С	0.664348	-0.571746	-0.383630
0	0.304989	1.903658	-0.554255
С	-0.736337	0.679842	1.251855
Н	-0.703446	-1.476230	1.018946
Н	1.748303	0.909583	-1.594856
Н	0.720826	-1.459072	-1.029816
Н	-1.723901	0.857446	1.693144
Н	-0.546078	2.889189	0.919048
Н	0.063735	0.606007	-2.122682
Н	-0.044535	0.619620	2.112059
0	1.685937	-0.557789	0.599651
0	-1.689155	-0.577539	-0.589046
С	-2.924786	-1.152308	-0.160700
Н	-2.781328	-2.192216	0.153201
Н	-3.594084	-1.121039	-1.019369
Н	-3.375917	-0.585090	0.661986
С	2.924274	-1.140870	0.190012
Н	2.784662	-2.190642	-0.091501
Н	3.593033	-1.080057	1.047463
Н	3.373806	-0.597968	-0.649751

E4 conformation (0.3 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -500.065155452 \text{ a.u.} \\ E_{solv}(B3LYP) &= -500.136845361 \text{ a.u.} \\ Zero-point energy correction &= 0.198251 \text{ a.u.} \end{split}$$

Atom coordinates

С	-0.066585	1.904339	-0.467650
С	0.764065	-0.491533	-0.408427
С	-0.710720	0.465435	1.337588
С	-0.561349	-0.671160	0.340687
0	-0.709308	1.770169	0.602003
С	0.736388	0.869467	-1.128070

Н	0.878625	-1.296377	-1.144433
Н	-1.661123	0.487702	1.865830
Н	-0.538914	-1.617929	0.898875
Н	1.739706	1.293519	-1.284548
Н	-0.162403	2.903330	-0.911650
Н	0.124099	0.519711	2.036065
Н	0.317995	0.801615	-2.146674
0	-1.580133	-0.643506	-0.638830
0	1.782500	-0.535798	0.573051
С	3.070196	-0.906990	0.080309
Н	3.035658	-1.894203	-0.393920
Н	3.733776	-0.940731	0.943256
Н	3.459911	-0.175453	-0.637910
С	-2.810518	-1.261425	-0.253629
Н	-2.648902	-2.312220	0.011056
Н	-3.468793	-1.201268	-1.119062
Н	-3.282972	-0.743416	0.588475

³*E* conformation (2.1 kcal / mol)

 $D1 = 60^{\circ}$ $D3 = 30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -500.062694230 \text{ a.u.} \\ E_{solv}(B3LYP) &= -500.133862557 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.198229 \text{ a.u.} \end{split}$$

С	-0.708963	1.773531	0.573081
С	-0.563346	-0.656986	0.346523
С	0.745275	0.863259	-1.153526
С	0.759051	-0.469219	-0.403403
0	-0.085291	1.934181	-0.503277
С	-0.704283	0.517187	1.331536
Н	-0.524897	-1.602968	0.899680
Н	1.727440	1.328899	-1.227346
Н	0.880310	-1.270849	-1.145236
Н	-1.594504	0.470687	1.963835
Н	-1.255947	2.667458	0.898208
Н	0.286614	0.791971	-2.139523
Н	0.168974	0.545729	2.005151
0	1.776215	-0.505221	0.580665
0	-1.597283	-0.643603	-0.616162
С	-2.790733	-1.328388	-0.226349
Н	-2.576657	-2.377975	0.002859
Н	-3.469227	-1.272722	-1.076326
Н	-3.265997	-0.856779	0.641227
С	3.049788	-0.950907	0.110187
Н	2.977455	-1.960674	-0.309116
Н	3.711932	-0.962340	0.974732
Н	3.464636	-0.274152	-0.646242

⁴ H ₃ confe	ormation (3.1 kcal / mol)	Н	-0.279935 0.657826 1.338924
		Н	1.379415 -1.567878 1.342094
D1 = -30	0	Н	-0.083226 -0.883434 -1.269563
D3 = -45	0	Н	0.958320 1.870414 -1.174115
D5 = 0°		Н	3.286088 1.278352 -0.381313
		Н	1.611857 -2.306392 -0.269250
Egas(B3L	YP) = -500.055531412 a.u.	Н	1.228372 2.357982 0.471769
Esolv(B3L	(YP) = -500.131751292 a.u.	О	-0.939580 -1.668572 0.456868
Zero-poin	nt energy correction = 0.197815 a.u.	О	-1.325287 1.133604 -0.385238
		С	-1.922027 2.256775 0.266306
Atom coo	ordinates	Н	-2.173209 2.017044 1.305796
		Н	-2.833946 2.484365 -0.283972
С	2.346828 0.747767 -0.179737	Н	-1.267143 3.135742 0.245241
С	-0.164885 0.636534 0.244368	С	-2.096739 -1.988052 -0.326416
С	1.345322 -1.396896 0.264593	Н	-2.669604 -1.089260 -0.562866
С	0.000353 -0.826099 -0.173575	Н	-2.697254 -2.661647 0.283856
0	2.495862 -0.485017 -0.004244	Н	-1.809958 -2.498691 -1.252813
С	1.074858 1.464213 -0.151018		

2,3,4-Tri-O-methyl-ribo-D-pyranosyl oxocarbenium ion (18)

Figure 26 | CEL map of 2,3,4-tri-O-methyl-ribo-D-pyranosyl oxocarbenium ion (18).

Local minima				
E ₃ conformation (0.0 kcal / mol)				
D1 = -60°				
D3 = -30°				
$D5 = 0^{\circ}$				
$E_{gas}(B3LYP) = -614.598196283 a.u.$ $E_{solv}(B3LYP) = -614.669534228 a.u.$ Zero-point energy correction = 0.230168 a.u. Atom coordinates				
C	1 125426	0.5(270)	0.5107(5	
C	1.135426	0.563/96	-0.510/65	
C	-1.302406	0.139065	-0.430078	

C	-1.302400	0.139003	-0.430078
0	-0.445457	2.016717	0.854317
С	-1.412788	1.313142	0.490269
С	0.964002	1.773955	0.412474
С	0.073489	-0.506240	-0.193506
Н	-2.372714	1.600188	0.938637
Н	1.489706	1.618771	1.353624
Н	1.257019	2.720647	-0.038828
Н	1.017175	0.876649	-1.559714
0	2.457990	0.136257	-0.266927
С	3.097775	-0.488681	-1.383728
Н	2.594530	-1.418044	-1.671950
Н	4.113639	-0.717009	-1.064770
Н	3.128784	0.189975	-2.243348
Н	0.172056	-1.370555	-0.862215
Н	-1.330930	0.539668	-1.464561
0	0.104840	-0.882964	1.166740
0	-2.341322	-0.759702	-0.167928
С	-3.477948	-0.634179	-1.033453
Н	-3.964996	0.341228	-0.919562
Н	-4.172576	-1.417729	-0.736560
Н	-3.184464	-0.775866	-2.079530
С	0.890989	-2.039086	1.473797
Н	0.564338	-2.894633	0.871890
Н	0.714654	-2.254721	2.527033
Н	1.954145	-1.851669	1.310180

⁴*H*₃ conformation (0.3 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -614.597765821 \text{ a.u.} \\ E_{solv}(B3LYP) &= -614.669218656 \text{ a.u.} \\ Zero-point energy correction &= 0.230189 \text{ a.u.} \end{split}$$

Atom coordinates

С	-1.199125	0.557270	0.397661
С	1.280154	0.223553	0.458149

0	0.366384	2.140871	-0.757184
С	1.343421	1.518617	-0.283709
С	-1.043736	1.658213	-0.641759
С	-0.071717	-0.482080	0.248239
Н	2.312954	1.989993	-0.489159
Н	-1.278696	1.293745	-1.641759
Н	-1.605779	2.560821	-0.412114
Н	-1.159049	0.998595	1.406440
0	-2.470787	0.006593	0.137069
С	-3.188845	-0.419486	1.298803
Н	-2.661495	-1.220223	1.829030
Н	-4.146771	-0.797078	0.944251
Н	-3.358091	0.419604	1.982670
Η	-0.172725	-1.280890	0.992170
Η	1.346058	0.511171	1.527908
0	-0.074427	-0.981832	-1.073114
0	2.360147	-0.569262	0.049146
С	3.459863	-0.628362	0.969740
Н	3.938643	0.350024	1.086718
Н	4.173802	-1.328573	0.539962
Н	3.125136	-0.992708	1.947051
С	-0.565820	-2.313780	-1.229071
Н	0.029617	-3.018169	-0.637599
Н	-0.459786	-2.556752	-2.285929
Н	-1.619529	-2.384198	-0.945292

E4 conformation (1.5 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = -15^{\circ}$

Egas(B3LYP) = -614.595999864 a.u. Esolv(B3LYP) = -614.667707529 a.u. Zero-point energy correction = 0.230433 a.u.

С	1.113780	-0.982082	-0.247960
С	-0.311461	1.070969	-0.378289
0	2.118834	1.229777	-0.632406
С	1.026190	1.722119	-0.268224
С	2.241255	-0.240199	-0.931878
С	-0.216582	-0.434615	-0.793106
Н	1.087731	2.744991	0.122712
Н	3.217843	-0.481022	-0.517992
Н	2.241593	-0.319751	-2.019543
Н	1.204103	-2.051369	-0.497410
0	1.295511	-0.736046	1.130717
С	0.533320	-1.549505	2.034427
Н	-0.526129	-1.298674	1.995695
Н	0.932056	-1.341259	3.026624
Н	0.671124	-2.610893	1.801189
Н	-0.168116	-0.481671	-1.891319
Н	-0.780503	1.640220	-1.207388
0	-1.308885	-1.172173	-0.311505

0	-0.946746 1.321095 0.844232	C	0 562288 1 882071 -0 277675
C C	-0.940740 1.521095 0.644252	C C	0.302200 1.002071 - 0.277075
	-2.332990 1.080001 0.730190	C	2.234340 0.274010 -0.902793
Н	-2.464052 2.58/936 0.15/863	С	-0.116639 -0.503445 -0.8/0891
Н	-2.657112 1.869687 1.778060	Н	0.364970 2.893374 0.097616
Н	-2.919883 0.861634 0.334181	Н	3.232971 0.214824 -0.476921
С	-2.293301 -1.507633 -1.293250	Н	2.268070 0.309865 -1.992503
Н	-2.753871 -0.613258 -1.729043	Н	1.634002 -1.756505 -0.700920
Н	-3.057610 -2.086154 -0.776102	0	1.412561 -0.653988 1.064472
Н	-1.858164 -2.116330 -2.093303	С	0.928776 -1.757264 1.841888
		Н	-0.158676 -1.816688 1.810028
E4 con	formation (1.5 kcal / mol)	Н	1.265220 -1.571411 2.861440
		Н	1.361007 -2.698216 1.482958
D1 = 3	0°	Н	-0.054860 -0.486453 -1.973385
D3 = 6	0°	Н	-1.259850 1.350987 -1.187837
D5 = 0	0	0	-0.977867 -1.516457 -0.441431
		0	-1.146075 0.929455 0.866708
Egas(B3	BLYP) = -614.595796556 a.u.	С	-2.399101 1.617951 0.992756
Esolv(B.	3LYP) = -614.667617443 a.u.	Н	-2.288321 2.691188 0.805973
Zero-p	oint energy correction $= 0.230472$ a.u.	Н	-2.722763 1.462067 2.020235
_		Н	-3.139854 1.201590 0.302626
Atom c	coordinates	С	-2.183290 -1.644980 -1.193665
		Н	-2.844569 -0.781343 -1.061321
С	1.299365 -0.771383 -0.337215	Н	-2.688024 -2.533634 -0.817675
С	-0.576872 0.920904 -0.426246	Н	-1.966239 -1.772604 -2.260894
0	1.774191 1.639209 -0.473046		

2,3,4-Tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (19)

Figure 27 | CEL map of 2,3,4-tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (19).

Local minima

³*H*₄ conformation (0.0 kcal / mol)

 $\begin{array}{l} D1=45^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -653.937550024 \text{ a.u.} \\ E_{solv}(B3LYP) &= -654.004885139 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.257829 \text{ a.u.} \end{split}$$

Atom coordinates

С	-1.109519	0.557784	-0.378878
С	0.944141	-0.715930	0.260106
0	-1.085868	-1.960767	-0.271137
С	0.081855	-1.929327	0.169047
С	-1.827894	-0.721223	-0.798473
С	0.409295	0.439647	-0.599115
Н	0.484589	-2.908854	0.458751
Н	0.881663	-0.391966	1.315003
Н	-1.497612	1.356354	-1.029091
0	2.247047	-1.085562	-0.120408
С	3.203156	-1.160924	0.948747
Н	4.161079	-1.383193	0.481908
Н	2.949885	-1.959114	1.654403
Н	3.259156	-0.204690	1.478651
0	-1.395620	0.809290	0.984520
С	-1.597666	2.186833	1.329450
Н	-0.686709	2.766673	1.173021
Н	-1.870080	2.198217	2.384267
Н	-2.416897	2.614713	0.740463
Н	-1.739094	-0.872479	-1.879200
С	-3.247718	-0.878056	-0.316376
Н	-3.846591	-0.076000	-0.756284
Н	-3.301689	-0.795357	0.768102
Н	-3.659707	-1.833084	-0.644505
Н	0.593433	0.196323	-1.656397
0	1.047860	1.637480	-0.230397
С	2.032178	2.111652	-1.155852
Н	2.832768	1.378927	-1.290478
Н	2.442057	3.024102	-0.724615
Н	1.579424	2.343164	-2.126568

³*E* conformation (0.7 kcal / mol)

 $D1 = 60^{\circ}$ $D3 = 30^{\circ}$ $D5 = 0^{\circ}$

$E_{gas}(B3LYP) = -653.936656292 a.u.$
$E_{solv}(B3LYP) = -654.003860538$ a.u.
Zero-point energy correction = 0.257842 a.u

Atom coordinates

С	-1.076667	0.633341	-0.411100
С	0.808724	-0.844221	0.244558
0	-1.226029	-1.917776	-0.491335
С	-0.046700	-2.007751	-0.082421
С	-1.961058	-0.585318	-0.714648
С	0.409008	0.329700	-0.685246
Н	0.351301	-3.029658	-0.029072
Н	0.551209	-0.530591	1.272656
Н	-1.409697	1.432018	-1.089376
0	2.152534	-1.212323	0.097384
С	2.956427	-1.057686	1.277151
Н	3.973190	-1.316380	0.986596
Н	2.622761	-1.732386	2.072417
Н	2.925485	-0.022556	1.630119
0	-1.254562	1.001905	0.943038
С	-1.274334	2.411292	1.207554
Н	-0.309168	2.866643	0.981470
Н	-1.497023	2.516024	2.268841
Н	-2.063118	2.899462	0.623999
Н	-2.130220	-0.654655	-1.793423
С	-3.251158	-0.695201	0.058920
Н	-3.865114	0.176413	-0.183037
Н	-3.071094	-0.696974	1.132771
Н	-3.795783	-1.592459	-0.237739
Н	0.536833	0.019603	-1.733179
0	1.188011	1.455995	-0.385759
С	2.234454	1.741219	-1.321829
Н	2.940031	0.909032	-1.387305
Н	2.745996	2.626136	-0.945719
Н	1.822615	1.955689	-2.314271

*E*₄ conformation (1.0 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

 $E_{gas}(B3LYP) = -653.936490282 a.u.$ $E_{solv}(B3LYP) = -654.003762077 a.u.$ Zero-point energy correction = 0.257957 a.u.

С	-1.055066	0.462979	-0.340636
С	1.064782	-0.698484	0.313791
0	-0.998995	-1.982488	0.009899
С	0.151059	-1.872547	0.479313
С	-1.628832	-0.858852	-0.833779
С	0.478942	0.447536	-0.517016
Η	0.513924	-2.753732	1.024164
Η	1.220003	-0.330814	1.344514
Η	-1.496996	1.251676	-0.968297
0	2.242553	-1.243064	-0.240764
С	3.456973	-0.928118	0.462798

Н	4.264957	-1.348292	-0.133747
Н	3.463500	-1.383031	1.458339
Н	3.576095	0.155255	0.545760
0	-1.423842	0.608649	1.017221
С	-1.638169	1.953671	1.462954
Н	-0.704694	2.519591	1.472512
Н	-2.032600	1.879078	2.475789
Н	-2.373776	2.458142	0.826119
Н	-1.282971	-1.096897	-1.845047
С	-3.115604	-1.042352	-0.671546
Н	-3.622730	-0.330698	-1.328395
Н	-3.417875	-0.849198	0.357421
Н	-3.413155	-2.050076	-0.964552
Н	0.704729	0.244016	-1.576128
0	1.120651	1.628038	-0.088148
С	1.189338	2.659551	-1.075576
Н	1.707849	2.303850	-1.972949
Н	1.755416	3.475822	-0.629067
Н	0.194845	3.025928	-1.353917

⁴*H*₃ conformation (3.8 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -653.933492698 \ a.u. \\ E_{solv}(B3LYP) &= -653.999603265 \ a.u. \\ Zero-point \ energy \ correction &= 0.258614 \ a.u. \end{split}$$

С	0.640813	-0.124498	-0.756795
С	-1.510922	-0.028838	0.473331
0	-0.542118	2.053162	-0.353925
С	-1.499430	1.435376	0.158755
С	0.788868	1.406037	-0.747873
С	-0.109345	-0.643569	0.483327
Н	-2.401890	2.040907	0.309261
Н	-1.996996	-0.186041	1.453476
Н	0.042029	-0.397298	-1.638496
0	-2.286416	-0.503530	-0.622228
С	-3.579175	-1.041437	-0.285631
Н	-4.006096	-1.393850	-1.222735
Н	-4.227188	-0.273828	0.146735
Н	-3.469547	-1.874948	0.414587
0	1.955113	-0.629309	-0.874795
С	2.061828	-1.836458	-1.633381
Н	1.521300	-2.663321	-1.159426
Н	3.122395	-2.080928	-1.672944
Н	1.682612	-1.691458	-2.651174
Н	0.879576	1.773586	-1.773187
С	1.843566	2.028340	0.141206
Н	2.809544	1.623547	-0.163091
Н	1.675210	1.789279	1.188967
Н	1.858299	3.110363	-0.000460

-0.217845	-1.735977	0.429006
0.469866	-0.242343	1.709082
1.487224	-1.110496	2.225530
1.108323	-2.135723	2.307703
1.729508	-0.737727	3.220150
2.378639	-1.097153	1.595749
	-0.217845 0.469866 1.487224 1.108323 1.729508 2.378639	-0.217845 -1.735977 0.469866 -0.242343 1.487224 -1.110496 1.108323 -2.135723 1.729508 -0.737727 2.378639 -1.097153

2-Deoxy-3,4-di-O-methyl-fuco-L-pyranosyl oxocarbenium ion (20)

Figure 28 | CEL map of 2-deoxy-3,4-di-O-methyl-fuco-L-pyranosyl oxocarbenium ion (20).

Local minima

E4 conformation (0.0 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -539.394600150 \text{ a.u.} \\ E_{solv}(B3LYP) &= -539.466437775 \text{ a.u.} \\ Zero-point energy correction &= 0.225622 \text{ a.u.} \end{split}$$

Atom coordinates

С	-0.088340	0.512189	-0.410407
С	0.252457	-1.734811	0.623367
0	-1.989192	-0.958807	0.145784
С	-1.205027	-1.714629	0.762806
С	-1.474526	0.071974	-0.867634
С	0.834283	-0.725011	-0.369228
Н	-1.704100	-2.395406	1.464583
Н	0.641602	-1.546079	1.638353
Н	0.276953	1.241722	-1.148311
0	-0.242275	1.094300	0.869614
С	0.718871	2.095257	1.224226
Н	1.711068	1.661407	1.359226

0	.374921	2.526770	2.163754
0	.756990	2.881013	0.460820
-1	.428615	-0.500342	-1.799749
0	.851236	-1.169536	-1.376849
2	.148000	-0.448170	0.065959
3	.028495	0.010782	-0.960872
3	.091111	-0.720450	-1.775170
4	.008754	0.122050	-0.499254
2	.715463	0.978558	-1.368945
-2	.534585	1.143376	-0.902724
-2	.272055	1.861281	-1.684102
-2	.585583	1.664981	0.052480
-3	.507548	0.713796	-1.145309
0	.547764	-2.773108	0.410411

³H₄ conformation (0.2 kcal / mol)

 $D1 = 45^{\circ}$ $D3 = 45^{\circ}$ $D5 = 0^{\circ}$

H H

H H

0

С

H H

Н

C H

Н

H H

$$\begin{split} E_{gas}(B3LYP) &= -539.394504170 \text{ a.u.} \\ E_{solv}(B3LYP) &= -539.466327382 \text{ a.u.} \\ Zero-point energy correction &= 0.225678 \text{ a.u.} \end{split}$$

Atom coordinates

С	0.066668	0.507046	0.430139
C	-0.182123	-1.658282	-0.785276
0	2.006381	-1.050452	0.019493
С	1.268543	-1.794778	-0.664641
С	1.488470	0.135482	0.846741
С	-0.797579	-0.764410	0.285838
Н	1.812161	-2.577551	-1.209488
Н	-0.344638	-1.212865	-1.784860
Н	-0.324664	1.154770	1.228707
0	0.144037	1.196014	-0.804993
С	-0.830764	2.223657	-1.012233
Н	-1.829949	1.802605	-1.138948
Н	-0.534974	2.745292	-1.922122
Н	-0.829316	2.932933	-0.176266
Н	1.491856	-0.290256	1.855354
Н	-0.792761	-1.302139	1.248511
0	-2.121188	-0.496873	-0.120619
С	-3.016940	-0.180010	0.946251
Н	-3.050907	-0.993579	1.680007
Н	-4.001246	-0.057960	0.496146
Н	-2.739495	0.751180	1.453191
С	2.535405	1.208926	0.682721
Н	2.274551	2.042861	1.339902
Н	2.562332	1.571689	-0.343596
Н	3.516255	0.833571	0.977181
Н	-0.633122	-2.655854	-0.831997

³*E* conformation (2.5 kcal / mol)

D1	=	60°
D3	=	30°
D5	=	0°

$$\begin{split} E_{gas}(B3LYP) &= -539.391476134 \ a.u. \\ E_{solv}(B3LYP) &= -539.462818424 \ a.u. \\ Zero-point \ energy \ correction &= 0.225834 \ a.u. \end{split}$$

Atom coordinates

С	0.045223	0.516133	0.456900
С	-0.064342	-1.523771	-0.952766
0	2.007831	-1.106550	0.168991
С	1.319357	-1.829271	-0.589283
С	1.503128	0.193173	0.820819
С	-0.745102	-0.786620	0.203802
Н	1.852469	-2.710978	-0.967087
Н	-0.033759	-0.859790	-1.834816
Н	-0.366295	1.064118	1.316893
0	0.044225	1.320674	-0.706845
С	-0.992984	2.304010	-0.789282
Н	-1.967748	1.839344	-0.948581

Н	-0.744810	2.937430	-1.640497
Н	-1.016687	2.917486	0.118952
Н	1.560982	-0.098692	1.873764
Н	-0.707448	-1.416833	1.108214
0	-2.079193	-0.556860	-0.180540
С	-2.995007	-0.422150	0.908287
Н	-2.983498	-1.318448	1.539086
Н	-3.983396	-0.303500	0.466508
Н	-2.771402	0.455830	1.524915
С	2.534404	1.239075	0.476677
Н	2.288503	2.150616	1.027761
Н	2.522034	1.470942	-0.587093
Н	3.527487	0.907916	0.783051
Н	-0.587398	-2.437030	-1.244848

⁴*H*₃ conformation (3.0 kcal / mol)

 $\begin{array}{l} D1 = -30^{\circ} \\ D3 = -45^{\circ} \\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -539.389291385 \text{ a.u.} \\ E_{solv}(B3LYP) &= -539.461442255 \text{ a.u.} \\ Zero-point energy correction &= 0.226035 \text{ a.u.} \end{split}$$

С	-0.267643	-0.586969	-0.565264
С	1.327824	1.323978	-0.964039
0	2.178727	-0.753512	-0.054937
С	2.364402	0.370148	-0.573494
С	0.800669	-1.319370	0.259591
С	-0.107498	0.947992	-0.586872
Н	3.424012	0.613757	-0.728124
Н	1.599849	2.299964	-0.536710
Н	-0.151650	-0.929216	-1.608427
0	-1.507869	-1.018300	-0.049732
С	-2.535307	-1.189912	-1.028800
Н	-2.796736	-0.243084	-1.514124
Н	-3.406267	-1.569533	-0.496152
Н	-2.229853	-1.915404	-1.790924
Н	0.912860	-2.345076	-0.098144
Н	-0.796223	1.376277	-1.327313
0	-0.326230	1.536079	0.690208
С	-1.679174	1.888647	0.993686
Н	-2.113290	2.484911	0.181997
Н	-1.639678	2.496082	1.897871
Н	-2.294578	1.005117	1.170886
С	0.666760	-1.272181	1.768131
Н	-0.280752	-1.743659	2.031097
Н	0.655180	-0.245709	2.132112
Н	1.478904	-1.831119	2.236113
Н	1.461010	1.458553	-2.052111

2-Azido-2-deoxy-3,4-di-O-methyl-fuco-L-pyranosyl oxocarbenium ion (21)

Figure 29 | CEL map of 2-azido-2-deoxy-3,4-di-O-methyl-fuco-L-pyranosyl oxocarbenium ion (21).

Local minima

³*H*₄ conformation (0.0 kcal / mol)

 $\begin{array}{l} D1=45^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$E_{gas}(B3LYP) = -703.004107311 a.u.$
$E_{solv}(B3LYP) = -703.077766456$ a.u.
Zero-point energy correction = 0.228553 a.u.

Atom coordinates

С	-1.224333	0.543950	-0.339545
С	0.756787	-0.883029	0.194212
0	-1.371963	-1.967060	-0.212355
С	-0.185443	-2.026241	0.164119
С	-2.055089	-0.679170	-0.712345
С	0.272801	0.308626	-0.640861
Н	0.155862	-3.021960	0.478003
Н	0.728780	-0.570739	1.260705
Н	-1.604172	1.369187	-0.960808
0	-1.409689	0.799536	1.040003
С	-1.459905	2.179597	1.422090
Н	-0.492566	2.664348	1.277166

Н	-1.721149	2.192584	2.479674
Н	-2.233043	2.708931	0.853781
Н	-2.036113	-0.841551	-1.795240
С	-3.452910	-0.738073	-0.151304
Н	-4.017130	0.104737	-0.560033
Н	-3.441963	-0.654394	0.934355
Н	-3.947459	-1.661305	-0.455264
Н	0.392838	0.058080	-1.707618
0	1.091208	1.393106	-0.282401
С	1.314248	2.351012	-1.322447
Н	1.764125	1.872764	-2.199224
Н	2.004779	3.088120	-0.915659
Н	0.386194	2.852719	-1.617480
N	2.079676	-1.380133	-0.184899
Ν	3.036068	-0.823799	0.373070
Ν	3.996775	-0.411239	0.794994

³*E* conformation (1.1 kcal / mol)

 $\begin{array}{l} D1=60^\circ\\ D3=30^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -703.002618569 \text{ a.u.} \\ E_{solv}(B3LYP) &= -703.075929457 \text{ a.u.} \\ Zero-point energy correction &= 0.228455 \text{ a.u.} \end{split}$$

Atom coordinates

С	1 200484	0.619560	0 348166
C C	-0 632427	-0.973931	-0 186238
0	1 491589	-1 918203	0.428301
C	0.301505	-2.085016	0.420501
C C	0.301303	-2.083010	0.090950
C	2.10/410	-0.343082	0.007033
C	-0.230882	0.226889	0.708208
Н	-0.028362	-3.131017	0.031932
Н	-0.454586	-0.678126	-1.242926
Н	1.536515	1.441498	0.998149
0	1.280206	0.977160	-1.015863
С	1.157400	2.374541	-1.311291
Н	0.142578	2.729489	-1.124839
Н	1.397699	2.482491	-2.368394
Н	1.871992	2.956694	-0.718524
Н	2.401191	-0.600235	1.674772
С	3.411677	-0.594665	-0.243150
Н	3.981228	0.320409	-0.060266
Н	3.166042	-0.636071	-1.303072
Н	4.029453	-1.447940	0.039337
Н	-0.310014	-0.082307	1.764483
0	-1.171234	1.245659	0.425491
С	-1.518672	2.076179	1.539458
Н	-1.944261	1.476233	2.350817
Н	-2.266848	2.778034	1.174650
Н	-0.652278	2.633118	1.912036
Ν	-1.988229	-1.470638	0.032773
Ν	-2.883935	-0.866200	-0.570910
Ν	-3.798387	-0.417226	-1.054795

*E*⁴ conformation (1.7 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -703.000782352 \text{ a.u.} \\ E_{solv}(B3LYP) &= -703.074918892 \text{ a.u.} \\ Zero-point energy correction &= 0.228415 \text{ a.u.} \end{split}$$

Atom coordinates

С	-1.234525	0.483372	-0.364164
С	0.832915	-0.826341	0.233500
0	-1.325698	-1.930915	0.131494
С	-0.113032	-1.954687	0.417413
С	-1.909811	-0.818043	-0.769450
С	0.293812	0.369375	-0.567738
Н	0.238243	-2.870111	0.913000
Н	0.924807	-0.484985	1.287421
Н	-1.635912	1.273293	-1.017405
0	-1.553545	0.712368	0.994691
С	-1.695244	2.083891	1.385396
Н	-0.739956	2.609298	1.334485
Н	-2.050728	2.069807	2.415080

Н	-2.435587	2.589664	0.755355
Н	-1.604466	-1.144897	-1.769061
С	-3.399034	-0.891182	-0.561179
Н	-3.876859	-0.195823	-1.256515
Н	-3.660303	-0.608166	0.457750
Н	-3.767539	-1.895063	-0.776455
Н	0.485678	0.178087	-1.635993
0	1.020752	1.487482	-0.120397
С	1.189387	2.526799	-1.090685
Н	1.682908	2.140736	-1.989119
Н	1.821645	3.280363	-0.623723
Н	0.232780	2.982572	-1.368134
N	2.106710	-1.359674	-0.253147
N	3.120837	-0.803038	0.193938
N	4.124798	-0.396625	0.506131

⁴*H*₃ conformation (4.1 kcal / mol)

 $\begin{array}{l} D1 = -45^\circ \\ D3 = -45^\circ \\ D5 = 0^\circ \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -702.999173767 \text{ a.u.} \\ E_{solv}(B3LYP) &= -703.071494144 \text{ a.u.} \\ Zero-point energy correction &= 0.229030 \text{ a.u.} \end{split}$$

С	0.807293	-0.167990	-0.765243
С	-1.296449	0.169238	0.517397
0	-0.135216	2.124090	-0.368938
С	-1.138498	1.618530	0.176424
С	1.113490	1.338892	-0.784265
С	0.038343	-0.586504	0.501909
Н	-1.962395	2.320560	0.358977
Н	-1.773017	0.087319	1.518341
Н	0.171255	-0.391371	-1.634185
0	2.060098	-0.807802	-0.891696
С	2.028550	-2.038689	-1.619406
Н	1.412318	-2.792260	-1.116852
Н	3.057322	-2.393045	-1.665361
Н	1.651377	-1.880063	-2.635752
Н	1.215543	1.681051	-1.817351
С	2.246549	1.864516	0.069584
Н	3.157899	1.357296	-0.249583
Н	2.081367	1.661213	1.125191
Н	2.368315	2.936646	-0.093885
Н	-0.183780	-1.662042	0.473480
0	0.689637	-0.223540	1.701480
С	1.592713	-1.202895	2.232825
Н	1.081948	-2.164171	2.359290
Н	1.903915	-0.831330	3.208451
Н	2.464076	-1.329709	1.587875
Ν	-2.181412	-0.289116	-0.581202
Ν	-3.360644	-0.529260	-0.271469
Ν	-4.445691	-0.797719	-0.136008

2,3,4-Tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22)

Figure 30 | CEL map of 2,3,4-tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22).

Local minima

E₃ conformation (0.0 kcal / mol)

D1 = -60° $D3 = -30^{\circ}$ D5 = 0°

 $E_{gas}(B3LYP) = -653.939524019$ a.u. $E_{solv}(B3LYP) = -654.003898257$ a.u. Zero-point energy correction = 0.257893 a.u.

Atom coordinates

С	1.156921	0.261115	-0.566465
С	-1.024251	0.473642	0.588102
0	0.713340	-0.766234	1.721549
С	-0.455900	-0.330284	1.697436
С	1.748787	-0.539999	0.607686
С	-0.351516	0.011881	-0.728277
Н	-1.077449	-0.606330	2.559948
Н	2.482162	0.060231	1.151514
С	2.278445	-1.921773	0.291901
Н	3.146751	-1.811501	-0.362894
Н	1.526434	-2.520398	-0.220076
Н	2.601454	-2.425316	1.204220

-0.714312	0.624415	-1.562676
-0.549530	-1.363851	-0.950148
-1.709468	-1.712439	-1.718091
-2.626917	-1.493883	-1.168242
-1.638504	-2.783084	-1.904959
-1.710491	-1.177102	-2.673944
-0.703159	1.515850	0.790574
-2.417315	0.319122	0.633221
-3.159840	1.481893	0.239694
-2.927444	2.328672	0.894212
-4.211009	1.219046	0.343114
-2.954902	1.753233	-0.800992
1.660937	-0.066479	-1.485820
1.299899	1.654652	-0.368066
2.548158	2.201619	-0.800540
2.490172	3.275306	-0.628862
2.706160	2.008698	-1.867345
3.390939	1.795213	-0.228901

⁴*H*₃ conformation (0.6 kcal / mol)

D1 = -45° D3 = -45° $D5 = 0^{\circ}$

Η 0

С Н

Η

Η

Н 0

С

Н

Η Η

Н 0 С Н Η Η

$E_{gas}(B3LYP) = -653.938825988$ a.u.
$E_{solv}(B3LYP) = -654.003204182 a.u.$
Zero-point energy correction $= 0.258186$ a.u.

Atom coordinates

С	-1.235346	0.006902	-0.580902
С	1.009534	-0.683216	0.234940
0	-0.707993	-0.068025	1.867185
С	0.415799	-0.541889	1.596622
С	-1.684830	0.459551	0.809311
С	0.276820	0.190281	-0.808768
Н	1.007286	-0.831339	2.475506
Н	-2.586209	-0.082051	1.104816
С	-1.832493	1.941298	1.084544
Н	-2.621742	2.326831	0.433736
Н	-0.912330	2.480575	0.873207
Н	-2.138125	2.100899	2.119872
Н	0.525233	-0.175095	-1.812199
0	0.588223	1.552333	-0.652630
С	1.650129	2.045464	-1.478415
Н	2.604784	1.596078	-1.199644
Н	1.687525	3.121583	-1.313473
Н	1.438189	1.848091	-2.535256
Н	0.826282	-1.743165	-0.035650
0	2.375178	-0.371867	0.340557
С	3.277595	-1.477213	0.181429
Н	3.155072	-2.208721	0.987063
Н	4.280604	-1.056688	0.225598
Н	3.122727	-1.965632	-0.786383
Н	-1.771839	0.614628	-1.322940
0	-1.487358	-1.378061	-0.754365
С	-2.782508	-1.694453	-1.272149
Н	-2.817014	-2.777893	-1.376263
Н	-2.931649	-1.226722	-2.251543
Н	-3.581384	-1.376766	-0.592099

^{2,5}B conformation (2.3 kcal / mol)

 $\begin{array}{l} D1 = -30^{\circ}\\ D3 = 60^{\circ}\\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -653.933945356 \text{ a.u.} \\ E_{solv}(B3LYP) &= -654.000684588 \text{ a.u.} \\ Zero-point energy correction &= 0.257632 \text{ a.u.} \end{split}$$

Atom coordinates

С	-1.179772	0.421889	0.089689
С	1.051844	-0.625475	-0.551192
0	-0.661600	-2.023470	0.329483
С	0.563316	-1.821501	0.168203
С	-1.643689	-1.014834	-0.228636
С	0.357628	0.569935	0.186605
Н	1.238238	-2.568343	0.604947

Н	-1.580694	-1.162803	-1.312902
С	-2.993831	-1.395884	0.320128
Н	-3.729297	-0.694605	-0.080113
Н	-3.006982	-1.333351	1.410345
Н	-3.272848	-2.403329	0.008501
Н	0.660939	1.507690	-0.290499
0	0.700192	0.538318	1.557196
С	1.877763	1.264545	1.936367
Н	2.783002	0.776504	1.570907
Н	1.883606	1.282307	3.025482
Н	1.830297	2.293028	1.560451
Н	0.657550	-0.676514	-1.586673
0	2.448052	-0.626192	-0.510655
С	3.075828	0.108326	-1.570140
Н	2.760218	-0.276558	-2.545878
Н	4.146825	-0.042172	-1.448524
Н	2.852664	1.178261	-1.506756
Н	-1.589069	0.741274	1.056976
0	-1.722844	1.170724	-0.979379
С	-2.016665	2.533994	-0.659894
Н	-2.454007	2.970206	-1.556604
Н	-1.111858	3.093261	-0.395818
Н	-2.733530	2.594139	0.166219

³H₄ conformation (2.7 kcal / mol)

 $\begin{array}{l} D1=45^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -653.931740606 \text{ a.u.} \\ E_{solv}(B3LYP) &= -653.999803772 \text{ a.u.} \\ Zero-point energy correction &= 0.258116 \text{ a.u.} \end{split}$$

С	-0.896299	0.089624	0.117872
С	1.442166	-0.523381	-0.480336
0	-0.276508	-2.231737	-0.672642
С	0.932184	-1.912928	-0.682426
С	-1.421803	-1.235356	-0.450017
С	0.357998	0.542471	-0.636450
Н	1.629764	-2.753805	-0.776948
Н	-1.788585	-1.080066	-1.470170
С	-2.420279	-1.971976	0.407438
Н	-3.297006	-1.331726	0.525131
Н	-2.009557	-2.192253	1.395269
Н	-2.735797	-2.899613	-0.071909
Н	0.116174	0.631301	-1.706873
0	0.856759	1.754673	-0.115921
С	0.645731	2.898202	-0.951015
Н	1.170430	2.789688	-1.907267
Н	1.057711	3.750466	-0.411776
Н	-0.419670	3.061123	-1.135617
Н	2.292278	-0.338919	-1.168505
0	1.858037	-0.660337	0.876725

С	3.223986	-0.294049	1.145761	0	-1.952724	1.013995	-0.062357
Н	3.919257	-0.936085	0.597063	С	-2.309238	1.760718	1.107122
Н	3.362960	-0.435252	2.216193	Н	-3.112272	2.432474	0.806014
Н	3.380564	0.753381	0.878551	Н	-1.459934	2.343850	1.473830
Н	-0.646782	-0.027845	1.179515	Н	-2.670723	1.100590	1.903365

2-Deoxy-3,4-tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (23)

Figure 31 CEL map of 2-deoxy-3,4-di-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (23).

Local m	ninima	С	0.687313 -0.869546 0.056913
		Н	0.481682 1.421085 2.720977
${}^{4}H_{3}$ con	formation (0.0 kcal / mol)	Н	1.715839 -0.586573 2.002962
		Н	-1.872530 1.390249 -0.381525
D1 = -4	5°	Н	0.722826 -1.963181 -0.020803
D3 = -4	5°	О	1.729436 -0.267954 -0.681004
D5 = 0°	•	С	2.970079 -0.975209 -0.648861
		Н	3.396935 -1.006486 0.360279
Egas(B3)	LYP) = -539.397133128 a.u.	Н	3.651197 -0.433974 -1.303901
Esolv(B3	LYP) = -539.465375771 a.u.	Н	2.842329 -1.998547 -1.019261
Zero-po	bint energy correction $= 0.225984$ a.u.	С	-0.087047 1.998569 -1.427847
		Н	-0.482619 1.769622 -2.421036
Atom co	oordinates	Н	0.982806 1.805398 -1.426888
		Н	-0.283268 3.051622 -1.219212
С	-0.656644 -0.394021 -0.517103	Н	0.049002 -1.088851 2.138524
С	0.731891 -0.463397 1.536165	Н	-0.718668 -0.680911 -1.575727
0	-0.374886 1.610904 0.960640	О	-1.648049 -1.039896 0.264201
С	0.279080 0.913186 1.768881	С	-2.871169 -1.319284 -0.419459
С	-0.813380 1.126190 -0.426031	Н	-3.515131 -1.828515 0.296171

Н	-2.693776	-1.971927	-1.281465
Н	-3.369373	-0.402379	-0.755741

³*H*₄ conformation (0.7 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -539.389999063 \text{ a.u.} \\ E_{solv}(B3LYP) &= -539.463534576 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.225313 \text{ a.u.} \end{split}$$

Atom coordinates

С	0.267979	0.528489	-0.109194
С	-0.466720	-1.898833	-0.160312
0	1.882533	-1.400219	0.088808
С	0.959077	-2.213537	-0.140107
С	1.644076	0.073198	0.386905
С	-0.844458	-0.462591	0.246338
Н	1.309490	-3.232177	-0.351972
Н	-0.786652	-2.103718	-1.199516
Н	1.671798	0.096985	1.481671
Н	-0.987358	-0.419532	1.336745
0	-2.014952	-0.042430	-0.421563
С	-3.234221	-0.489108	0.174324
Н	-3.336100	-1.579684	0.126710
Н	-4.042036	-0.035135	-0.398038
Н	-3.300166	-0.164601	1.219132
С	2.819841	0.798698	-0.220968
Н	2.726037	1.857042	0.027584
Н	2.831598	0.691194	-1.308009
Н	3.759085	0.427910	0.191523
Н	-0.973148	-2.675483	0.431546
Н	0.293358	0.641538	-1.204550
0	0.069516	1.772924	0.528892
С	-0.563829	2.781317	-0.269118
Н	-0.617563	3.670935	0.357469
Н	-1.567988	2.472669	-0.565007
Н	0.032401	3.004057	-1.161581

E4 conformation (0.8 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -539.388955002 \text{ a.u.} \\ E_{solv}(B3LYP) &= -539.463089711 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.225172 \text{ a.u.} \end{split}$$

Atom coordinates

С	0.289425	0.499281	-0.146374
С	-0.501419	-1.865898	-0.241027

0	1.866499	-1.412248	-0.046846
С	0.923801	-2.183979	-0.342515
С	1.600519	-0.003219	0.470671
С	-0.840087	-0.446428	0.271818
Η	1.252107	-3.163115	-0.714888
Н	-0.905661	-2.010052	-1.259202
Н	1.497960	-0.146323	1.551739
Н	-0.903884	-0.439740	1.369590
0	-2.045098	0.008612	-0.300153
С	-3.226369	-0.444129	0.363228
Н	-3.343700	-1.531890	0.290292
Н	-4.065907	0.034925	-0.138631
Н	-3.217537	-0.151105	1.419331
С	2.835088	0.789113	0.119509
Н	2.720478	1.793428	0.528208
Н	2.962810	0.862181	-0.962940
Н	3.722587	0.331460	0.559113
Н	-0.959892	-2.678490	0.344565
Н	0.377721	0.522609	-1.244593
0	0.107935	1.791259	0.388061
С	-0.512052	2.738482	-0.490795
Н	-0.545629	3.679824	0.056601
Н	-1.523533	2.424365	-0.753573
Н	0.083958	2.871595	-1.401190

E₃ conformation (1.0 kcal / mol)

 $D1 = -60^{\circ}$ $D3 = -30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -539.395659340 \text{ a.u.} \\ E_{solv}(B3LYP) &= -539.463759636 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.225934 \text{ a.u.} \end{split}$$

С	-0.730242	-0.360079	-0.440486
С	0.784657	-0.589863	1.503562
0	0.041258	1.627183	0.963393
С	0.718855	0.865175	1.690747
С	-0.817720	1.162820	-0.225683
С	0.632311	-0.905970	0.005919
H	1.259005	1.386075	2.492055
H	1.704732	-0.973582	1.951145
H	-1.808615	1.443046	0.139811
H	0.630861	-1.992776	-0.140596
О	1.638222	-0.271634	-0.755473
С	2.844677	-1.024228	-0.902330
H	3.343634	-1.182585	0.060508
H	3.496650	-0.438049	-1.548268
H	2.641039	-1.993588	-1.370064
С	-0.374880	2.037223	-1.378249
H	-1.073324	1.889260	-2.206220
H	0.625934	1.765509	-1.710788
H	-0.402594	3.089985	-1.093154

Н	-0.056949	-1.029262	2.064637	Н	-3.584147	-1.774774	0.408401
Н	-0.862832	-0.561284	-1.511786	Н	-2.874540	-1.755110	-1.228764
0	-1.694113	-1.045462	0.338072	Н	-3.451745	-0.238259	-0.477711
С	-2.969331	-1.204294	-0.286339				

2,3,4,6-Tera-O-methyl-gluco-D-pyranosyl oxocarbenium ion (24)

0 ° QМе 90 ° kcal/mol <0.5 1.0 MeO ′OMe 2.0 ŌМе 3.0 4.0 5.0 6.0 7.0 8.0 >8.5 270 ° MeO. OMe 180° MeO OMe^{OMe} OMe -OMe/ Æ o ⊕ `OMe MeO MeO Ð Ð ^{2,5}B MeO MeO MeO (1.5) ^{4}E MeO $^{4}H_{3}$ (1.1) E₃ (0.6) (0.0) rotamer 1 rotamer 2

Combined rotamers

Local minima

Atom coordinates

⁴ H ₃ conformation (0.0 kcal / mol)	0	0.651059	-1.733318	-0.884135
	С	0.381414	0.653796	-0.134379
$D1 = -45^{\circ}$	С	-1.432131	-1.030159	0.174952
$D3 = -45^{\circ}$	С	-1.125651	0.405817	-0.277891
$D5 = 0^{\circ}$	С	-0.457446	-2.011849	-0.379856
	С	1.186015	-0.312838	-1.010689
$E_{gas}(B3LYP) = -768.481443857$ a.u.	Н	0.670689	0.520400	0.914827
$E_{solv}(B3LYP) = -768.548553062$ a.u.	Н	-1.283967	-1.073373	1.264691
Zero-point energy correction = 0.290971 a.u.	Н	-1.416294	0.507283	-1.333172
	Н	-0.714793	-3.079063	-0.396520

Н	1.037510	-0.092859	-2.073329
0	-2.712345	-1.461548	-0.207424
0	-1.863072	1.283372	0.541608
0	0.723251	1.946078	-0.595082
С	2.657499	-0.417385	-0.687472
Н	3.120546	0.544753	-0.950821
Н	3.112939	-1.196492	-1.314613
С	-3.651022	-1.627657	0.868851
Н	-3.353139	-2.451179	1.525961
Н	-4.604775	-1.864321	0.400419
Н	-3.737446	-0.701879	1.443473
С	-2.568548	2.314736	-0.159284
Н	-3.311752	1.884412	-0.839026
Н	-1.880678	2.951162	-0.722445
Н	-3.076140	2.907558	0.600788
С	1.116259	2.866006	0.431871
Н	1.350673	3.802817	-0.072072
Н	2.004914	2.505961	0.960979
Н	0.304595	3.025082	1.146878
0	2.792970	-0.712766	0.684297
С	4.151536	-0.854381	1.090749
Н	4.713167	0.072687	0.921818
Н	4.641078	-1.673984	0.550582
Н	4.140441	-1.080042	2.156359

E₃ conformation (0.6 kcal / mol)

 $D1 = -60^{\circ}$ $D3 = -30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -768.481953982 \text{ a.u.} \\ E_{solv}(B3LYP) &= -768.547437087 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.290852 \text{ a.u.} \end{split}$$

Atom coordinates

0	0.760757	-1.335070	-1.355792
С	0.405879	0.880203	-0.129210
С	-1.184427	-1.011973	0.047910
С	-1.067415	0.497668	-0.309685
С	-0.306791	-1.776855	-0.877799
С	1.314613	0.051606	-1.057147
Н	0.688186	0.716564	0.917318
Н	-0.813054	-1.139411	1.076109
Н	-1.374385	0.654514	-1.353726
Н	-0.594937	-2.772293	-1.241254
Н	1.335066	0.505337	-2.052069
0	-2.502932	-1.464358	-0.114233
0	-1.843891	1.256402	0.576503
0	0.661686	2.212039	-0.521842
С	2.712253	-0.193043	-0.539124
Н	3.207351	0.786067	-0.455084
Н	3.274447	-0.799210	-1.262748
С	-2.994196	-2.312902	0.933772
Н	-2.438090	-3.255953	0.976984

Η	-4.035459	-2.519523	0.693385
Η	-2.930251	-1.803202	1.900756
С	-3.115493	1.682406	0.068946
Η	-3.742571	0.825778	-0.187656
Н	-2.986082	2.324140	-0.809312
Н	-3.584659	2.254142	0.868634
С	0.683811	3.170207	0.544982
Η	0.930737	4.126048	0.084481
Н	1.454038	2.913689	1.281307
Н	-0.288142	3.233394	1.036928
0	2.603505	-0.844768	0.706322
С	3.868640	-1.146284	1.290680
Н	4.444768	-0.231509	1.475610
Н	4.451168	-1.814132	0.644574
Н	3.667625	-1.644598	2.238154

*E*⁴ conformation (1.1 kcal / mol)

 $\begin{array}{l} D1 = -30^{\circ} \\ D3 = -60^{\circ} \\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -768.479138867 \text{ a.u.} \\ E_{solv}(B3LYP) &= -768.546681915 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.290948 \text{ a.u.} \end{split}$$

0	-0.458169	-1.879795	0.365359
С	-0.372616	0.571380	0.041660
С	1.659997	-0.840014	-0.300235
С	1.154762	0.522304	0.197994
С	0.685947	-1.964019	-0.132434
С	-0.999228	-0.552279	0.876461
Н	-0.645876	0.436935	-1.012690
Н	1.816969	-0.748228	-1.385724
Н	1.404604	0.616182	1.264745
Н	0.982564	-2.981202	-0.417272
Н	-0.664726	-0.519466	1.919857
0	2.822781	-1.271419	0.374988
0	1.801507	1.512803	-0.567329
0	-0.863715	1.793213	0.549116
С	-2.500634	-0.679815	0.807656
Н	-2.931398	0.168570	1.358408
Н	-2.804950	-1.604329	1.318500
С	3.970610	-1.512836	-0.456745
Н	3.801876	-2.356452	-1.133550
Н	4.786591	-1.752215	0.222919
Н	4.214031	-0.615696	-1.033330
С	2.208915	2.676170	0.163232
Н	2.925793	2.408937	0.947758
Н	1.351499	3.185894	0.607959
Н	2.694009	3.332796	-0.558197
С	-1.640011	2.565413	-0.377645
Н	-1.980723	3.444331	0.168096
Н	-2.501703	1.995092	-0.735414

Н	-1.027445	2.878242	-1.229062
0	-2.893898	-0.684743	-0.546536
С	-4.290857	-0.910379	-0.716906
Н	-4.881743	-0.122660	-0.233237
Н	-4.584509	-1.883171	-0.303936
Н	-4.484227	-0.899573	-1.788841

^{2,5}*B* conformation (1.5 kcal / mol)

 $D1 = -60^{\circ}$ $D3 = 15^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -768.481923549 \text{ a.u.} \\ E_{solv}(B3LYP) &= -768.546076522 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.290857 \text{ a.u.} \end{split}$$

0	1.144374	0.025920	1.845453
С	-0.071877	-1.309348	0.042607
С	-0.343767	1.198105	0.375680
С	-1.098768	-0.162512	0.165753
С	0.431004	1.034170	1.622429
С	1.243411	-1.090947	0.822475
Н	0.179288	-1.378673	-1.024234
Н	0.362910	1.305314	-0.461258
Н	-1.734659	-0.348491	1.043132
Н	0.377436	1.760932	2.443412
Н	1.409078	-1.954506	1.468779
0	-1.249713	2.255899	0.489627
0	-1.852225	-0.111371	-1.013761
0	-0.584866	-2.540406	0.511794
С	2.485880	-0.828886	0.000551
Н	2.675003	-1.738188	-0.590273
Н	3.343125	-0.672258	0.669900
С	-0.873282	3.443984	-0.222355
Н	0.055385	3.867888	0.175565
Н	-1.684329	4.155342	-0.077612
Н	-0.755488	3.232745	-1.290340
С	-3.235284	0.237546	-0.857279
Н	-3.344232	1.237174	-0.434291
Н	-3.748197	-0.491722	-0.219882
Н	-3.666242	0.209135	-1.857107
С	-1.474901	-3.213761	-0.383559
Н	-1.619447	-4.211623	0.028998
Н	-1.034417	-3.291578	-1.384071
Н	-2.441999	-2.709132	-0.456655
0	2.272351	0.295824	-0.826091
С	3.397032	0.610709	-1.648869
Н	3.630916	-0.220955	-2.323023
Н	4.276138	0.840899	-1.036112
Н	3.123677	1.486408	-2.235697

rotamer 1 rotamer 2

bisected

D1 = 0°

 $D3 = 60^{\circ}$

D5 = 0°

eclipsed Figure 33 | CEL map of methyl (2,3,4-tri-O-benzyl-gluco-D-pyranosyl uronate) oxocarbenium ion (25).

Local minima

*E*₄-²*S*₀ conformation (0.0 kcal / mol)

 $E_{gas}(B3LYP) = -842.539064707$ a.u. $E_{solv}(B3LYP) = -842.601075573$ a.u. Zero-point energy correction = 0.272595 a.u.

0	0.030443	1.035705	-1.782321
С	0.122987	1.037243	0.663343
С	-1.512001	-0.455523	-0.643722
С	-0.878285	-0.132307	0.741002
С	-1.049131	0.398558	-1.757264
С	0.955534	0.964999	-0.633065
Η	0.821417	0.990167	1.504777
Η	-1.691821	0.184930	1.400547
Н	-1.675491	0.516609	-2.639952

Н	1.592187	1.835045	-0.763481
0	-0.262487	-1.321300	1.189352
0	-0.652646	2.210011	0.677055
С	1.773195	-0.323895	-0.786968
С	-0.122471	-1.426323	2.611351
Н	0.541265	-0.656064	3.016288
Н	0.313739	-2.405094	2.800702
Н	-1.099572	-1.359480	3.100371
С	0.047436	3.421107	0.987903
Н	0.592386	3.319733	1.931501
Н	-0.712966	4.193057	1.085810
Н	0.742067	3.707444	0.191789
0	2.822744	-0.269840	0.011588
С	3.686082	-1.442824	0.030621
Н	3.113028	-2.311427	0.350744
Н	4.468037	-1.204995	0.744616
Н	4.100256	-1.607107	-0.962675
0	1.460932	-1.220703	-1.526548
Н	-1.087682	-1.442652	-0.927603
0	-2.907042	-0.459604	-0.686833
С	-3.509830	-1.657732	-0.171134
Н	-3.134363	-2.536659	-0.703979
Н	-4.578822	-1.551940	-0.340616
Н	-3.320311	-1.765542	0.900407

*E*₄ conformation (1.4 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

 $E_{gas}(B3LYP) = -842.534003734 a.u.$ $E_{solv}(B3LYP) = -842.598907186 a.u.$

Atom coordinates

0	0.285930	0.579776	-1.750454
С	-0.262877	1.225468	0.556343
С	-1.226652	-0.861564	-0.451523
С	-0.688122	-0.223929	0.857968
С	-0.595125	-0.310204	-1.690465
С	0.828917	1.220695	-0.510362
Н	0.160205	1.681856	1.457663
Н	-1.499620	-0.237826	1.591189
Н	-0.961137	-0.642383	-2.660716
Н	1.009927	2.238683	-0.849331
0	0.449969	-0.902116	1.325016
0	-1.313426	1.979036	0.004718
С	2.171955	0.609383	-0.108052
С	0.183060	-2.036721	2.156636
Н	-0.378902	-1.736166	3.045965
Η	1.150948	-2.436113	2.452127
Н	-0.374541	-2.810350	1.617289
С	-2.304962	2.429665	0.936660
Н	-2.925204	1.604356	1.295304

Н	-2.930726	3.133673	0.391777
Н	-1.834030	2.938503	1.783448
0	2.513345	-0.422429	-0.861351
С	3.787830	-1.048742	-0.552725
Н	4.589382	-0.316957	-0.639677
Н	3.900983	-1.838725	-1.288758
Н	3.758907	-1.457098	0.456514
0	2.813529	1.111882	0.775471
Н	-0.959213	-1.928939	-0.438228
0	-2.604650	-0.665459	-0.661605
С	-3.398904	-1.866637	-0.669918
Н	-3.128759	-2.511112	-1.510981
Н	-4.430991	-1.540677	-0.776387
Н	-3.275528	-2.410719	0.271081

^{2,5}B conformation (1.8 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = 45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -842.536153625 \text{ a.u.} \\ E_{solv}(B3LYP) &= -842.598247786 \text{ a.u.} \\ Zero-point energy correction &= 0.272354 \text{ a.u.} \end{split}$$

0	0.335422	-0.385625	-2.023409
С	0.395760	1.131681	-0.054027
С	-1.501180	-0.608526	-0.477297
С	-1.046069	0.661848	0.290200
С	-0.858688	-0.704544	-1.802530
С	1.181438	0.119823	-0.919928
Н	0.960990	1.253887	0.876722
Н	-1.713417	1.473092	-0.017058
Н	-1.413203	-1.055005	-2.671702
Н	2.006939	0.600572	-1.436023
0	-1.211635	0.347181	1.651899
0	0.260377	2.353160	-0.744786
С	1.697392	-1.100390	-0.145156
С	-1.407663	1.487423	2.496144
Н	-0.529572	2.141798	2.502692
Н	-1.569984	1.099393	3.499752
Н	-2.283953	2.059759	2.174755
С	1.411352	3.203169	-0.719122
Н	1.727615	3.393397	0.311539
Н	1.108653	4.137498	-1.187602
Н	2.248775	2.780883	-1.284929
0	2.751338	-0.743556	0.562957
С	3.349704	-1.766193	1.411782
Н	2.610698	-2.128995	2.124199
Н	4.168672	-1.265620	1.918159
Н	3.714042	-2.584185	0.792686
0	1.178709	-2.187122	-0.184753
Н	-1.099937	-1.480729	0.082456
0	-2.886076	-0.663861	-0.641741

С	-3.570329	-1.564242	0.248855
Н	-3.260397	-2.597551	0.066858
Н	-4.629188	-1.457849	0.023507
Н	-3.382118	-1.292069	1.289135

⁴*H*₃ conformation (2.1 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -842.532838889 \text{ a.u.} \\ E_{solv}(B3LYP) &= -842.597438836 \text{ a.u.} \\ Zero-point energy correction &= 0.272482 \text{ a.u.} \end{split}$$

0	-0.188439	0.209187	-1.864975
С	0.029419	0.886125	0.549106
С	-1.745488	-0.766334	-0.253529
С	-0.810568	-0.357845	0.892537
С	-1.233494	-0.429957	-1.610457
С	0.722042	0.742032	-0.815226
Н	0.818374	1.015216	1.296320
Н	-1.428703	-0.129112	1.764804
Н	-1.823107	-0.686902	-2.488604
Н	1.003205	1.713284	-1.216556
0	0.047774	-1.463371	1.109096
0	-0.859733	1.980371	0.531042
С	1.941945	-0.191782	-0.837207
С	0.495492	-1.619644	2.461073
Н	1.070614	-0.753018	2.802319
Н	1.136841	-2.498729	2.469938
Н	-0.355309	-1.778999	3.130876
С	-0.262982	3.251564	0.804112
Н	0.222280	3.247174	1.785611
Н	-1.073663	3.977495	0.800536
Н	0.468980	3.533789	0.039262
0	2.872466	0.308382	-0.034919
С	4.119777	-0.434424	0.051705
Н	3.925792	-1.435635	0.433507
Н	4.738913	0.131522	0.740738
Н	4.582661	-0.490207	-0.932396
0	2.019064	-1.189385	-1.500748
Н	-1.872860	-1.869102	-0.201212
0	-2.976423	-0.067964	-0.246652
С	-4.151582	-0.900219	-0.206730
Н	-4.226773	-1.525756	-1.100017
Н	-4.996671	-0.216804	-0.168103
Н	-4.135618	-1.529063	0.687931

2-Deoxy-3,4,6-tri-O-methyl-gluco-D-pyranosyl oxocarbenium ion (26)

Figure 34 | CEL map of 2-deoxy-3,4,6-tri-O-methyl-gluco-D-pyranosyl oxocarbenium ion (26).

Local minima	Atom coordinates			Atom coordinates		
³ H_4 conformation (0.0 kcal / mol)	С	-0.905957	-0.397201	-0.612304		
	С	-1.677380	0.610118	1.518403		
$D1 = 45^{\circ}$	0	0.396425	-0.637875	1.522852		
$D3 = 45^{\circ}$	С	-0.523274	-0.050689	2.136742		
$D5 = 0^{\circ}$	С	0.448934	-0.752587	0.004925		
	С	-1.492451	0.877176	0.027408		
$E_{gas}(B3LYP) = -653.940719901$ a.u.	Н	-1.899421	1.522502	2.079267		
$E_{solv}(B3LYP) = -654.005899169$ a.u.	Н	-0.411506	-0.083712	3.220420		
Zero-point energy correction = 0.258732 a.u.	Н	0.655496	-1.815870	-0.104386		
	Н	-2.467495	1.074645	-0.426381		
	Н	-0.757397	-0.246834	-1.687256		

Η

1.698337

-2.526078 -0.067650

С	1.671817	0.025794	-0.440222
Н	1.631589	1.056968	-0.074265
Н	1.658416	0.054435	-1.539858
0	2.807253	-0.658219	0.040480
С	4.025321	0.004351	-0.284036
Н	4.831930	-0.594078	0.136765
Н	4.056394	1.011151	0.150005
Н	4.159739	0.079567	-1.370229
0	-1.852832	-1.417977	-0.363793
С	-1.833526	-2.507985	-1.290376
Н	-2.025361	-2.153882	-2.308499
Н	-2.629208	-3.184423	-0.984005
Н	-0.880328	-3.046787	-1.266556
0	-0.630519	1.987921	-0.104633
С	-0.814522	2.747026	-1.305201
Н	-0.604527	2.153447	-2.200722
Н	-0.112517	3.577236	-1.254469
Н	-1.836105	3.136472	-1.359441

⁴*H*₃ conformation (0.3 kcal / mol)

 $\begin{array}{l} D1 = -30^{\circ} \\ D3 = -45^{\circ} \\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -653.938077008 \text{ a.u.} \\ E_{solv}(B3LYP) &= -654.005348088 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.258481 \text{ a.u.} \end{split}$$

Atom coordinates

С	-0.215081	0.398372	-0.192133
С	-1.466094	-1.748800	0.304141
0	0.798479	-1.887665	-0.525157
С	-0.205603	-2.419674	-0.001694
С	0.846213	-0.427435	-0.926580
С	-1.582751	-0.287751	-0.170613
Н	-1.557945	-1.801109	1.402256
Н	-0.066256	-3.473468	0.238721
Н	0.640937	-0.456026	-1.997114
Н	-1.982430	-0.269130	-1.192363
Н	0.116027	0.559167	0.839139
Н	-2.271949	-2.397887	-0.059507
С	2.274046	0.003588	-0.679911
Н	2.391326	1.001814	-1.121950
Н	2.955279	-0.682950	-1.198971
0	2.507648	0.010617	0.709404
С	3.827921	0.427575	1.047227
Н	4.021928	1.447215	0.693801
Н	4.576959	-0.248916	0.618847
Н	3.898879	0.402432	2.133437
0	-0.264785	1.613783	-0.908948
С	-0.350198	2.794254	-0.098485
Н	-1.257596	2.784982	0.508092
Н	-0.376661	3.634177	-0.791046
Н	0.528235	2.886094	0.548958

0	-2.412794	0.456889	0.692664
С	-3.813525	0.300252	0.454154
Н	-4.146007	-0.726268	0.643072
Н	-4.067865	0.580406	-0.573788
Н	-4.320802	0.968185	1.148085

⁴*E* conformation (0.9 kcal / mol)

 $\begin{array}{l} D1 = -30^{\circ}\\ D3 = -60^{\circ}\\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -653.936673013 \text{ a.u.} \\ Es_{olv}(B3LYP) &= -654.004369853 \text{ a.u.} \\ Zero-point energy correction &= 0.258422 \text{ a.u.} \end{split}$$

Atom coordinates

С	0.207026	0.337184	0.085454
С	1.574855	-1.691383	-0.391445
0	-0.743659	-1.945172	0.260096
С	0.297061	-2.396768	-0.272684
С	-0.771712	-0.551286	0.861629
С	1.610288	-0.260361	0.200105
Н	1.791865	-1.658225	-1.471322
Н	0.181332	-3.402482	-0.675943
Н	-0.463239	-0.696405	1.897102
Н	1.890951	-0.291947	1.259300
Н	-0.105008	0.391954	-0.962096
Н	2.342960	-2.364812	0.012539
С	-2.219283	-0.123925	0.797104
Н	-2.312246	0.805111	1.373356
Н	-2.843815	-0.889989	1.275449
0	-2.570765	0.058590	-0.555300
С	-3.928435	0.454904	-0.727644
Н	-4.127184	1.410834	-0.228801
Н	-4.614313	-0.304560	-0.333626
Н	-4.091363	0.566346	-1.798514
0	0.139440	1.598846	0.710367
С	0.144996	2.715155	-0.189704
Н	1.067589	2.738646	-0.773152
Н	0.080188	3.606399	0.432595
Н	-0.720276	2.675420	-0.859501
0	2.502430	0.552667	-0.524000
С	3.861140	0.488489	-0.084259
Н	4.290334	-0.509207	-0.228039
Н	3.941780	0.769306	0.971446
Н	4.415261	1.202098	-0.691434

E4 conformation (0.9 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -653.939271652 \text{ a.u.} \\ E_{solv}(B3LYP) &= -654.004592687 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.258858 \text{ a.u.} \end{split}$$

С	-0.957176	-0.240547	-0.644650
С	-1.419349	0.527189	1.660660
0	0.299355	-1.154329	1.268203
С	-0.506098	-0.564796	2.026650
С	0.410219	-0.764846	-0.198374
С	-1.360011	0.985669	0.196209
Н	-1.226285	1.360054	2.349758
Н	-0.498456	-0.944959	3.048200
Н	0.609206	-1.738947	-0.641733
Н	-2.360375	1.303247	-0.111041
Н	-0.881992	0.030931	-1.704029
Н	-2.417817	0.163697	1.940419
С	1.652926	0.085195	-0.370357
Н	1.655534	0.939060	0.313163
Н	1.642305	0.480172	-1.396813
0	2.761809	-0.762102	-0.157941
С	4.005147	-0.078094	-0.275323
Н	4.788021	-0.813034	-0.094113
Н	4.086439	0.727674	0.464481
Н	4.131990	0.345314	-1.279380
0	-1.959455	-1.209456	-0.427195
С	-2.107391	-2.185447	-1.464740
Н	-2.344617	-1.701042	-2.417180
Н	-2.934879	-2.825660	-1.165177
Н	-1.207130	-2.797211	-1.580713
0	-0.439062	2.047442	0.089404
С	-0.719638	2.973854	-0.966512
Н	-0.691004	2.493240	-1.949535
Н	0.055470	3.736469	-0.919266
Н	-1.699348	3.439488	-0.818185

2-Azido-2-deoxy-3,4,6-tri-O-methyl-gluco-D-pyranosyl oxocarbenium ion (27)

Figure 35 | CEL map of 2-azido-2-deoxy-3,4,6-tri-*O*-methyl-gluco-D-pyranosyl oxocarbenium ion (27).

Local minima	С	-0.457446	-2.011849	-0.379856
	С	1.186015	-0.312838	-1.010689
⁴ H_3 conformation (0.0 kcal / mol)	Н	0.670689	0.520400	0.914827
	Н	-1.283967	-1.073373	1.264691
$D1 = -45^{\circ}$	Н	-1.416294	0.507283	-1.333172
$D3 = -45^{\circ}$	Н	-0.714793	-3.079063	-0.396520
$D5 = 0^{\circ}$	Н	1.037510	-0.092859	-2.073329
	0	-2.712345	-1.461548	-0.207424
$E_{gas}(B3LYP) = -768.481443857$ a.u.	0	-1.863072	1.283372	0.541608
$E_{solv}(B3LYP) = -768.548553062$ a.u.	0	0.723251	1.946078	-0.595082
Zero-point energy correction = 0.290971 a.u.	. C	2.657499	-0.417385	-0.687472
	Н	3.120546	0.544753	-0.950821
Atom coordinates	Н	3.112939	-1.196492	-1.314613
	С	-3.651022	-1.627657	0.868851
O 0.651059 -1.733318 -0.8841	35 Н	-3.353139	-2.451179	1.525961
C 0.381414 0.653796 -0.13437	79 Н	-4.604775	-1.864321	0.400419
C -1.432131 -1.030159 0.1749	52 H	-3.737446	-0.701879	1.443473
C -1.125651 0.405817 -0.27789	91 C	-2.568548	2.314736	-0.159284

Н	-3.311752	1.884412	-0.839026
Н	-1.880678	2.951162	-0.722445
Н	-3.076140	2.907558	0.600788
С	1.116259	2.866006	0.431871
Н	1.350673	3.802817	-0.072072
Н	2.004914	2.505961	0.960979
Н	0.304595	3.025082	1.146878
0	2.792970	-0.712766	0.684297
С	4.151536	-0.854381	1.090749
Н	4.713167	0.072687	0.921818
Н	4.641078	-1.673984	0.550582
Н	4.140441	-1.080042	2.156359

E_3 -^{2,5}B conformation (0.1 kcal / mol)

$$\begin{split} E_{gas}(B3LYP) &= -817.548654667 \text{ a.u.} \\ E_{solv}(B3LYP) &= -817.614041779 \text{ a.u.} \\ Zero-point energy correction &= 0.261647 \text{ a.u.} \end{split}$$

Atom coordinates

0	-1.053045	-0.871979	1.775744
С	-0.707367	0.999658	0.037300
С	0.956834	-0.847524	0.476540
С	0.769968	0.690757	0.323637
С	0.110716	-1.287242	1.600834
С	-1.716889	0.133498	0.842128
Н	-0.870008	0.804203	-1.027714
Н	0.545438	-1.331351	-0.424746
Н	1.065541	1.180580	1.258553
Н	0.471933	-1.992970	2.348683
Н	-2.263123	0.751698	1.550674
0	1.585926	1.091623	-0.740037
0	-0.888831	2.368523	0.329698
С	-2.650397	-0.714108	0.001645
Н	-3.289907	-0.038385	-0.582825
Н	-3.296768	-1.319567	0.649079
С	2.295626	2.325712	-0.544593
Н	1.601618	3.158048	-0.414960
Н	2.890186	2.474616	-1.443903
Н	2.959199	2.255458	0.323015

С	-1.914238	3.022684	-0.425951
Н	-1.758053	2.878892	-1.500013
Н	-1.841490	4.081828	-0.186107
Н	-2.913166	2.666769	-0.151748
0	-1.842554	-1.524599	-0.824201
С	-2.587429	-2.415377	-1.657570
Н	-3.186769	-3.104117	-1.052507
Н	-1.861772	-2.980057	-2.239806
Н	-3.244056	-1.858528	-2.334255
Ν	2.328333	-1.246206	0.764774
Ν	3.092462	-1.297153	-0.207291
Ν	3.898960	-1.397214	-0.989608

E₃ conformation (0.5 kcal / mol)

 $D1 = -60^{\circ}$ $D3 = -30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -817.547901163 \text{ a.u.} \\ E_{solv}(B3LYP) &= -817.613421185 \text{ a.u.} \\ Zero-point energy correction &= 0.261410 \text{ a.u.} \end{split}$$

0	0.995051	-1.364408	-1.397986
С	0.564843	0.825836	-0.152698
С	-1.029374	-1.070711	-0.131416
С	-0.892928	0.446485	-0.440214
С	-0.098273	-1.819424	-1.007982
С	1.536020	0.020167	-1.035401
Н	0.780377	0.630626	0.901514
Н	-0.683649	-1.243305	0.901855
Н	-1.138243	0.628959	-1.491675
Н	-0.347327	-2.814311	-1.377104
Н	1.625617	0.487897	-2.014369
0	-1.768919	1.132159	0.413449
0	0.825767	2.173867	-0.480327
С	2.892264	-0.249238	-0.425840
Н	3.385401	0.723329	-0.287721
Н	3.499845	-0.844803	-1.118341
С	-2.625026	2.091158	-0.227796
Н	-2.039156	2.877078	-0.710756
Н	-3.238189	2.522819	0.560841
Н	-3.269989	1.604130	-0.965000
С	0.900887	3.066764	0.641725
Н	-0.045218	3.096627	1.186316
Н	1.119008	4.050005	0.228776
Н	1.706405	2.771296	1.321270
0	2.686766	-0.921912	0.794736
С	3.899689	-1.228180	1.481108
Н	4.537771	-1.883355	0.877247
Н	3.619760	-1.742093	2.399089
Н	4.452383	-0.314810	1.728956
Ν	-2.369077	-1.606631	-0.351220
Ν	-3.168328	-1.455274	0.582388

^{2,5}*B* conformation (0.7 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = 30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -817.547543994 \text{ a.u.} \\ E_{solv}(B3LYP) &= -817.613274348 \text{ a.u.} \\ Zero-point energy correction &= 0.261447 \text{ a.u.} \end{split}$$

0	1.018495	0.847445	1.839282
С	1.091215	-0.833848	-0.051307
С	-1.049309	0.400323	0.718091
С	-0.450869	-0.897859	0.117106
С	-0.231616	0.844970	1.859141
С	1.781815	0.380649	0.607255
Н	1.294619	-0.756772	-1.126131
Н	-0.928803	1.185959	-0.047230
Н	-0.651011	-1.715397	0.819418
Н	-0.684694	1.193195	2.786964
Н	2.717748	0.068410	1.064243
0	-1.139839	-1.093418	-1.087558
0	1.593086	-2.047321	0.472400
С	2.043818	1.593945	-0.259765
Н	2.801979	1.293156	-0.996949
Н	2.469346	2.400271	0.351224
С	-1.218624	-2.458907	-1.517473
Н	-0.232527	-2.855041	-1.775657
Н	-1.852573	-2.461585	-2.401875
Н	-1.669313	-3.082962	-0.739104
С	2.852267	-2.457003	-0.067986
Н	2.796454	-2.545839	-1.158306
Н	3.070150	-3.430412	0.367100
Н	3.659060	-1.764234	0.196387
0	0.846806	2.000825	-0.884747
С	1.010146	3.146573	-1.725028
Н	1.356377	4.008335	-1.144562
Н	0.033253	3.363187	-2.152837
Н	1.723056	2.938433	-2.529585
Ν	-2.425144	0.241835	1.177296
Ν	-3.296596	0.302840	0.300719
Ν	-4.196056	0.339325	-0.379205

2,3,4,6-Tetra-O-methyl-manno-D-pyranosyl oxocarbenium ion (28)

Figure 36 | CEL map of 2,3,4,6-tera-O-methyl-manno-D-pyranosyl oxocarbenium ion (28).

Local minima

	Atom Cool
³ H ₄ conformation (0.0 kcal / mol)	
	0
$D1 = 45^{\circ}$	С
$D3 = 45^{\circ}$	С
$D5 = 0^{\circ}$	С
	С
$E_{gas}(B3LYP) = -768.482709395 a.u.$	С
$E_{solv}(B3LYP) = -768.547141086$ a.u.	Н
Zero-point energy correction = 0.290949 a.u.	Н
	Н
	Н

0	0.596455	-0.029300	-1.501483
С	0.178757	1.157486	0.665932
С	-1.660193	0.001576	-0.549232
С	-1.023165	0.213938	0.840498
С	-0.628419	-0.258707	-1.596244
С	1.244205	0.571358	-0.260386
Н	0.635564	1.326134	1.651037
Н	-1.757116	0.690950	1.500189
Н	-0.922110	-0.738241	-2.539431
Н	1.850437	1.360055	-0.712096
0	-0.539482	-0.996637	1.371425
0	-0.341955	2.355720	0.116462
---	-----------	-----------	-----------
С	2.173794	-0.495541	0.287488
Н	1.632846	-1.429771	0.468810
Н	2.554135	-0.130317	1.254163
С	-1.419399	-1.676887	2.275016
Н	-0.861980	-2.532561	2.653999
Н	-2.318752	-2.020503	1.760894
Н	-1.691904	-1.022776	3.110646
С	0.393837	3.538413	0.442719
Н	-0.140896	4.369586	-0.014341
Н	1.413116	3.507042	0.041024
Н	0.434411	3.679775	1.528255
0	3.219287	-0.662423	-0.645654
С	4.157801	-1.654856	-0.244263
Н	4.914910	-1.708232	-1.025829
Н	3.677390	-2.635745	-0.137753
Н	4.637097	-1.386959	0.706156
Н	-2.134565	0.953034	-0.847796
0	-2.550256	-1.085950	-0.562961
С	-3.834557	-0.828582	-1.151181
Н	-4.413324	-1.741486	-1.023361
Н	-3.745250	-0.602590	-2.219078
Н	-4.332359	0.002138	-0.639887

³*E* conformation (0.5 kcal / mol)

 $\begin{array}{l} D1=60^\circ\\ D3=30^\circ\\ D5=0^\circ\end{array}$

$E_{gas}(B3LYP) = -768.484150842$ a.u.
$E_{solv}(B3LYP) = -768.546476586$ a.u.
Zero-point energy correction = 0.290902 a.u

Atom coordinates

0	-0.051107	-0.062023	1.833002
С	-0.465729	0.723254	-0.545126
С	1.805523	0.243840	0.302398
С	0.796299	-0.107149	-0.819134
С	1.178705	-0.117464	1.601725
С	-1.082100	0.382336	0.820207
Н	-1.216905	0.488020	-1.307808
Н	1.223893	0.200725	-1.780767
Н	1.776994	-0.513852	2.432727
Н	-1.494734	1.275150	1.297292
0	0.447313	-1.469121	-0.795136
0	-0.069472	2.079889	-0.607198
С	-2.127337	-0.730804	0.827420
Н	-2.420114	-0.943801	1.864775
Н	-1.718629	-1.641020	0.374922
С	1.236165	-2.329505	-1.630267
Н	1.215634	-1.977667	-2.667335
Н	0.772116	-3.313135	-1.573083
Н	2.267395	-2.382762	-1.277231
С	-1.101680	2.983459	-1.013961

Н	-1.461572	2.730900	-2.017271
Н	-0.654901	3.976408	-1.024757
Н	-1.945948	2.976478	-0.315356
0	-3.207183	-0.214086	0.080159
С	-4.289826	-1.133243	-0.032550
Н	-5.058937	-0.642089	-0.627448
Н	-4.698414	-1.383750	0.954236
Н	-3.974762	-2.055903	-0.535457
Н	1.931710	1.341687	0.293997
0	3.009407	-0.460389	0.164667
С	4.199209	0.315171	0.366921
Н	4.231656	1.160728	-0.328610
Н	5.034998	-0.353872	0.170910
Н	4.263475	0.684227	1.396520

B_{2,5} conformation (1.2 kcal / mol)

 $D1 = 60^{\circ}$ $D3 = -30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -768.479805022 \text{ a.u.} \\ E_{solv}(B3LYP) &= -768.545066139 \text{ a.u.} \\ Zero-point energy correction &= 0.290500 \text{ a.u.} \end{split}$$

0	0.523701	-1.702829	-0.498390
С	0.470340	0.783181	-0.156152
С	-1.600089	-0.630276	-0.602733
С	-0.986986	0.509726	0.283185
С	-0.716331	-1.788964	-0.351569
С	1.107092	-0.382410	-0.940710
Н	1.051839	0.965504	0.751453
Н	-1.576814	1.421765	0.142928
Н	-1.096678	-2.760445	-0.011172
Н	0.832679	-0.298605	-1.998898
0	-0.963028	0.094863	1.631962
0	0.560858	1.862887	-1.065298
С	2.601537	-0.518976	-0.784005
Н	3.059563	0.363333	-1.256990
Н	2.944970	-1.410569	-1.327856
С	-2.114044	0.429749	2.419188
Н	-1.858255	0.181163	3.448376
Н	-2.989788	-0.143265	2.109065
Н	-2.326278	1.502911	2.350405
С	0.692432	3.144894	-0.442676
Н	-0.191820	3.398204	0.153209
Н	0.795623	3.868078	-1.250228
Н	1.581182	3.177280	0.196742
0	2.902669	-0.600424	0.588019
С	4.295924	-0.742493	0.846630
Н	4.410452	-0.808749	1.927805
Н	4.857494	0.123281	0.473729
Н	4.692634	-1.654153	0.382893
Н	-1.488205	-0.345553	-1.664006

0	-2.907771	-0.998933	-0.279826
С	-3.923852	-0.242952	-0.952668
Н	-4.874181	-0.678628	-0.650278
Н	-3.810970	-0.326946	-2.038942
Н	-3.901028	0.812003	-0.660906

⁴*H*₃ conformation (1.4 kcal / mol)

 $\begin{array}{l} D1 = -45^{\circ} \\ D3 = -45^{\circ} \\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -768.478915880 \text{ a.u.} \\ E_{solv}(B3LYP) &= -768.545232706 \text{ a.u.} \\ Zero-point energy correction &= 0.291077 \text{ a.u.} \end{split}$$

0	0.825245	-1.394974	-1.381401
С	0.105945	0.710095	-0.184982
С	-1.427505	-1.224709	-0.479343
С	-1.316311	0.297768	-0.569780
С	-0.266166	-1.934249	-1.097099
С	1.130849	0.078211	-1.136240
Н	0.305429	0.376134	0.836242
Н	-1.509887	0.597248	-1.611395
Н	-0.302337	-3.016565	-1.268938
Н	1.047384	0.515384	-2.137375
0	-2.261302	0.860738	0.313968
0	0.288059	2.106708	-0.313509
С	2.565414	0.108988	-0.665775
Н	2.894762	1.158093	-0.697025
Н	3.189166	-0.462303	-1.367795
С	-3.052678	1.913895	-0.245397
Н	-3.712597	2.256511	0.550861
Н	-3.658629	1.550387	-1.083380
Н	-2.423757	2.742895	-0.582006
С	0.474940	2.797192	0.928806
Н	-0.398832	2.680608	1.575849
Н	0.607249	3.848760	0.676878
Н	1.366762	2.433058	1.449563
0	2.628156	-0.425715	0.635867
С	3.954877	-0.473049	1.150956
Н	3.889186	-0.890683	2.154851
Н	4.395508	0.530447	1.203213
Н	4.595793	-1.113468	0.532215
Н	-2.362760	-1.588794	-0.940455
0	-1.260783	-1.690057	0.856158
С	-2.429385	-2.276109	1.457785
Н	-2.137639	-2.541693	2.472369
Н	-2.741145	-3.175044	0.917746
Н	-3.238536	-1.542774	1.476322

Methyl (2,3,4-tri-O-benzyl-manno-D-pyranosyl uronate) oxocarbenium ion (29)

Figure 37 | CEL map of methyl (2,3,4-tri-O-benzyl-manno-D-pyranosyl uronate) oxocarbenium ion (29).

Local minima

³ H ₄ conformation (0.0 kcal / mol)	0	0.300595	0.231586	-1.717711
	С	0.062147	1.294336	0.539838
D1 = 45°	С	-1.739958	-0.137622	-0.415307
$D3 = 45^{\circ}$	С	-0.921384	0.157743	0.857246
$D5 = 0^{\circ}$	С	-0.871972	-0.199303	-1.623165
	С	1.019931	0.893180	-0.588183
$E_{gas}(B3LYP) = -842.537764049 a.u.$	Н	0.669243	1.508026	1.423829
$E_{solv}(B3LYP) = -842.601711538$ a.u.	Н	-1.592511	0.471549	1.659725
Zero-point energy correction = 0.272579 a.u.	Н	-1.236207	-0.694880	-2.522805
	Н	1.446008	1.773911	-1.065950

0	-0.141930	-0.959432	1.215179
0	-0.722756	2.399949	0.144540
С	2.179429	-0.000724	-0.133243
С	-0.696661	-1.812246	2.226205
Н	-0.896088	-1.243195	3.139818
Н	0.057754	-2.569914	2.430196
Н	-1.612898	-2.288919	1.873706
С	-0.140078	3.683543	0.398758
Н	0.066010	3.806266	1.466291
Н	-0.873555	4.421073	0.079429
Η	0.783801	3.829849	-0.170481
0	2.270271	-1.127714	-0.814967
С	3.353679	-2.020994	-0.438730
Η	3.271413	-2.865231	-1.116262
Η	3.224606	-2.337468	0.595294
Η	4.309740	-1.514227	-0.560628
Н	-2.382648	0.742202	-0.591101
0	-2.461857	-1.335234	-0.344695
С	-3.876808	-1.216190	-0.578894
Η	-4.290120	-2.210067	-0.423265
Н	-4.083206	-0.892289	-1.602892
Н	-4.325113	-0.513821	0.129765
0	2.912403	0.381696	0.741177

³*E* conformation (0.4 kcal / mol)

 $\begin{array}{l} D1=60^\circ\\ D3=30^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -842.537379074 \text{ a.u.} \\ E_{solv}(B3LYP) &= -842.601023271 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.272393 \text{ a.u.} \end{split}$$

Atom coordinates

0	0.279054	-0.199856	-1.606409
С	0.082300	1.203541	0.509645
С	-1.823664	-0.099752	-0.396155
С	-0.953146	0.128756	0.859893
С	-0.918161	-0.549504	-1.485919
С	0.972784	0.728762	-0.661081
Н	0.736579	1.370532	1.368743
Н	-1.590601	0.488480	1.670826
Н	-1.248716	-1.272226	-2.231259
Н	1.248004	1.565465	-1.302090
0	-0.236376	-1.032162	1.205211
0	-0.636980	2.364784	0.161464
С	2.262153	0.042960	-0.192176
С	-0.856878	-1.886194	2.179400
Н	-1.055681	-1.330183	3.100914
Н	-0.140569	-2.679879	2.382810
Н	-1.784329	-2.311737	1.792831
С	0.070946	3.594181	0.360548
Н	0.361098	3.705174	1.409862
Н	-0.615416	4.391147	0.082479

0.963907	3.653654	-0.270738
2.461204	-1.141997	-0.737480
3.673068	-1.838570	-0.335634
3.653851	-2.775398	-0.883698
3.655285	-2.014643	0.738913
4.545913	-1.246036	-0.605575
-2.231916	0.882726	-0.689600
-2.808033	-1.071592	-0.185618
-4.099391	-0.757792	-0.732552
-4.755783	-1.576168	-0.445872
-4.062094	-0.687278	-1.823712
-4.474216	0.181842	-0.315326
2.982959	0.612847	0.585917

*E*₄ conformation (2.2 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

H O C H H H H O C H H H O

$$\begin{split} E_{gas}(B3LYP) &= -842.534310988 \text{ a.u.} \\ E_{solv}(B3LYP) &= -842.598235307 \text{ a.u.} \\ Zero-point energy correction &= 0.272706 \text{ a.u.} \end{split}$$

0	-0.026190	0.823298	-1.742965
С	0.293185	1.168117	0.675508
С	-1.787804	0.100725	-0.175068
С	-0.763218	0.098910	0.993226
С	-1.211831	0.496351	-1.499273
С	0.987764	0.848403	-0.655437
Н	1.055214	1.169771	1.460500
Н	-1.275881	0.363994	1.921194
Н	-1.849360	0.462464	-2.381714
Н	1.639347	1.666331	-0.957071
0	-0.085588	-1.124118	1.102193
0	-0.393147	2.395846	0.584613
С	1.773062	-0.466363	-0.757358
С	-0.650133	-2.066763	2.021945
Н	-0.704551	-1.635820	3.027273
Н	0.022815	-2.922247	2.030796
Н	-1.642063	-2.385114	1.696442
С	0.399321	3.563173	0.837787
Н	0.846365	3.511774	1.835150
Н	-0.280569	4.410765	0.783914
Н	1.187390	3.689241	0.088872
0	2.799216	-0.404983	0.079245
С	3.663473	-1.571938	0.125800
Н	4.435187	-1.324517	0.848184
Н	4.094337	-1.752646	-0.857863
Н	3.090079	-2.439091	0.450574
Н	-2.524458	0.894821	0.038083
0	-2.394367	-1.147961	-0.392381
С	-3.832058	-1.132208	-0.468805
Н	-4.135370	-2.171929	-0.568047

Η	-4.177540	-0.569389	-1.340002
Н	-4.256366	-0.703029	0.443362
0	1.505684	-1.354060	-1.519403

⁴*H*₃ conformation (5.1 kcal / mol)

 $D1 = -45^{\circ}$ $D3 = -45^{\circ}$ $D5 = 15^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -842.528098534 \text{ a.u.} \\ E_{solv}(B3LYP) &= -842.593836183 \text{ a.u.} \\ Zero-point energy correction &= 0.272826 \text{ a.u.} \end{split}$$

0	0.734768	-1.505565	-0.807503
С	-0.148578	0.732155	-0.004126
С	-1.653290	-1.201430	-0.485052
С	-1.491928	0.313787	-0.606105
С	-0.433048	-1.969677	-0.868850
С	1.004640	-0.033180	-0.656695
Н	-0.159278	0.533018	1.069945
Н	-1.502227	0.577903	-1.670772
Н	-0.478389	-3.041774	-1.045636
Н	1.172526	0.307094	-1.677757
0	-2.536826	0.950533	0.092130
0	0.126911	2.087601	-0.280544
С	2.315325	0.040833	0.142276
С	-3.427317	1.721525	-0.723175
Н	-2.889892	2.526061	-1.233930
Н	-4.164615	2.150673	-0.046798
Н	-3.939467	1.095345	-1.461169
С	0.101765	2.957690	0.861508
Н	-0.887032	2.956414	1.326598
Н	0.327873	3.953805	0.484460
Н	0.860196	2.658904	1.589822
0	3.313654	-0.448553	-0.576937
С	4.618330	-0.484786	0.062607
Н	5.280680	-0.935623	-0.669839
Н	4.568868	-1.088609	0.967809
Н	4.936831	0.528279	0.304575
Н	-2.551023	-1.567347	-1.012521
0	-1.611159	-1.627147	0.877482
С	-2.713328	-2.450664	1.317299
Н	-2.527539	-2.645123	2.370897
Н	-2.746718	-3.394099	0.768443
Н	-3.647462	-1.900965	1.189757
0	2.386558	0.484196	1.258871

Methyl (2-azido-2-deoxy-3,4-di-O-benzyl-manno-D-pyranosyl uronate) oxocarbenium ion (30)

bisected

eclipsed

Figure 38 | CEL map of methyl (2-azido-2-deoxy-3,4-di-O-benzyl-manno-D-pyranosyl uronate) oxocarbenium ion (30).

		С	1.390905	-1.177932	-0.564887
Local n	ninima	С	0.599362	-0.951544	0.731178
		С	0.745551	-0.524029	-1.736410
$^{3}H_{4}$ con	nformation (0.0 kcal / mol)	С	-1.389752	-0.214973	-0.639756
		Н	-1.489433	-1.008450	1.333054
D1 = 4	5°	Н	0.938779	-1.658978	1.491468
D3 = 4	5°	Н	1.311885	-0.366827	-2.654605
D5 = 0	0	Н	-2.290854	-0.587337	-1.125015
		Ο	0.824856	0.387238	1.111358
Egas(B3	BLYP) = -891.604002017 a.u.	Ο	-0.998414	-2.521866	-0.015741
Esolv(B	3LYP) = -891.671480132 a.u.	С	-1.680667	1.192729	-0.102852
Zero-p	oint energy correction $= 0.243664$ a.u.	С	0.727440	0.654247	2.520285
		Н	-0.304394	0.563487	2.869088
Atom o	coordinates	Н	1.066360	1.678680	2.658592
		Н	1.374105	-0.026420	3.080384
0	-0.433355 -0.109633 -1.784601	С	-2.244920	-3.171087	0.268970
С	-0.893848 -1.189376 0.433919	Н	-2.427579	-3.192951	1.347378

Н	-2.151715	-4.187332	-0.108014
Н	-3.082153	-2.677250	-0.234606
0	-1.165354	2.149820	-0.850602
С	-1.424304	3.515912	-0.420527
Н	-0.954282	4.141238	-1.172982
Н	-0.977687	3.681587	0.558691
Н	-2.497997	3.691614	-0.380754
Н	1.303639	-2.249508	-0.804805
0	-2.358148	1.324327	0.883664
Ν	2.823821	-0.911972	-0.521511
Ν	3.195955	0.231384	-0.195528
Ν	3.729660	1.188543	0.067035

³*E* conformation (1.0 kcal / mol)

 $\begin{array}{l} D1=60^\circ\\ D3=30^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -891.601503203 \text{ a.u.} \\ E_{solv}(B3LYP) &= -891.669393790 \text{ a.u.} \\ Zero-point energy correction &= 0.243216 \text{ a.u.} \end{split}$$

Atom coordinates

0.381505	-0.113440	-1.701369
0.433512	1.303320	0.421339
-1.680295	0.661891	-0.700001
-0.926601	0.617735	0.639270
-0.867949	-0.065290	-1.712875
1.236671	0.554514	-0.665748
1.028003	1.267055	1.338045
-1.493963	1.177852	1.386546
-1.331280	-0.611839	-2.534573
1.825113	1.252422	-1.260272
-0.776652	-0.741463	0.978347
0.150657	2.626706	0.033104
2.184288	-0.509394	-0.095800
-0.743849	-1.026568	2.387133
0.119498	-0.560140	2.868591
-0.665904	-2.108011	2.473650
-1.665855	-0.684452	2.865242
1.157031	3.592089	0.366965
1.324182	3.613868	1.447898
0.775917	4.555386	0.035024
2.102326	3.383555	-0.144521
2.109074	-1.669200	-0.718714
3.003665	-2.715548	-0.245878
2.784476	-3.575377	-0.871033
2.796088	-2.930348	0.801242
4.037769	-2.397178	-0.367909
-1.694542	1.712432	-1.031076
2.915952	-0.221122	0.816136
-3.069409	0.220943	-0.692365
-3.322179	-0.888457	-0.189232
-3.746263	-1.850137	0.219696
	0.381505 0.433512 -1.680295 -0.926601 -0.867949 1.236671 1.028003 -1.493963 -1.331280 1.825113 -0.776652 0.150657 2.184288 -0.743849 0.119498 -0.665904 -1.665855 1.157031 1.324182 0.775917 2.102326 2.109074 3.003665 2.784476 2.796088 4.037769 -1.694542 2.915952 -3.069409 -3.322179 -3.746263	0.381505-0.1134400.4335121.303320-1.6802950.661891-0.9266010.617735-0.867949-0.0652901.2366710.5545141.0280031.267055-1.4939631.177852-1.331280-0.6118391.8251131.252422-0.776652-0.7414630.1506572.6267062.184288-0.509394-0.743849-1.0265680.119498-0.560140-0.665904-2.108011-1.665855-0.6844521.1570313.5920891.3241823.6138680.7759174.5553862.1023263.3835552.109074-1.6692003.003665-2.7155482.784476-3.5753772.796088-2.9303484.037769-2.397178-1.6945421.7124322.915952-0.221122-3.0694090.220943-3.322179-0.888457-3.746263-1.850137

E4 conformation (1.5 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -891.602001498 \text{ a.u.} \\ E_{solv}(B3LYP) &= -891.669071612 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.243505 \text{ a.u.} \end{split}$$

Atom coordinates

0	-0.423797	-0.763957	-1.820348
С	-1.126755	-0.851123	0.541452
С	1.177531	-1.519684	-0.114411
С	0.345231	-0.837185	0.997562
С	0.623989	-1.368017	-1.496153
С	-1.267381	-0.098852	-0.789168
Н	-1.751158	-0.337821	1.279411
Н	0.449307	-1.415126	1.918586
Н	1.167589	-1.803327	-2.334231
Н	-2.269550	-0.210351	-1.198527
0	0.798827	0.483180	1.150472
0	-1.481755	-2.203909	0.387670
С	-0.894268	1.390502	-0.812885
С	0.781160	0.989599	2.494262
Н	1.176331	2.001698	2.440023
Н	1.419457	0.378810	3.138655
Н	-0.234976	1.017562	2.897491
С	-2.878560	-2.501941	0.524518
Н	-3.249437	-2.154590	1.493310
Н	-2.964396	-3.584764	0.465770
Н	-3.469030	-2.051870	-0.279091
0	-1.721066	2.041991	-0.008158
С	-1.551325	3.485150	0.060140
Н	-2.303590	3.824964	0.765086
Н	-1.715209	3.920415	-0.924544
Н	-0.548842	3.720410	0.414097
Н	1.067434	-2.605478	0.041895
0	-0.031912	1.856853	-1.505377
Ν	2.620512	-1.301423	-0.113824
Ν	3.035911	-0.129048	-0.203588
Ν	3.607286	0.838404	-0.280289

⁴*H*₃ conformation (7.1 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -891.590367190 \text{ a.u.} \\ E_{solv}(B3LYP) &= -891.659829888 \text{ a.u.} \\ Zero-point energy correction &= 0.243244 \text{ a.u.} \end{split}$$

0	0.855813	-1.522796	-0.864411
С	-0.057794	0.728202	-0.168837
С	-1.573563	-1.230683	-0.829078
С	-1.383760	0.319087	-0.819096
С	-0.300183	-2.002699	-0.902980
С	1.123769	-0.048873	-0.733534
Н	-0.105933	0.565344	0.912926
Н	-1.360400	0.648888	-1.865388
Н	-0.332996	-3.089695	-0.955061
Н	1.357813	0.264422	-1.750265
0	-2.407103	0.958598	-0.110578
0	0.259148	2.067622	-0.466672
С	2.381534	0.033627	0.150075
С	-3.654190	1.059978	-0.811207
Н	-4.306342	1.664971	-0.185012
Н	-4.109796	0.075403	-0.957389
Н	-3.514031	1.550744	-1.779357
С	0.044658	3.000146	0.606182
Н	-1.007483	3.018608	0.896091
Н	0.338614	3.973242	0.217021
Н	0.670368	2.745070	1.466134
0	3.437303	-0.374743	-0.532316
С	4.704673	-0.399556	0.181450
Н	5.428931	-0.761945	-0.541194
Н	4.632678	-1.073407	1.034006
Н	4.955745	0.605699	0.516460
Н	-2.167670	-1.535140	-1.706487
0	2.360192	0.412752	1.291498
Ν	-2.276589	-1.839342	0.322164
Ν	-2.054252	-1.360141	1.449703
Ν	-1.988187	-1.048954	2.530918

2,3,4,6-Tetra-O-methyl-galacto-D-pyranosyl oxocarbenium ion (31)

Figure 39 | CEL map of 2,3,4,6-tera-O-benzyl-galacto-D-pyranosyl oxocarbenium ion (31).

-1.367855 -1.015142 0.277397

С

Local m	iinima	С	-1.194586	0.235243	-0.592639
		С	-0.141703	-1.855910	0.301383
⁴ H ₃ con	formation (0.0 kcal / mol)	С	1.307212	-0.092002	-0.579785
		Н	-1.475372	-0.678753	1.328608
D1 = -4	5°	Н	-1.207414	-0.080434	-1.648656
D3 = -4	5°	Н	-0.215298	-2.902506	0.625135
D5 = 0°		Н	1.400268	-0.276677	-1.655120
		0	-2.423357	-1.840120	-0.136000
Egas(B3)	LYP) = -768.481861353 a.u.	0	-2.279325	1.085331	-0.306555
Esolv(B3	LYP) = -768.549528278 a.u.	С	2.650040	0.265715	0.012560
Zero-po	bint energy correction $= 0.290585$ a.u.	Н	2.625314	0.148870	1.103279
		Н	2.830818	1.329884	-0.207457
Atom co	oordinates	С	-3.615259	-1.757798	0.664992
		Н	-3.429973	-2.131397	1.677398
0	0.998973 -1.493676 -0.053771	Н	-4.349818	-2.392769	0.172664
С	0 175536 0 876697 -0 271708	Н	-3 976489	-0 727899	0 703057

С

1.677398 0.172664 0.703057

-2.702846 1.902172 -1.402548

Н	-1.914287	2.592014	-1.723078
Н	-3.555782	2.477577	-1.045858
Н	-3.009263	1.281042	-2.251173
0	3.622236	-0.559873	-0.584981
С	4.923600	-0.353776	-0.044758
Н	5.593232	-1.038087	-0.564372
Н	4.944585	-0.571608	1.030514
Н	5.261893	0.677487	-0.207377
Н	0.338769	1.750832	-0.920858
0	0.268204	1.222923	1.099406
С	-0.143010	2.554823	1.438066
Н	0.398865	3.288996	0.830902
Н	0.117413	2.694903	2.486583
Н	-1.218080	2.681716	1.303248

E₃ conformation (1.1 kcal / mol)

 $D1 = -60^{\circ}$ $D3 = -30^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -768.480424531 \text{ a.u.} \\ E_{solv}(B3LYP) &= -768.547799841 \text{ a.u.} \\ Zero-point energy correction &= 0.290586 \text{ a.u.} \end{split}$$

Atom coordinates

0	1.004921	-1.480539	-0.445721
С	0.195679	0.943194	-0.409261
С	-1.242905	-0.963891	0.269588
С	-1.157843	0.259689	-0.680847
С	-0.113113	-1.868545	-0.036027
С	1.358550	-0.013874	-0.687634
Н	-1.070388	-0.577993	1.294811
Н	-1.189004	-0.090659	-1.723759
Н	-0.228775	-2.958158	0.037664
Н	1.584307	-0.047319	-1.757853
0	-2.442304	-1.673265	0.141020
0	-2.210716	1.142924	-0.406461
С	2.623735	0.250054	0.095573
Н	2.471970	0.025893	1.159254
Н	2.836620	1.326731	0.009249
С	-3.311261	-1.606845	1.283299
Н	-2.854453	-2.093569	2.151210
Н	-4.218027	-2.140728	1.004290
Н	-3.552687	-0.567392	1.522266
С	-3.267416	1.149127	-1.374838
Н	-2.897568	1.472486	-2.353908
Н	-4.006272	1.863463	-1.014398
Н	-3.724783	0.159979	-1.461797
0	3.653494	-0.529128	-0.466947
С	4.893936	-0.368946	0.213686
Н	5.616631	-1.007954	-0.292472
Н	4.812253	-0.675508	1.264161

Н	5.238596	0.672175	0.170901
Н	0.315932	1.788958	-1.101582
0	0.279729	1.368169	0.939493
С	-0.114701	2.725350	1.191182
Н	0.474965	3.414285	0.575950
Н	0.099153	2.910175	2.243243
Η	-1.177433	2.867967	0.993350

⁴*E* conformation (1.4 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -768.480247688 \text{ a.u.} \\ E_{solv}(B3LYP) &= -768.547528113 \text{ a.u.} \\ Zero-point energy correction &= 0.290718 \text{ a.u.} \end{split}$$

0	0.958070	-1.358036	0.392975
С	0.171334	0.907805	-0.202221
С	-1.452870	-0.922642	0.331100
С	-1.211338	0.310546	-0.544142
С	-0.208731	-1.659683	0.717895
С	1.239606	-0.136692	-0.480920
Н	-1.889403	-0.584639	1.292846
Н	-1.193229	-0.022298	-1.594341
Н	-0.295652	-2.580384	1.308625
Н	1.184182	-0.536791	-1.498869
0	-2.252676	-1.894155	-0.309602
0	-2.290225	1.187915	-0.314943
С	2.653529	0.268710	-0.141416
Н	2.758711	0.389764	0.944334
Н	2.837693	1.246743	-0.613777
С	-3.529569	-2.147845	0.300937
Н	-3.412519	-2.599987	1.290874
Н	-4.041583	-2.846793	-0.358201
Н	-4.101586	-1.219168	0.379542
С	-2.601938	2.048325	-1.413552
Н	-1.782317	2.740762	-1.636074
Н	-3.479048	2.621155	-1.115934
Н	-2.834805	1.463092	-2.310069
0	3.520932	-0.720153	-0.646715
С	4.884665	-0.474686	-0.318285
Н	5.464545	-1.291562	-0.746400
Н	5.032615	-0.455264	0.768799
Н	5.230434	0.476231	-0.743370
Н	0.382713	1.763918	-0.860675
0	0.277284	1.262378	1.164143
С	-0.108880	2.604391	1.490097
Н	0.448820	3.323395	0.879335
Н	0.149814	2.747793	2.538526
Н	-1.181308	2.751070	1.351017

2-Deoxy-3,4,6-tri-O-methyl-galacto-D-pyranosyl oxocarbenium ion (32)

Local minima				
	С	0.467399	-0.464320	-0.228275
⁴ <i>E</i> conformation (0.0 kcal / mol)	С	1.429208	1.740408	0.445728
	0	-0.969961	1.412716	0.474077
$D1 = -30^{\circ}$	С	0.050776	2.036323	0.842838
$D3 = -60^{\circ}$	С	-0.867241	0.222848	-0.474015
$D5 = 0^{\circ}$	С	1.598745	0.550625	-0.504643
	Н	1.966708	1.553954	1.388003
$E_{gas}(B3LYP) = -653.938644071 a.u.$	Н	-0.160484	2.854563	1.531040
$E_{solv}(B3LYP) = -654.005633226 a.u.$	Н	-0.933702	0.676399	-1.462479
Zero-point energy correction $= 0.258487$ a.u.	Н	1.501425	0.894292	-1.542968
	Н	1.871094	2.668383	0.061497
Atom coordinates	С	-2.095868	-0.608884	-0.194310

Н	-2.160119	-0.832848	0.876888
Н	-1.978610	-1.560050	-0.734144
0	-3.216518	0.111261	-0.651355
С	-4.446832	-0.555332	-0.385603
Н	-4.488254	-1.527662	-0.891645
Н	-5.241003	0.083408	-0.769154
Н	-4.590886	-0.706349	0.691082
0	2.891654	0.037697	-0.280851
С	3.464727	-0.638354	-1.403306
Н	3.519002	0.029037	-2.270229
Н	2.900907	-1.537346	-1.673291
Н	4.471199	-0.927465	-1.106081
Н	0.536955	-1.309435	-0.923392
0	0.459813	-0.897118	1.118145
С	1.255291	-2.054649	1.409177
Н	2.318967	-1.842819	1.293784
Н	0.968779	-2.889576	0.760885
Н	1.040902	-2.314930	2.444522

⁴*H*₃ conformation (0.1 kcal / mol)

 $\begin{array}{l} D1 = -45^{\circ} \\ D3 = -45^{\circ} \\ D5 = 0^{\circ} \end{array}$

$$\begin{split} E_{gas}(B3LYP) &= -653.938549836 \text{ a.u.} \\ E_{solv}(B3LYP) &= -654.005666625 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.258548 \text{ a.u.} \end{split}$$

Atom coordinates

С	0.483814	-0.442560	-0.289161
С	1.401901	1.666708	0.675956
0	-0.968363	1.544279	0.248566
С	0.017077	2.131197	0.749103
С	-0.860645	0.233050	-0.525125
С	1.623946	0.595501	-0.387256
Н	1.614985	1.246969	1.674286
Н	-0.243823	3.041148	1.289321
Н	-0.966348	0.572661	-1.555340
Н	1.587928	1.061513	-1.382295
Н	2.066432	2.528282	0.572019
С	-2.075608	-0.568180	-0.118819
Н	-2.123061	-0.655616	0.972667
Н	-1.951349	-1.580162	-0.531567
0	-3.211176	0.074262	-0.648358
С	-4.429874	-0.559941	-0.273339
Н	-4.469670	-1.592785	-0.640628
Н	-5.236347	0.014007	-0.727289
Н	-4.555839	-0.562876	0.816140
0	2.897555	0.044253	-0.151902
С	3.521038	-0.526464	-1.305671
Н	3.619239	0.219200	-2.101946
Н	2.966752	-1.391258	-1.685109
Н	4.510879	-0.851279	-0.990100
Н	0.593131	-1.205278	-1.069173

0	0.441775	-1.027650	0.999855
С	1.188092	-2.241081	1.160871
Н	2.261322	-2.055659	1.098865
Н	0.892013	-2.977364	0.405852
Н	0.936982	-2.622041	2.149653

E₃ conformation (2.2 kcal / mol)

D1	=	-60°
D3	=	-30°
D5	=	0°

$$\begin{split} E_{gas}(B3LYP) &= -653.935432424 \text{ a.u.} \\ E_{solv}(B3LYP) &= -654.002451004 \text{ a.u.} \\ Zero-point energy correction &= 0.258607 \text{ a.u.} \end{split}$$

Atom coordinates

С	-0.506770	-0.442225	0.358701
С	-1.269850	1.544921	-0.909317
0	0.955497	1.623906	-0.028755
С	0.028688	2.173745	-0.669270
С	0.854150	0.227276	0.585611
С	-1.618538	0.626552	0.266880
Н	-1.174325	0.927815	-1.817812
Н	0.282189	3.165300	-1.043056
Н	0.997513	0.471244	1.637582
Н	-1.640453	1.211238	1.197079
Н	-2.029003	2.303002	-1.100248
С	2.053579	-0.538564	0.074396
Н	2.058742	-0.554512	-1.021702
Н	1.943938	-1.576621	0.420476
0	3.210140	0.067413	0.600371
С	4.410157	-0.549951	0.145107
Н	4.451866	-1.604976	0.442611
Н	5.236303	-0.012959	0.608694
Н	4.501169	-0.482585	-0.945811
0	-2.886244	0.081601	0.003544
С	-3.617432	-0.315657	1.167649
Н	-3.734138	0.526272	1.858297
Н	-3.134217	-1.148818	1.688578
Н	-4.597533	-0.635859	0.818934
Н	-0.674998	-1.103570	1.215940
0	-0.435586	-1.183257	-0.845121
С	-1.190151	-2.401895	-0.872452
Н	-2.262559	-2.202143	-0.878910
Н	-0.932031	-3.031616	-0.014203
Н	-0.905915	-2.913727	-1.790593

³H₄ conformation (2.6 kcal / mol)

 $D1 = 45^{\circ}$ $D3 = 45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -653.934541622 \text{ a.u.} \\ E_{solv}(B3LYP) &= -654.002140692 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.258992 \text{ a.u.} \end{split}$$

С	-0.864361	-0.242084	0.841270
С	-1.443998	2.061056	0.127774
0	0.825050	1.617304	0.846774
С	-0.075760	2.421874	0.518669
С	0.632614	0.109220	0.890731
С	-1.598489	0.581431	-0.232465
Н	-1.739801	2.711056	-0.701981
Н	0.238580	3.464803	0.556595
Н	1.055810	-0.126836	1.865069
Н	-2.662747	0.324476	-0.227286
Н	-2.086540	2.362002	0.969442
С	1.536759	-0.464344	-0.183617
Н	1.346165	0.015204	-1.149356
Н	1.291832	-1.529435	-0.271039
0	2.868511	-0.268766	0.245318
С	3.819473	-0.787770	-0.677351
Н	3.694690	-1.869711	-0.810300
Н	4.806175	-0.588548	-0.261407
Н	3.733665	-0.297394	-1.655038
0	-1.049690	0.416144	-1.525291
С	-1.632194	-0.633351	-2.310574
Н	-2.713625	-0.485823	-2.402858
Н	-1.429666	-1.614459	-1.877880
Н	-1.176202	-0.563306	-3.296882
Н	-1.300567	0.013825	1.816156
0	-0.925630	-1.635231	0.633974
С	-2.025570	-2.286143	1.279266
Н	-2.986666	-1.940633	0.886215
Н	-1.991686	-2.121458	2.361201
Н	-1.916204	-3.348710	1.070934

Solvent effect on multi-substituted pyranosyl oxocarbenium ions

2,3,4-Tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (19) in Et₂O

Figure 41 | CEL map of 2,3,4-tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (19) in Et₂O.

2,3,4-Tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (19) in MeCN

Figure 42 | CEL map of 2,3,4-tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (19) in MeCN.

2,3,4-Tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22) in Et₂O

Figure 43 | CEL map of 2,3,4-tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22) in Et₂O.

2,3,4-Tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22) in MeCN

Figure 44 | CEL map of 2,3,4-tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22) in MeCN.

Additional information

Top views per slice

4-Benzyloxy-pyranosyl oxocarbenium ion (1)

Figure 45 | Top views of the CEL map of 4-benzyloxy-pyranosyl oxocarbenium ion (1).

3-Benzyloxy-pyranosyl oxocarbenium ion (11)

Figure 46 | Top views of the CEL map of 3-benzyloxy-pyranosyl oxocarbenium ion (11).

3-Benzyloxy-pyranosyl oxocarbenium ion (13)

Figure 47 | Top views of the CEL map of 2-benzyloxy-pyranosyl oxocarbenium ion (13).

2,3,4-Tri-O-methyl-lyxo-D-pyranosyl oxocarbenium ion (14)

Figure 48 | Top views of the CEL map of 2,3,4-tri-O-methyl-lyxo-D-pyranosyl oxocarbenium ion (14).

2,3,4-Tri-O-methyl-xylo-D-pyranosyl oxocarbenium ion (16)

Figure 49| Top views of the CEL map of 2,3,4-tri-O-methyl-xylo-D-pyranosyl oxocarbenium ion (16).

2,3,4-Tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (20)

Figure 50 | Top views of the CEL map of 2,3,4-tri-O-methyl-fuco-L-pyranosyl oxocarbenium ion (20).

2,3,4-Tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22)

Figure 51 | Top views of the CEL map of 2,3,4-tri-O-methyl-rhamno-L-pyranosyl oxocarbenium ion (22).

2,3,4,6-Tetra-O-methyl-gluco-D-pyranosyl oxocarbenium ion (overall) (24)

Figure 52 | Top views of the CEL map of 2,3,4-tri-O-methyl-gluco-D-pyranosyl oxocarbenium ion (24).

2,3,4,6-Tetra-O-methyl-manno-D-pyranosyl oxocarbenium ion (overall) (28)

Figure 53 | Top views of the CEL map of 2,3,4-tri-O-methyl-manno-D-pyranosyl oxocarbenium ion (28).

CEL maps

All CEL maps that are described in the superacid section of the article are summarised in the following section. The displayed CEL maps are based on the ΔG_{gas}^T and relevant structures are added with their corresponding energy. Also additional information is given of the found local minima including detailed energy output from Gaussian 03 or Gaussian 09, ring dihedral angles and the geometrical output (coordinates in cartesian style).

Protonated mono-substituted pyranosyl oxocarbenium ions

Protonated 4-O-acetyl-pyranosyl oxocarbenium ion (S4)

Figure 54 | CEL map of protonated 4-O-acetyl-pyranosyl oxocarbenium ion (S4).

Local m	ninima	С	1.089479	-0.303471	1.450486
		С	0.934657	1.414154	-0.385061
⁴ H ₃ con	formation (0.0 kcal / mol)	С	0.163254	0.559489	0.617638
		С	1.940128	0.584928	-1.200092
D1 = -3	0°	О	2.138810	-0.977969	0.634047
D3 = -4	5°	Н	0.256821	1.950139	-1.050196
D5 = 0°		Н	-0.434515	1.170385	1.293479
		Н	2.795784	1.185929	-1.545405
Egas(B3	LYP) = -499.099060373 a.u.	Н	1.639636	0.295356	2.178337
Zero-po	bint energy correction $= 0.187858$ a.u.	Н	1.464380	2.176237	0.194199
		Н	1.529722	0.191938	-2.146302
Atom co	oordinates	Н	0.598647	-1.131694	1.957379
		Ο	-0.751549	-0.370509	-0.114955
Н	3.264281 -1.205469 -0.960123	С	-2.038968	-0.235138	-0.163493
С	2.491631 -0.580907 -0.504932	Н	-2.135729	-1.847670	-1.181983

0	-2.683253	-1.130161	-0.806249
С	-2.830712	0.846250	0.462160
Н	-2.840412	0.708071	1.551332
Н	-3.857199	0.793065	0.102068
Н	-2.410297	1.831002	0.244230

³*H*₄ conformation (1.0 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=45^\circ\\ D5=0^\circ\end{array}$

 $E_{gas}(B3LYP) = -499.097390783 a.u.$

Zero-point energy correction = 0.187958 a.u.

Atom coordinates

Н	4.053828	-0.076334	0.414683
С	2.986497	-0.024223	0.186708
С	0.943016	-1.323287	0.111902
С	0.865850	1.113371	-0.619626
С	0.170766	0.000144	0.164142
С	2.352778	1.223472	-0.235241
0	2.393387	-1.122163	0.339155
Н	0.784999	0.887426	-1.686293
Н	-0.027237	0.287472	1.197237
Н	2.544125	1.936266	0.587108
Н	0.662775	-2.031340	0.889062
Н	0.372452	2.071434	-0.452032
Н	2.962454	1.636979	-1.053446
Н	0.874733	-1.800182	-0.866940
0	-1.113184	-0.310625	-0.496833
С	-2.285827	-0.018686	-0.026447
Н	-3.051190	-0.795393	-1.592247
0	-3.280441	-0.350091	-0.751222
С	-2.572734	0.648436	1.261976
Н	-2.260549	0.004435	2.092809
Н	-3.643372	0.830133	1.341162
Н	-2.033195	1.596768	1.339617

*E*⁴ conformation (1.7 kcal / mol)

D1	=	30°
D3	=	60°
D5	=	0°

$$\begin{split} E_{gas}(B3LYP) &= -499.096455938 \text{ a.u.} \\ Zero-point energy correction &= 0.188106 \text{ a.u.} \end{split}$$

Н	3.936540	0.020627	0.747184
С	2.921698	0.011262	0.342338
С	0.962056	-1.326953	-0.023062
С	0.880826	1.040078	-0.786279
С	0.189306	-0.009632	0.076728

С	2.327381	1.207367	-0.264088
0	2.349038	-1.104769	0.459849
Н	0.884845	0.707668	-1.826360
Н	0.060924	0.299024	1.114963
Н	2.429778	2.005112	0.491252
Н	0.591463	-2.116605	0.626895
Н	0.368699	2.002244	-0.744375
Н	3.023266	1.537912	-1.052941
Н	1.048033	-1.689824	-1.047703
0	-1.129404	-0.322114	-0.508159
С	-2.274232	-0.008064	0.012122
Н	-3.124303	-0.814310	-1.493815
0	-3.307040	-0.347001	-0.653276
С	-2.488801	0.693375	1.296370
Н	-2.130469	0.072038	2.125710
Н	-3.553141	0.879669	1.430510
Н	-1.945793	1.642916	1.316598

Protonated 3-O-acetyl-pyranosyl oxocarbenium ion (S5)

Figure 55 | CEL map of protonated 3-O-acetyl-pyranosyl oxocarbenium ion (S5).

```
Local minima
```

⁴*H*₃ conformation (0.0 kcal / mol)

 $\begin{array}{l} D1 = -30^{\circ} \\ D3 = -45^{\circ} \\ D5 = 0^{\circ} \end{array}$

 $E_{gas}(B3LYP) = -499.100254820 a.u.$ Zero-point energy correction = 0.188163 a.u.

Atom coordinates

Н	-3.131630	-1.927956	0.419509
С	-2.451136	-1.085951	0.269165
С	-2.289456	1.281855	-0.213193
С	-0.156258	-0.009000	0.237258
С	-0.844892	1.047706	-0.629492
С	-0.988866	-1.291036	0.353351
0	-3.023188	-0.004386	0.030280
Н	-0.326705	2.008271	-0.575131
Н	-0.789609	-1.860538	1.271140
Н	-2.418306	1.821883	0.726087
Н	0.085967	0.376138	1.227545
Н	-0.749586	-1.996680	-0.460080

-2	2.882435	1.762020	-0.988592
-().814825	0.719032	-1.673017
1	.107032	-0.403522	-0.428783
2	.292336	-0.044200	-0.050004
3	8.007368	-1.019844	-1.525383
3	3.263767	-0.464341	-0.761655
2	.623508	0.788195	1.127300
2	2.050234	1.719002	1.127407
3	3.688763	1.013665	1.118959
2	2.388456	0.237586	2.046505

³*H*₄ conformation (0.2 kcal / mol)

D1	=	30°
D3	=	45°
D5	=	0°

H H

O C

Н

0

C H

Η

Η

$$\begin{split} E_{gas}(B3LYP) &= -499.100052227 \text{ a.u.} \\ Zero-point energy correction &= 0.188070 \text{ a.u.} \end{split}$$

Η	3.017820	-1.856128	0.382946
С	2.313844	-1.047673	0.168395
С	1.829327	1.308137	0.479313

С	0.153064	-0.115736	-0.791830
С	0.899541	1.213750	-0.717418
С	1.109906	-1.302360	-0.654417
0	2.638087	0.052220	0.659344
Н	1.469868	1.315225	-1.647173
Н	1.486791	-1.607639	-1.645406
Н	2.592788	2.076343	0.376047
Н	-0.424064	-0.201036	-1.709407
Н	0.622893	-2.209342	-0.273761
Н	1.330948	1.420962	1.442014
Н	0.211691	2.062576	-0.686190
0	-0.797346	-0.207590	0.363069
С	-2.080180	-0.061383	0.262178
Н	-2.229171	-0.386124	2.138252
0	-2.754479	-0.180008	1.339795
С	-2.837197	0.214835	-0.978394
Н	-2.398942	1.042534	-1.541213
Н	-3.870434	0.446242	-0.723617
Н	-2.830109	-0.678003	-1.617129

⁴*E* conformation (0.2 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -60^{\circ}$ $D5 = 0^{\circ}$

 $E_{gas}(B3LYP) = -499.100042765 a.u.$ Zero-point energy correction = 0.188197 a.u.

Atom coordinates

Н	-3.148373	-1.897632	0.419182
С	-2.465215	-1.054508	0.288550
С	-2.229266	1.286420	-0.185712
С	-0.157205	0.010428	0.213454
С	-0.874949	0.931760	-0.770596
С	-1.001808	-1.257822	0.429297
0	-3.029844	0.027448	0.024151
Н	-0.324798	1.862788	-0.931182
Н	-0.838048	-1.741912	1.403023
Н	-2.211465	1.763596	0.795322
Н	0.063940	0.509996	1.155714
Н	-0.740627	-2.035625	-0.306219
Н	-2.854382	1.864217	-0.862434
Н	-0.992318	0.443688	-1.742329
0	1.115070	-0.451587	-0.386718
С	2.294871	-0.048305	-0.037114
Н	3.029217	-1.172581	-1.392279
0	3.275517	-0.538255	-0.689037
С	2.610014	0.909521	1.045492
Н	2.060558	1.845873	0.913113
Н	3.679849	1.111878	1.045377
Н	2.331850	0.479900	2.015323

E4 conformation (1.0 kcal / mol)

 $D1 = 15^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

 $E_{gas}(B3LYP) = -499.098909098 a.u.$ Zero-point energy correction = 0.188090 a.u.

Н	3.228058	1.532962	-0.840944
С	2.438450	0.866711	-0.483868
С	1.792240	-1.371229	0.063332
С	0.143624	0.444107	0.580497
С	0.908791	-0.757667	1.129101
С	1.099609	1.410630	-0.147747
0	2.776788	-0.333030	-0.405260
Н	1.514759	-0.423709	1.978336
Н	1.276624	2.316854	0.449446
Н	2.432812	-2.169457	0.429156
Н	-0.398602	0.971878	1.361123
Н	0.675521	1.802393	-1.085289
Н	1.276718	-1.692730	-0.841535
Н	0.231352	-1.524072	1.514154
0	-0.848199	-0.035523	-0.427993
С	-2.128977	-0.062451	-0.232954
Н	-2.344836	-0.770396	-1.993623
0	-2.842225	-0.503196	-1.195258
С	-2.840160	0.376630	0.987779
Н	-2.437035	-0.114540	1.878083
Н	-3.899206	0.143820	0.888780
Н	-2.728547	1.460606	1.113556

Protonated multi-substituted pyranosyl oxocarbenium ions

Protonated 2-deoxy-3,4-di-O-actyl-fucose-L-pyranosyl oxocarbenium ion (35)

Figure 56 | CEL map of protonated 2-deoxy-3,4-di-O-actyl-fucose-L-pyranosyl oxocarbenium ion (35).

Local 1	minima	Н	0.480715 -0.875915 2.083846
		Н	-0.418394 0.410401 -1.492060
$^{3}H_{4}$ co	nformation (0.0 kcal / mol)	Ο	-1.139464 0.635150 0.475203
		Н	-0.970118 -1.937683 -1.746650
D1 = 4	5°	Н	1.287451 -1.269740 -0.880229
D3 = 4	5°	Ο	1.714405 0.474827 0.193854
D5 = 0	o	С	-2.885165 -1.174105 -1.115588
		Н	-3.025944 -0.556047 -2.007398
Egas(B3	3LYP) = -766.463235721 a.u.	Н	-3.370669 -0.708215 -0.256923
Zero-p	oint energy correction $= 0.267880$ a.u.	Н	-3.374537 -2.129820 -1.312444
		Н	1.600672 -2.060485 1.466359
		С	-1.735017 1.789969 0.293066
Atom o	coordinates	С	2.983665 0.536559 -0.145432
		С	-1.843628 2.542787 -0.972869
С	-0.522096 -0.179443 -0.580829	Н	-0.959022 2.457674 -1.604620
С	0.692085 -1.504074 1.203340	Н	-2.043194 3.591432 -0.743524
0	-1.307312 -2.440038 0.221793	Н	-2.712697 2.167793 -1.533416
С	-0.422920 -2.477028 1.101436	С	3.732870 -0.474075 -0.920786
С	-1.406996 -1.400116 -0.900443	Н	4.789880 -0.205701 -0.927152
С	0.847557 -0.674404 -0.078067	Н	3.376222 -0.485948 -1.960051
Н	-0.537236 -3.286631 1.829973	Н	3.617184 -1.478342 -0.502518

Н	3.109093	2.242439	0.733446
0	3.609721	1.576934	0.218189
Н	-2.254987	1.788170	2.146961
0	-2.281920	2.305651	1.316390

E4 conformation (0.5 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 60^{\circ}$ $D5 = 0^{\circ}$

 $E_{gas}(B3LYP) = -766.462378131 a.u.$ Zero-point energy correction = 0.267959 a.u.

Atom coordinates

С	0.509972	-0.179866	0.577268
С	-0.708558	-1.551461	-1.166817
0	1.487187	-2.238327	-0.394692
С	0.583305	-2.275748	-1.255944
С	1.368780	-1.417288	0.894310
С	-0.865482	-0.687403	0.102993
Н	0.805007	-2.905750	-2.123819
Н	-0.785739	-0.946636	-2.083745
Н	0.411947	0.417362	1.484345
0	1.137586	0.613171	-0.482895
Н	0.825729	-2.079281	1.573871
Н	-1.292473	-1.259342	0.927058
0	-1.744393	0.446266	-0.195040
С	2.784480	-1.198860	1.370660
Н	2.763378	-0.715626	2.352024
Н	3.377271	-0.602928	0.674564
Н	3.279401	-2.163463	1.499965
Н	-1.501648	-2.307046	-1.276155
С	1.744115	1.763968	-0.299708
С	-3.014432	0.500578	0.142894
С	1.836656	2.517413	0.967485
Н	0.878126	2.570662	1.489298
Н	2.199835	3.523964	0.755901
Н	2.565057	2.030561	1.630427
С	-3.754288	-0.506847	0.931078
Н	-4.815206	-0.254221	0.925078
Н	-3.405768	-0.493155	1.973192
Н	-3.619938	-1.516839	0.533053
Н	-3.155293	2.193903	-0.757718
0	-3.650420	1.529626	-0.235650
Н	2.277712	1.753923	-2.149918
0	2.305704	2.270138	-1.318316

³*E* conformation (2.6 kcal / mol)

 $\begin{array}{l} D1=60^\circ\\ D3=30^\circ\\ D5=0^\circ\end{array}$

 $E_{gas}(B3LYP) = -766.459239192$ a.u.

Zero-point energy correction = 0.267889 a.u.

Atom coordinates

0.543705	0.176585	-0.579182
-0.658818	1.448504	1.230870
1.077821	2.605385	0.053891
0.199765	2.626676	0.941125
1.425885	1.421799	-0.864140
-0.829400	0.645671	-0.066316
0.134439	3.564804	1.501975
-0.174628	0.863696	2.026996
0.456349	-0.391525	-1.505256
1.151565	-0.666921	0.459953
1.125534	1.834275	-1.830959
-1.288709	1.252581	-0.849272
-1.672872	-0.523845	0.190363
2.928096	1.273584	-0.789965
3.254415	0.568297	-1.560474
3.272141	0.939805	0.189654
3.399885	2.230302	-1.021664
-1.610405	1.796049	1.644660
1.760752	-1.809467	0.250394
-2.944853	-0.601055	-0.134692
1.909936	-2.514847	-1.038811
1.051370	-2.400313	-1.700687
2.095324	-3.572819	-0.841989
2.802764	-2.126774	-1.551231
-3.720493	0.410989	-0.881696
-4.771751	0.120968	-0.886820
-3.371667	0.455571	-1.922644
-3.622899	1.406955	-0.439393
-3.031296	-2.323844	0.715457
-3.548770	-1.658435	0.216978
2.234833	-1.871911	2.115615
2.286863	-2.358277	1.267630
	0.543705 - 0.658818 1.077821 0.199765 1.425885 - 0.829400 0.134439 - 0.174628 0.456349 1.151565 1.125534 - 1.288709 - 1.672872 2.928096 3.254415 3.272141 3.399885 - 1.610405 1.760752 - 2.944853 1.909936 1.051370 2.095324 2.802764 - 3.720493 - 4.771751 - 3.371667 - 3.622899 - 3.031296 - 3.548770 2.234833 2.286863	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

⁴*H*₃ conformation (3.6 kcal / mol)

 $\begin{array}{l} D1 = -30^\circ \\ D3 = -45^\circ \\ D5 = 0^\circ \end{array}$

 $E_{gas}(B3LYP) = -766.457840733 \text{ a.u.}$ Zero-point energy correction = 0.268235 a.u.

С	0.738537	0.450815	-0.380680
С	-1.362699	1.500321	-1.288963
0	0.088714	2.783191	0.171225
С	-0.864151	2.729589	-0.633060
С	0.924612	1.608337	0.637647
С	-0.714341	0.181716	-0.824452
Н	-1.331537	3.697950	-0.841449
Н	-2.456815	1.488803	-1.192480

и	1 271100	0 707501	1 201072	C	2 110866	0 621456	1 1 2 0 4 6 1
п	1.2/1100	0.707501	-1.501075	C	5.449800	-0.031430	-1.120401
0	1.320498	-0.765917	0.174395	Н	3.062818	-0.793376	-2.136298
Н	1.927185	2.026653	0.537045	Н	4.413735	-1.135846	-1.041550
Н	-0.724055	-0.555696	-1.626095	Н	3.589221	0.442708	-0.969039
0	-1.477538	-0.359657	0.317660	С	-2.803504	-1.970490	-1.042261
С	0.588090	1.386368	2.098163	Н	-3.661849	-2.610435	-0.836054
Н	1.276372	0.652335	2.522728	Н	-1.982710	-2.599654	-1.410276
Н	-0.435482	1.045867	2.247898	Н	-3.066407	-1.256337	-1.829121
Н	0.739686	2.318987	2.645724	Н	-2.734905	-1.159088	2.095564
Н	-1.209452	1.656409	-2.371659	О	-2.997589	-1.619963	1.272589
С	2.519248	-1.215682	-0.132780	Н	2.269776	-2.649158	1.125089
С	-2.401266	-1.283903	0.204076	О	2.891785	-2.264068	0.473839

Protonated 2-deoxy-3,4-di-O-actyl-rhamnose-L-pyranosyl oxocarbenium ion (36)

Figure 57 | CEL map of protonated 2-deoxy-3,4-di-O-actyl-fucose-L-pyranosyl oxocarbenium ion (36).

Local minima

 $E_{gas}(B3LYP) = -766.476918682 \text{ a.u.}$ Zero-point energy correction = 0.268087 a.u.

⁴*H* conformation (0.0 kcal / mol)

D1 = -15°	
D3 = -45°	
$D5 = 0^{\circ}$	

С	-0.536601	0.025026	-0.373594
С	0.734569	0.792141	1.731478
0	-0.794635	2.305601	0.605951
С	-0.120128	1.993592	1.608057

С	-0.852363	1.491765	-0.675187
С	0.680527	-0.211887	0.563988
Н	-0.186505	2.706111	2.436645
Н	1.754746	1.159554	1.924251
Н	-1.902159	1.610735	-0.942508
Н	0.634900	-1.232496	0.939298
0	1.877613	-0.068058	-0.279963
С	0.030154	2.190333	-1.694028
Н	-0.118133	1.721940	-2.671043
Н	1.087980	2.151768	-1.434146
Н	-0.276264	3.234288	-1.783109
Н	0.455851	0.315216	2.683832
С	2.916583	-0.869710	-0.229936
С	3.073436	-2.044347	0.652548
Н	4.109517	-2.382859	0.612618
Н	2.437710	-2.863424	0.287821
Н	2.797994	-1.823906	1.687034
Н	3.751106	0.162703	-1.622375
0	3.866454	-0.606940	-1.027719
Н	-0.412020	-0.515736	-1.311918
0	-1.660445	-0.576689	0.390846
С	-2.697282	-1.122225	-0.172526
С	-3.745588	-1.705601	0.680888
Н	-4.700920	-1.199652	0.480910
Н	-3.496930	-1.618939	1.736423
Н	-3.887220	-2.762649	0.415653
0	-2.720166	-1.100481	-1.454320
Н	-3.500086	-1.524627	-1.867876

⁴*H*₃ conformation (0.2 kcal / mol)

 $D1 = -30^{\circ}$ $D3 = -45^{\circ}$ $D5 = 0^{\circ}$

 $E_{gas}(B3LYP) = -766.476748918 \text{ a.u.}$ Zero-point energy correction = 0.268236 a.u.

Atom coordinates

С	-0.552945	0.012045	-0.388668
С	0.593114	0.480271	1.826852
0	-0.594850	2.267904	0.690158
С	-0.034410	1.817988	1.711169
С	-0.733191	1.515037	-0.626356
С	0.647602	-0.344315	0.531063
Н	-0.041072	2.501377	2.566572
Н	1.579185	0.614387	2.292777
Н	-1.774749	1.733007	-0.866195
Н	0.617553	-1.408372	0.758898
0	1.871420	-0.051309	-0.221346
С	0.175440	2.194620	-1.633322
Н	-0.008079	1.764340	-2.621923
Н	1.230629	2.095000	-1.386221
Н	-0.078673	3.254889	-1.686517
Н	0.017409	-0.052374	2.602373

С	2.921504	-0.841880	-0.245958
С	3.054304	-2.140410	0.446363
Н	4.092410	-2.469474	0.387386
Н	2.431692	-2.892145	-0.058721
Н	2.746697	-2.081190	1.493815
Н	3.810696	0.406511	-1.411122
0	3.905339	-0.447220	-0.940897
Н	-0.474392	-0.492404	-1.351976
0	-1.715200	-0.530269	0.352417
С	-2.780390	-0.996157	-0.232845
С	-3.868492	-1.537161	0.598011
Н	-4.792223	-0.974905	0.400254
Н	-3.626967	-1.488719	1.657576
Н	-4.065645	-2.578859	0.307775
0	-2.792453	-0.937845	-1.512756
Н	-3.593736	-1.301374	-1.943209

³H₄ conformation (0.7 kcal / mol)

 $D1 = 30^{\circ}$ $D3 = 45^{\circ}$ $D5 = 0^{\circ}$

$$\begin{split} E_{gas}(B3LYP) &= -766.476748918 \text{ a.u.} \\ \text{Zero-point energy correction} &= 0.268236 \text{ a.u.} \end{split}$$

С	-0.552945	0.012045	-0.388668
С	0.593114	0.480271	1.826852
0	-0.594850	2.267904	0.690158
С	-0.034410	1.817988	1.711169
С	-0.733191	1.515037	-0.626356
С	0.647602	-0.344315	0.531063
Н	-0.041072	2.501377	2.566572
Н	1.579185	0.614387	2.292777
Н	-1.774749	1.733007	-0.866195
Н	0.617553	-1.408372	0.758898
0	1.871420	-0.051309	-0.221346
С	0.175440	2.194620	-1.633322
Н	-0.008079	1.764340	-2.621923
Η	1.230629	2.095000	-1.386221
Н	-0.078673	3.254889	-1.686517
Η	0.017409	-0.052374	2.602373
С	2.921504	-0.841880	-0.245958
С	3.054304	-2.140410	0.446363
Н	4.092410	-2.469474	0.387386
Н	2.431692	-2.892145	-0.058721
Н	2.746697	-2.081190	1.493815
Н	3.810696	0.406511	-1.411122
0	3.905339	-0.447220	-0.940897
Н	-0.474392	-0.492404	-1.351976
0	-1.715200	-0.530269	0.352417
С	-2.780390	-0.996157	-0.232845
С	-3.868492	-1.537161	0.598011
Н	-4.792223	-0.974905	0.400254

Н	-3.626967	-1.488719	1.657576
Н	-4.065645	-2.578859	0.307775
0	-2.792453	-0.937845	-1.512756
Н	-3.593736	-1.301374	-1.943209

*E*₄ conformation (0.8 kcal / mol)

 $\begin{array}{l} D1=30^\circ\\ D3=60^\circ\\ D5=0^\circ\end{array}$

 $E_{gas}(B3LYP) = -766.475391638 a.u.$ Zero-point energy correction = 0.267910 a.u.

С	-0.660331	0.275054	-0.146336
С	0.963346	2.174804	-0.333545
0	-1.388532	2.626052	0.019790
С	-0.259806	3.007088	-0.355135
С	-1.660622	1.229066	0.558651
С	0.767914	0.730466	0.186188
Н	-0.222544	4.040908	-0.714003
Н	1.348142	2.175867	-1.366603
Н	-1.434234	1.319218	1.624286
Н	0.946920	0.648380	1.258172
0	1.714992	-0.135551	-0.528584
С	-3.133251	0.988883	0.322797
Н	-3.450090	0.088701	0.855171
Н	-3.377424	0.902870	-0.737246
Н	-3.703829	1.815220	0.752413
Н	1.717920	2.737559	0.236937
С	2.868817	-0.534649	-0.050146
С	3.387592	-0.284854	1.310772
Н	4.305964	-0.855151	1.452607
Н	2.659620	-0.564658	2.078131
Н	3.626126	0.780186	1.430960
Н	3.265848	-1.320161	-1.757327
0	3.602315	-1.198251	-0.845235
Н	-0.835806	0.220369	-1.222246
0	-0.844623	-1.054148	0.457665
С	-1.524443	-2.017592	-0.088881
С	-1.685340	-3.274915	0.661948
Н	-2.750555	-3.407144	0.905182
Н	-1.107537	-3.267013	1.583854
Н	-1.398673	-4.128959	0.035376
0	-2.015639	-1.790070	-1.249945
Н	-2.521208	-2.530561	-1.643065

DFT computed NMR simulations

Protonated 2-deoxy-3,4-di-O-actyl-fucose-L-pyranosyl oxocarbenium ion (35)

Geometry	Coupling constant (Hz)						
	H1-H2 _a	H1-H2 _b	H2 _a -H3	H ₂ -H ₃	Н3-Н4	H4-H5	H5-CH3
D1_15_D3_60_D5_0	2.9	0.4	5.5	11.1	4.8	0.8	6.5
D1_15_D3_60_D5_15	2.4	0.1	5.9	10.7	5.3	0.7	6.3
D1_30_D3_45_D5_0	0.8	1.4	8.7	9.0	4.4	2.4	6.5
D1_30_D3_45_D5_15	0.4	1.8	9.1	8.7	4.8	2.2	6.4
D1_30_D3_45_D515	1.1	0.8	8.2	9.2	3.8	2.6	6.7
D1_30_D3_60_D5_0	1.3	0.6	8.3	8.6	3.1	0.8	6.6
D1_30_D3_60_D5_15	0.9	1.1	8.6	8.3	3.6	0.7	6.4
D1_45_D3_30_D5_0	0.5	3.5	11.3	6.6	4.1	4.4	6.9
D1_45_D3_30_D515	0.4	2.9	10.8	6.7	3.6	4.7	6.9
D1_45_D3_45_D5_0	0.3	2.7	11.0	6.4	2.8	2.4	6.7
D1_45_D3_45_D5_15	0.5	3.1	11.4	6.2	3.2	2.2	6.5
D1_45_D3_45_D515	0.1	2.1	10.4	6.6	2.3	2.6	6.8
Boltzmann corrected	0 7	17	89	71	31	19	61
scaled II-II couplings	0.7	1.7	0.9	/•1	5.1	1.9	0.1
Experimental data	-	-	8.5	6.8	3.0	-	6.4
		.90 6.10 7.11 6.10 6.10			25.70	25.70	
3.0 5.5	5.0	4.5	4.0 f1 (ppm)	3	.5	3.0	2.5

Geometry	Coupling constant (Hz)						
	H1-H2 _a	H1-H2 _b	H2 _a -H3	H ₂ -H ₃	Н3-Н4	H4-H5	H5-CH ₃
D115_D345_D5_0	0.7	1.5	0.1	9.0	2.8	0.6	8.7
D130_D330_D5_0	2.6	0.0	0.5	7.6	3.1	0.1	8.4
D130_D345_D5_0	1.9	0.3	0.4	7.5	4.3	0.6	9.1
D115_D345_D515	1.1	1.1	0.0	8.6	2.3	0.7	8.6
D145_D330_D5_0	3.5	0.5	1.7	5.5	4.4	0.1	8.4
D130_D345_D515	2.2	0.0	0.6	7.0	3.8	0.7	8.9
D1_30_D3_45_D5_0	0.7	1.4	6.8	9.0	9.0	9.6	7.4
D1 0 D3 -45 D5 0	0.3	2.9	1.2	9.9	1.4	0.6	8.5
D1 -30 D3 -30 D5 -15	2.9	0.3	0.6	7.2	2.6	0.1	8.3
D1_45_D3_45_D5_0	0.3	2.6	9.3	6.4	9.7	9.4	7.3
D1_30_D3_60_D5_0	1.1	0.8	6.6	8.3	9.8	10.0	7.4
D130_D330_D5_15	2.1	0.1	0.3	7.9	3.6	0.2	8.4
D145_D315_D5_0	4.0	0.5	1.8	5.5	2.9	0.6	8.2
D1_15_D3_60_D5_0	2.6	0.2	3.8	10.6	9.2	10.4	7.4
D115_D330_D5_0	1.5	1.0	0.1	9.4	1.7	0.1	8.3
D145_D330_D515	3.7	0.5	2.0	5.2	3.9	0.0	8.4
D1_0_D345_D515	0.0	2.4	0.8	9.6	1.1	0.7	8.5
D1_30_D3_60_D5_15	0.7	1.1	7.0	8.2	9.6	10.3	7.5
D1_15_D345_D5_0	0.8	4.1	3.7	9.9	0.5	0.6	8.4
D115_D345_D5_15	0.3	1.8	0.2	9.3	3.2	0.5	8.9
D145_D330_D5_15	3.1	0.5	1.4	5.8	4.9	0.1	8.4
D1_45_D3_30_D5_0	0.5	3.3	9.7	7.0	8.9	7.7	7.5
D1_30_D3_45_D515	1.0	0.9	6.3	8.9	9.4	9.4	7.3
D1_30_D3_45_D5_15	0.4	1.8	7.3	9.0	8.5	9.8	7.4
D145_D315_D5_15	3.7	0.5	1.5	5.8	3.4	0.8	8.2
45_D3_30_D515	0.4	2.8	9.1	6.8	9.3	7.7	7.4
D1_15_D3_60_D5_15	2.2	0.0	4.3	10.6	8.8	10.7	7.6
D1_0_D360_D5_0	0.7	3.4	0.9	9.3	2.2	1.9	9.1
D1_45_D3_45_D515	0.1	2.2	8.7	6.2	9.9	9.2	7.2
D130_D315_D5_0	3.2	0.3	0.5	7.8	1.7	0.7	8.2
D115_D330_D515	1.8	0.6	0.1	9.1	1.3	0.1	8.2
D130_D345_D5_15	1.3	0.5	0.2	7.8	4.8	0.5	9.2
D1_15_D345_D515	0.8	3.7	3.1	9.6	0.3	0.7	8.4
D1_15_D3_45_D5_0	2.2	0.2	3.9	11.1	7.7	9.8	7.4
Boltzmann corrected	16	0.0	15	73	2.0	17	77
scaled H-H couplings	1.0	U.ð	1.5	/.3	3.8	1./	1.1
Experimental data	-	-	-	-	3.5	-	7.5

NMR experiments

General experimental procedures

The authors want to draw the reader's attention to the dangerous features of superacidic chemistry. Handling of hydrogen fluoride and antimony pentafluoride must be done by experienced chemists with all the necessary safety arrangements in place. Experiments performed in superacid were carried out in a sealed Teflon® flask with a magnetic stirrer. No further precautions have to be taken to prevent reaction mixture from moisture (test reaction performed in anhydrous conditions leads to the same results). ¹H, ¹³C NMR were recorded on a 400 MHz Bruker Advance DPX spectrometer using CD₃COCD₃ as external reference. To get better resolution of signals with small coupling constants or overlapping signals a gaussian window function (LB \pm -1 and GB \pm 0.5) was used on the ¹H NMR spectrum. COSY ¹H-¹H and HSQC ¹H-¹³C experiments were used to confirm the NMR peak assignments.

General procedure in superacidic media for NMR experiments

To a magnetically stirred mixture of HF/SbF₅ (1 mL, SbF₅ 22 mol %) maintained at -40 °C, was added substrate. After 5 minutes, the mixture was introduced in a Teflon® NMR tube which was inserted into a classical glass NMR tube containing acetone- d_6 as external standard.

Protonated pyranosyl oxocarbenium ions

Protonated 2-deoxy-3,4-di-*O***-acetyl-fucose-L-pyranosyl oxocarbenium ion (35).** The ion **35** was obtained from glycosyl donor **33** according to general procedure in superacidic media. ¹H NMR (400 MHz, Acetone- d_6): δ 13.46 (s, 1H, H'), 13.15 (s, 1H, H'), 8.74 (s, 1H, H-1), 5.10 (d, J = 3.0 Hz, H-4), 4.87 (t, J = 8.5 Hz, 1H, H-3), 4.76 (q, J = 6.4 Hz, 1H, H-5), 3.33 (dd, J = 23.7, 6.8 Hz, 1H, H-2b), 2.78 (dd, J = 23.7, 9.8 Hz, 1H, H-2a), 1.68 (s, 3H, CH₃Ac), 1.55 (s, 3H, CH₃Ac), 0.62 (d, J = 6.5 Hz, 3H, CH₃). ¹³C NMR (100 MHz, Acetone- d_6): δ 224.8 (CH, C-1), 194.2 (C=O), 193.3 (C=O), 94.7 (CH, C-5), 75.8 (CH, C-4), 69.6 (CH, C-3), 35.6 (CH₂, C-2), 19.6 (CH₃Ac), 19.5 (CH₃Ac), 13.0 (CH₃).

¹H NMR, Acetone- d_6 of oxocarbenium ion **35** (cropped)

HSQC NMR, Acetone- d_6 of oxocarbenium ion 35

Protonated 2-deoxy-3,4-di-*O***-acetyl-rhamnose-L-pyranosyl oxocarbenium ion (36).** The ion **36** was obtained from glycosyl donor **34** according to general procedure in superacidic media. ¹H NMR (400 MHz, Acetone-*d*₆): δ 13.35 (s, 1H, H'), 13.28 (s, 1H, H'), 8.84 (s, 1H, H-1), 4.89 (d, J = 3.5 Hz, 1H, H-4), 4.85 (q, J = 7.5 Hz, 1H H-5), 4.74 (bs, 1H, H-3), 3.07 (bs, 2H, H-2), 1.61 (s, 6H, 2x CH₃ Ac), 0.73 (d, J = 6.8 Hz, 3H, CH₃). ¹³C NMR (100 MHz, Acetone-*d*₆): δ 224.0 (CH, C-1), 193.5 (C=O), 193.4 (C=O), 92.3 (CH, C-5), 73.5 (CH, C-4), 61.2 (CH, C-3), 35.8 (CH₂, C-2), 19.9 (CH₃ Ac), 19.8 (CH₃ Ac), 15.2 (CH₃).

¹H NMR, Acetone- d_6 of oxocarbenium ion **36**

¹H NMR, Acetone- d_6 of oxocarbenium ion **36** (cropped)

¹H NMR, Acetone- d_6 of oxocarbenium ion **36** (cropped; LB ± -2 and GB ± 4)

¹³C NMR, Acetone- d_6 of oxocarbenium ion **36**

HSQC NMR, Acetone- d_6 of oxocarbenium ion 36

Organic synthesis

General experimental procedures

All chemicals (Acros, Fluka, Merck, and Sigma-Aldrich) were used as received unless stated otherwise. Dichloromethane was stored over activated 4 Å molecular sieves (beads, 8-12 mesh, Sigma-Aldrich). Before use traces of water present in the donor, diphenyl sulfoxide (Ph₂SO) and tri-tert-butylpyrimidine (TTBP) were removed by co-evaporation with dry toluene. The acceptor (TES-D) was stored in stock solutions (DCM, 0.5 M) over activated 4 Å molecular sieves. Trifluoromethanesulfonic anhydride (Tf₂O) was distilled over P₂O₅ and stored at -20 °C under a nitrogen atmosphere. Overnight temperature control was achieved by an FT902 Immersion Cooler (Julabo). Column chromatography was performed on silica gel 60 Å (0.04 - 0.063 mm, Screening Devices B.V.). Size exclusion chromatography was carried out on SephadexTM (LH-20, GE Healthcare Life Sciences) by isocratic elution with DCM:MeOH (1:1, v:v). TLC-analysis was conducted on TLC Silica gel 60 (Kieselgel 60 F_{254} , Merck) with UV detection by (254 nm) and by spraying with 20% sulfuric acid in ethanol followed by charring at ± 150 °C or by spraying with a solution of (NH₄)₆Mo₇O₂₄·H₂O (25 g/l) and (NH₄)₄Ce(SO₄)₄·₂H₂O (10 g/l) in 10% sulfuric acid in water followed by charring at ±250 °C. High-resolution mass spectra were recorded on a Thermo Finnigan LTQ Orbitrap mass spectrometer equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 275 °C) with resolution R=60.000 at m/z=400 (mass range = 150-4000). ¹H, ²H and ¹³C NMR spectra were recorded on a Bruker AV-400 NMR instrument (400, 61 and 101 MHz respectively), a Bruker AV-500 NMR instrument (500, 75 and 126 MHz respectively), or a AV-600 NMR instrument (600, 92 and 150 MHz respectively). For samples measured in CDCl₃ chemical shifts (\delta) are given in ppm relative to tetramethylsilane as an internal standard or the residual signal of the deuterated solvent. Coupling constants (J) are given in Hz. To get better resolution of signals with small coupling constants or overlapping signals a gaussian window function (LB \pm -1 and GB \pm 0.5) was used on the ¹H NMR spectrum. All given ¹³C APT spectra are proton decoupled. NMR peak assignment was made using COSY, HSQC. If necessary additional NOESY, HMBC and HMBC-GATED experiments were used to elucidate the structure further. The anomeric product ratios were based on the integration of ¹H NMR. If the stereochemistry of the coupled product was not completely clear a deprotection step was used to verify the stereochemistry. IR spectra were recorded on a Shimadzu FTIR-8300 IR spectrometer with a resolution of 4 cm⁻¹ and are reported in cm⁻¹. Specific rotations were measured on an MCP 100 Anton Paar polarimeter in CHCl₃ (10 mg/mL) at 589 nm unless stated otherwise.

General procedure IV: synthesis of phenyl 2,3,4-tri-O-benzyl/methyl-1-thio-pentopyranoses

To a suspension of the corresponding pentose (10 mmol – 40 mmol) in pyridine (0.40 M), Ac₂O (12 eq.) was added dropwise at 0 °C. The mixture was allowed to warm to rt. and stirred for 16 h. The reaction was quenched with sat. aq. NaHCO₃ and diluted with H₂O. The resulting product was extracted with DCM (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was dissolved in DCM (0.15 M) and cooled to 0 °C. Hydrogen bromide (33 wt% in AcOH, 4.4 eq.) was added dropwise, and the reaction was allowed to warm to rt. and stirred for an additional 16 h. Subsequently, the reaction mixture was concentrated under reduced pressure and co-evaporated with toluene (3x). To a solution of the crude product and thiophenol (1.05 eq.) in DMF (0.5 M), NaH (60% dispersion in mineral oil, 1.05 eq.) was added portionwise at 0 °C. After stirring for 16 h, the reaction was quenched by the addition of aqueous HCl (0.02 M) and diluted with H₂O. The resulting crude product was extracted with Et₂O (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated in *vacuo*. Column chromatography yielded an inseparable pyranose/furanose mixture. To a solution of the crude product in MeOH (0.2 M), NaOMe (0.2 eq.)

was added portionwise. The reaction mixture was stirred for 1 h after which Amberlite IR120 H⁺ was added until pH 6 was reached. The resulting suspension was filtered, concentrated under reduced pressure and co-evaporated with toluene (3x). The crude product was dissolved in DMF (0.25 M) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 4 eq.) was added, and the resulting mixture was stirred for 10 minutes. Subsequently, benzyl bromide (4 eq.) or methyl iodine (4 eq.) was added, and the reaction mixture was allowed to warm up to rt. and stirred for an additional 16 h. The reaction was quenched with MeOH and diluted with H₂O, after which the resulting mixture was extracted with Et₂O (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure.

$PO \xrightarrow{PO} -80^{\circ}C \xrightarrow{-60^{\circ}C} -60^{\circ}C \xrightarrow{-60^{\circ}C} PO$

General procedure V: pre-activation Tf₂O/Ph₂SO based D-glycosylation

Figure 58| Schematic representation of the reaction procedure during pre-activation Ph₂SO/Tf₂O mediated glycosylation.

A solution of the donor (100 µmol), Ph₂SO (26 mg, 130 µmol, 1.3 eq.) and TTBP (62 mg, 250 µmol, 2.5 eq.) in DCM (2 mL, 0.05 M) was stirred over activated 3Å molecular sieves (rods, size 1/16 in., Sigma-Aldrich) for 30 min under an atmosphere of N₂. The solution was cooled to $-80 \,^{\circ}$ C and Tf₂O (22 µl, 130 µmol, 1.3 eq.) was slowly added to the reaction mixture. The reaction mixture was allowed to warm to $-60 \,^{\circ}$ C in approximately 45 min, followed by cooling to $-80 \,^{\circ}$ C and the addition of the acceptor (200 µmol, 2 eq.) in DCM (0.4 mL, 0.5 M). The reaction was allowed to warm up to $-60 \,^{\circ}$ C and stirred for an additional 80 h at this temperature to ensure reaction completion. The reaction was quenched with sat. aq. NaHCO₃ at $-60 \,^{\circ}$ C and diluted with DCM (5 mL). The resulting solution was washed with H₂O and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography yielded the corresponding *D*-coupled glycoside.

General procedure VI: debenzylation of D-coupled pyranoses

The *D*-coupled pyranose was dissolved in MeOH (0.02 M) under an atmosphere of N_2 , and Pd/C (10 mol%) was added. Subsequently, H_2 was bubbled through the reaction mixture for approximately 15 min., and the reaction was stirred for an additional 32 h. The reaction was filtered over Celite[®] 545 (Sigma-Aldrich) and concentrated under reduced pressure. Purification by column chromatography yielded the corresponding deprotected *D*-coupled glycoside.

General procedure VII: pre-activation Tf₂O/Ph₂SO based D-glycosylation in Et₂O or CH₃CN

A solution of the donor (100 μ mol), Ph₂SO (26 mg, 130 μ mol, 1.3 eq.) and TTBP (62 mg, 250 μ mol, 2.5 eq.) in Et₂O (1.7 mL) or CH₃CN (1.7 mL) and DCM (0.7 mL) was stirred over activated 3Å molecular sieves (rods, size 1/16 in., Sigma-Aldrich) for 30 min under an atmosphere of N₂. The solution was cooled to -80 °C and Tf₂O (22 μ l, 130 μ mol, 1.3 eq.) was slowly added to the reaction mixture. The reaction mixture was allowed to warm to -60

°C in approximately 45 min, followed by cooling to -80 °C and the addition of the acceptor (200 µmol, 2 eq.). The reaction was allowed to warm up to -60 °C and stirred for an additional 80 h at this temperature to ensure reaction completion. The reaction was quenched with sat. aq. NaHCO₃ at -60 °C and diluted with DCM (5 mL). The resulting solution was washed with H₂O and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by column chromatography yielded the corresponding *D*-coupled glycoside.

General procedure VIII: TMSOTf activation based D-glycosylation

Figure 59 | Schematic representation of the reaction procedure during TMSOTf activation glycosylation.

The imidate donor (100 μ mol, 1 eq.) was co-evaporated twice with dry toluene and then dissolved in dry DCM (1 mL, 0.1 M). Activated 3 Å molecular sieves and the acceptor (200 μ mol, 2 eq.) were added and the solution was stirred for 30 min at room temperature under an inert atmosphere (N₂). The reaction mixture was cooled to the -80 °C and a freshly prepared stock solution of TMSOTf in DCM (0.5 M) of was introduced via syringe (50 μ L, 0.01 mmol, 0.1 eq.). The reaction was allowed to warm up to -60 °C and stirred for an additional 80 h, and was then quenched by the addition of sat. aq. NaHCO₃. The mixture was diluted with DCM and H₂O and twice extracted with DCM. The combined organic layers were dried with MgSO₄, filtered, and concentrated *in vacuo*. Purification by column chromatography yielded the corresponding *D*-coupled glycoside.

OBn-protected glycosyl donors

Preparation of Donor S6

Phenyl 2,3,4-tri-*O*-benzyl-1-thio-D-lyxopyranoside (S6). The title compound was prepared according to general procedure IV from D-lyxose. Column chromatography (100:0 → 95:5, pentane:EtOAc) yielded compound S6 (643 mg, 1.22 mmol, 52% over 5 steps, average of 88% per step, colourless solid). TLC: R_f 0.21 (pentane:EtOAc, 9.5:0.5, v:v); $[\alpha]_D^{20}$ –87.0°; IR (thin film, cm⁻¹): 693, 748, 1049, 1217, 1367, 1438, 1743; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.54 – 7.15 (m, 20H, CH_{arom}), 5.30 (d, *J* = 4.0 Hz, 1H, H-1), 4.88 (d, *J* = 12.2 Hz, 1H, CHH Bn), 4.77 – 4.71 (m, 2H, CH₂ Bn), 4.68 (d, *J* = 12.2 Hz, 1H, CHH Bn), 4.55 (s, 2H, CH₂ Bn), 4.33 (dd, *J* = 12.3, 2.5 Hz, 1H, H-5), 4.18 (dd, *J* = 4.1, 2.5 Hz, 1H, H-2), 3.79 – 3.69 (m, 2H, H-3, H-4), 3.51 (dd, *J* = 12.2, 4.3 Hz, 1H, H-5); ¹³C NMR (101 MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 138.6, 138.1, 137.5 (C_{q-arom}), 130.6, 128.9, 128.5, 128.5, 128.4, 128.1, 127.9, 127.8, 127.7, 126.7 (CH_{arom}), 87.9 (C-1), 77.2 (C-3), 75.7 (C-2), 75.2 (C-4), 73.4, 72.9, 72.0 (CH₂ Bn), 62.1 (C-5); ¹³C-GATED NMR (101 MHz, CDCl₃): δ 87.9 (*J*_{C1-H1}= 160 Hz, 1,2-*cis*); HRMS: [M+NH₄]⁺ calcd for C₃₂H₃₆NO₄S 530.23596, found 530.23568.

Preparation of Donor S7

Phenyl 2,3,4-tri-*O*-benzyl-1-thio-D-arabinopyranoside (S7). The title compound was prepared according to general procedure IV from D-arabinose. Column chromatography (100:0 → 95:5, pentane:EtOAc) yielded compound S7 (2.21 g, 4.31 mmol, 50% over 5 steps, average of 87% per step, off-white solid). TLC: R_f 0.45 (pentane:EtOAc, 9.5:0.5, v:v); $[\alpha]_D^{20}$ –49.8°; IR (thin film, cm⁻¹): 731, 775, 1026, 1042, 1082, 1125, 1452, 2862; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.56 – 7.19 (m, 20H, CH_{arom}), 4.91 (d, *J* = 6.1 Hz, 1H, H-1), 4.70 (d, *J* = 11.0 Hz, 1H, CHH Bn), 4.68 – 4.61 (m, 4H, CH₂ Bn, CH₂ Bn), 4.59 (d, *J* = 12.3 Hz, 1H, CHH Bn), 4.26 (dd, *J* = 12.0, 5.8 Hz, 1H, H-5), 3.94 (t, *J* = 6.5 Hz, 1H, H-2), 3.82 (dt, *J* = 5.8, 2.8 Hz, 1H, H-4), 3.67 (dd, *J* = 6.9, 3.1 Hz, 1H, H-3), 3.44 (dd, *J* = 12.0, 2.6 Hz, 1H, H-5); ¹³C NMR (101 MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 138.3, 138.2, 138.1, 135.6 (C_{q-arom}), 131.3, 128.9, 128.5, 128.4, 128.1, 127.9, 127.9, 127.9, 127.8, 127.1 (CH_{arom}), 87.3 (C-1), 78.6 (C-3), 77.4 (C-2), 74.3 (CH₂ Bn), 72.4 (C-4), 72.4, 71.2 (CH₂ Bn), 63.3 (C-5); ¹³C-GATED NMR (101 MHz, CDCl₃): δ 83.3 (*J*_{C1-H1}= 158 Hz, 1, 2-*trans*); HRMS: [M+NH₄]⁺ calcd for C₃₂H₃₆NO₄S 530.23596, found 530.23588.

Preparation of Donor S8

Phenyl 2,3,4-tri-O-benzyl-1-thio-D-xylopyranoside (S8). The title compound was prepared according to general procedure IV from D-xylose. Column chromatography (100:0 \rightarrow 95:5, pentane:EtOAc) yielded compound S8 (2.33 g, 4.40 mmol, 48% over 5 steps, average of 86% per step, yellow wax, 1,2-*cis*:1,2-*trans*; 23:77). TLC: R_f 0.42 (pentane:EtOAc, 9.5:0.5, v:v); IR (thin film, cm⁻¹): 694, 735, 1026, 1070, 1120, 1454, 2864, 3030; Data of the major stereoisomer (1,2-trans product): ¹H NMR (500 MHz, Chloroform-d, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.54 – 7.25 (m, 20H, CH_{arom}), 4.89 (d, J = 10.9 Hz, 1H, CHH Bn), 4.85 (d, J = 10.1 Hz, 1H, CHH Bn), 4.83 (d, J = 10.9 Hz, 1H, CHH Bn), 4.75 (d, J = 10.0 Hz, 1H, CHH Bn), 4.71 (d, J = 11.6 Hz, 1H, CHH Bn), 4.67 (d, J = 9.5 Hz, 1H, H-1), 4.62 (d, J = 11.6 Hz, 1H, CHH Bn), 4.09 – 4.02 (m, 1H, H-5_{eq}), 3.67 -3.60 (m, 2H, H-3, H-4), 3.44 (t, J = 8.7 Hz, 1H, H-2), 3.24 (dd, J = 11.5, 9.6 Hz, 1H, H-5_{ax}); ¹³C NMR (126) MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 138.6, 138.2, 133.8, 132.0 (C_{q-arom}), 129.1, 128.6, 128.5, 128.5, 128.3, 128.1, 128.0, 128.0, 128.0, 127.9, 127.7 (CH_{arom}), 88.5 (C-1), 85.4 (C-3), 80.5 (C-2), 77.8 (C-4), 75.8, 75.6, 73.4 (CH₂ Bn), 67.6 (C-5); ¹³C-GATED NMR (126 MHz, CDCl₃): δ 88.5 (*J*_{Cl-Hl}= 157 Hz, 1,2-*trans*); Data of the minor stereoisomer (1,2-cis product): ¹H NMR (500 MHz, Chloroform-d, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.47 – 7.44 (m, 20H, CH_{arom}), 5.54 (d, J = 4.4 Hz, 1H, H-1), 4.93 (d, J = 10.8 Hz, 1H, 3), 3.71 – 3.66 (m, 2H, H-5, H-5). 3.61 – 3.53 (m, 1H, H-4); ¹³C NMR (126 MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 138.8, 138.4, 137.9, 134.6 (Cq-arom), 131.7, 129.1, 128.6, 128.5, 128.2, 128.2, 127.9, 127.8, 127.2 (CH_{arom}), 87.5 (C-1), 81.8 (C-3), 79.6 (C-2), 77.7 (C-4), 75.9, 73.7, 72.8 (CH₂ Bn), 61.2 (C-5); ¹³C-GATED NMR (126 MHz, CDCl₃): δ 87.5 (J_{C1-H1} = 165 Hz, 1,2-*cis*); HRMS: [M+NH₄]⁺ calcd for C₃₂H₃₆NO₄S 530.23596, found 530.23589.

Preparation of Donor S10

Scheme S-1. Donor S10 synthesis. *Reagents and conditions:* a) *i*. Ac₂O, pyridine; *ii*. HBr, AcOH, DCM; *iii*. Bu₃SnH, AIBN, toluene; *iv*. PhSH, BF₃·OEt₂, DCM S9: 69%; b) *i*. NaOMe, MeOH, *ii*. BnBr, NaH, DMF, S10: 92%.

Phenyl 2-deoxy-3,4-di-*O***-benzyl-1-thio-D-xylopyranoside (S9).** To a suspension of L-xylose (4.46 g, 29.7 mmol) in pyridine (72 mL), Ac₂O (34 mL, 356 mmol, 12 eq.) was added dropwise at 0 °C. After stirring for an additional 16 h at rt. the mixture was concentrated *in vacuo* and co-evaporated three times with heptane. The crude product was dissolved in a mixture of DCM (55 mL) and Ac₂O (0.28 mL, 3.0 mmol, 0.1 eq.), HBr (33 wt% in AcOH, 23 mL, 127 mmol, 4.3 eq.) was added dropwise at 0 °C. The mixture was stirred for an additional 16 h at rt. and subsequently concentrated under reduced pressure. The crude product was three times co-evaporated with toluene. The crude product was dissolved in toluene (1.2 L, 0.025 M) and AIBN (0.49 g, 2.97 mmol, 0.1 eq.) was added. The reaction was stirred at 80 °C for 30 minutes and Bu₃SnH (9.6 mL, 35.6 mmol, 1.2 eq.) was added dropwise over 16 h. The reaction mixture was concentrated and column chromatography (80:20 \rightarrow 70:30, pentane:EtOAc)

afforded the crude product. The crude product was dissolved in DCM (250 mL, 0.10 M) and cooled to -80 °C. Subsequently, thiophenol (3.4 mL, 32.7 mmol, 1.1 eq.) and BF₃·OEt₂ (4.5 mL, 35.6 mmol, 1.2 eq.) were added dropwise to the solution and the reaction was allowed to warm up to rt. in 4 h. The reaction mixture was quenched with sat. aq. NaHCO₃ and extracted with DCM (3x). The combined organic layers were dried with MgSO₄ and concentrated *in vacuo*. The residue was purified using column chromatography (pentane:EtOAc, $90:10 \rightarrow 70:30$) affording title compound **S9**. (6.36 g, 20.5 mmol, 69% over 4 steps, average of 91% per step, colourless oil, 1,3cis:1,3-trans; 66:34). TLC: Rf 0.42 (pentane:EtOAc, 7:3, v:v); IR (thin film, cm⁻¹): 693, 743, 1026, 1049, 1220, 1368, 1736; Data of the major stereoisomer (1,3-cis product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.65 – 7.18 (m, 5H, CH_{aron}), 5.10 (dd, *J* = 7.4, 4.0 Hz, 1H, H-1), 5.00 (td, *J* = 7.5, 4.5 Hz, 1H, H-3), 4.85 (td, *J* = 7.0, 4.0 Hz, 1H, H-4), 4.36 (dd, *J* = 12.2, 3.9 Hz, 1H, H-5), 3.49 (dd, *J* = 12.2, 6.7 Hz, 1H, H-5), 2.52 (dt, J = 13.9, 4.3 Hz, 1H, H-2), 2.11 (s, 3H, CH₃ Ac), 2.08 (s, 3H, CH₃ Ac), 1.95 (dt, J = 13.9, 7.6 Hz, 1H, H-2);¹³C NMR (101 MHz, CDCl₃, HSQC): δ 170.1, 170.1 (C=O), 134.4 (C_{q-arom}), 131.8, 129.1, 127.7 (CH_{arom}), 82.8 (C-1), 69.0 (C-3), 68.5 (C-4), 63.6 (C-5), 34.1 (C-2), 21.3, 21.1 (CH₃ Ac); Data of the minor stereoisomer (1,3trans product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 5.33 (dd, J = 6.6, 3.9 Hz, 1H, H-1), 5.17 (td, *J* = 6.9, 4.2 Hz, 1H, H-3), 4.80 (td, *J* = 6.7, 4.1 Hz, 1H, H-4), 4.09 (dd, *J* = 12.2, 6.2 Hz, 1H, H-5), 3.89 (dd, J = 12.2, 3.7 Hz, 1H, H-5), 2.34 (ddd, J = 14.0, 6.6, 4.2 Hz, 1H, H-2), 2.09 (s, 3H, CH₃ Ac), 2.08 (s, 3H, CH₃ Ac); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 170.2, 169.8 (C=O), 134.2 (C_{q-arom}), 131.5, 127.7 (CH_{arom}), 82.2 (C-1), 68.3 (C-4), 68.2 (C-3), 63.1 (C-5), 33.9 (C-2), 21.2, 21.1 (CH₃ Ac); HRMS: [M+Na]⁺ calcd for C₁₅H₁₈NaO₅S 333.0767, found 333.0771.

Phenyl 2-deoxy-3,4-di-O-benzyl-1-thio-D-xylopyranoside (S10). Compound S9 (150 mg, 0.48 mmol) was dissolved in MeOH (4.8 mL, 0.1 M) and subsequently NaOMe (2.6 mg, 48 µmol 0.1 eq.) was added portionwise. The reaction mixture was stirred for 1 h after which Amberlite IR120 H⁺ was added until pH 6 was reached. The resulting suspension was filtered, concentrated under reduced pressure and co-evaporated with toluene (3x). The crude product was dissolved in DMF (4.8 mL, 0.1 M) and cooled to 0 °C. benzyl bromide (0.14 mL, 1.2 mL, 2.4 eq.) was added, and subsequently, NaH (60% dispersion in mineral oil, 46 mg, 1.2 mmol, 2.4 eq.) was added. The reaction mixture was allowed to warm up to rt. and stirred for an additional 16 h. The reaction was quenched with MeOH and diluted with H₂O, after which the resulting mixture was extracted with Et₂O (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Column chromatography (95:5 \rightarrow 85:15, pentane:EtOAc) gave the title compound **S10** (180 mg, 0.44 mmol, 92%, over 2 steps, average of 97% per step, colourless oil, 1,3-cis:1,3-trans; 62:38). TLC: Rf 0.31 (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 694, 695, 735, 1026, 1077, 1089, 1206, 1440, 1454, 1480, 2846; Data of the major stereoisomer (1,3-cis product): ¹H NMR (500 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.53 – 7.17 (m, 15H, CH_{arom}), 4.96 (dd, *J* = 8.9, 3.3 Hz, 1H, H-1), 4.72 (dd, *J* = 11.8, 3.3 Hz, 1H, CHH Bn), 4.65 – 4.55 (m, 3H, CHH Bn, CHH Bn, CHH Bn), 4.21 (dd, J = 11.9, 4.1 Hz, 1H, H-5_{eq}), 3.65 (ddd, J = 8.8, 7.1, 4.6 Hz, 1H, H-3), 3.51 (ddd, J = 14.2, 7.3, 4.0 Hz, 1H, H-4), 3.36 (dd, J = 11.9, 7.9 Hz, 1H, H-5_{ax}), 2.47 (ddd, J = 13.5, 4.6, 3.3 Hz, 1H, H-2_{eq}), 1.86 (dt, J = 13.5, 8.8 Hz, 1H, H-2_{ax}); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.4, 138.4, 135.0 (C_{q-arom}), 131.3, 129.0, 128.6, 128.6, 127.9, 127.9, 127.8, 127.8, 127.8, 127.7, 127.3, 127.2 (CH_{arom}), 83.2 (C-1), 77.1 (C-3), 76.5 (C-4), 72.8, 71.9 (CH₂ Bn), 65.5 (C-5), 35.2 (C-2); Data of the minor stereoisomer (1,3-*trans* product): ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 5.43 (t, *J* = 4.7 Hz, 1H, H-1), 4.04 (dd, *J* = 11.9, 7.4 Hz, 1H, H-5), 3.83 (dd, *J* = 11.9, 4.0 Hz, 1H, H-3), 2.35 (ddd, *J* = 13.7, 5.2, 4.3 Hz, 1H, H-2), 2.04 (ddd, *J* = 13.2, 8.6, 4.4 Hz, 1H, H-2); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.5, 138.5, 134.9 (C_{q-arom}), 83.0 (C-1), 76.3 (C-3),

75.6 (C-4), 72.5, 72.0 (CH₂ Bn), 63.1 (C-5), 34.9 (C-2); HRMS: [M+Na]⁺ calcd for C₂₅H₂₆O₃SNa 429.1495, found 429.1499.

Preparation of Donor S11

Phenyl 2,3,4-tri-O-benzyl-1-thio-D-ribopyranoside (S11). The title compound was prepared according to general procedure IV from D-ribose. Column chromatography ($95:5 \rightarrow 90:10$, pentane:EtOAc) yielded compound S11 (1.02 g, 2.00 mmol, 25% over 5 steps, average of 76% per step yellow oil, 1,2-cis:1,2-trans; 32:68). TLC: R_f 0.39, 0.54 (pentane:EtOAc, 9.5:0.5, v:v); IR (thin film, cm⁻¹): 694, 735, 1026, 1060, 1087, 1454, 2873, 2926; Data of the major stereoisomer (1,2-trans product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.55 – 7.19 (m, 20H, CH_{arom}), 5.22 (d, J = 9.0 Hz, 1H, H-1), 4.81 (s, 2H, CH₂ Bn), 4.61 – 4.54 (m, 4H, CH₂ Bn, CH₂ Bn), 4.13 (t, J = 2.5 Hz, 1H, H-3), 3.90 – 3.83 (m, 2H, H-5_{ax}, H-5_{eq}), 3.52 (ddd, J = 8.3, 5.9, 2.3 Hz, 1H, H-4), 3.33 (dd, J = 9.1, 2.5 Hz, 1H, H-2); ¹³C NMR (101 MHz, CDCl₃): δ 138.9, 138.2, 137.9 (Cq-arom), 133.9, 131.8, 128.9, 128.6, 128.5, 128.3, 128.1, 128.0, 127.6 (CHarom), 84.4 (C-1), 77.8 (C-2), 75.3 (C-4), 74.4 (C-3), 74.1, 72.4, 71.5 (CH₂ Bn), 64.6 (C-5); ¹³C-GATED NMR (101 MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 84.4 ($J_{C1-H1} = 161$ Hz); Data of the minor stereoisomer (1,2-*cis* isomer product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.56 – 7.18 (m, 20H, CH_{aron}), 5.46 (d, J = 5.5 Hz, 1H, H-1), 5.03 (d, J = 12.4 Hz, 1H, CHH Bn), 4.89 (d, J = 12.5 Hz, 1H, CHH Bn), 4.71 (d, *J* = 11.9 Hz, 1H, C*H*H Bn), 4.61 (d, *J* = 11.7 Hz, 1H, C*H*H Bn), 4.51 (m, 1H, C*H*H Bn), 4.45 (d, *J* = 12.1 Hz, 1H, CHH Bn), 4.40 (t, J = 10.8 Hz, 1H, H-5_{ax}), 4.16 (d, J = 2.5 Hz, 1H, H-3), 3.70 (dd, J = 5.5, 2.2 Hz, 1H, H-2), 3.63 (dd, J = 10.9, 5.0 Hz, 1H, H-5_{eq}), 3.49 – 3.44 (m, 1H, H-4); ¹³C NMR (101 MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 139.1, 138.6, 138.2, 137.9 (C_{q-arom}), 131.1, 128.9, 128.6, 128.2, 128.0, 127.9, 127.9, 127.8, 127.8, 127.6, 127.6, 127.3, 126.8 (CH_{arom}), 87.0 (C-1), 77.0 (C-2), 74.4 (C-4), 74.0 (C-3), 74.0, 71.2, 70.9 $(CH_2 Bn)$, 58.2 (C-5); ¹³C-GATED NMR (101 MHz, CDCl₃): δ 87.0 ($J_{C1-H1} = 162$ Hz); HRMS: $[M+NH_4]^+$ calcd for C₃₂H₃₆NO₄S 530.23596, found 530.23579.

Preparation of Donor S12

Phenyl 2,3,4-tri-*O***-benzyl-1-thio-β-L-fucopyranoside (S12).** Compound **S12** was obtained from L-fucose, according to a literature procedure. [Chervin, S. M., Lowe, J. B. & Koreeda, M. Synthesis and Biological Evaluation of a New Sialyl Lewis X Mimetic Derived from Lactose. *J. Org. Chem.* 67, 5654–5662 (2002).] TLC: $R_f 0.53$ (pentane:Et₂O, 8:2, v:v); IR (thin film, cm⁻¹): 736, 868, 1043, 1053, 1059, 1441, 1479, 1584, 2855, 2897; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.65 – 7.16 (m, 20H, CH_{arom}), 5.01 (d, *J* = 11.6 Hz, 1H, C*H*H Bn), 4.79 (d, *J* = 10.2 Hz, 1H, CH*H* Bn), 4.75 – 4.64 (m, 4H, CH₂ Bn, CH₂ Bn), 4.60 (d, *J* = 9.6 Hz, 1H, H-1), 3.93 (t, *J* = 9.4 Hz, 1H, H-2), 3.64 (dd, *J* = 2.9, 0.9 Hz, 1H, H-4), 3.59 (dd, *J* = 9.2, 2.8 Hz, 1H, H-3), 3.53 (qd, *J* = 6.4, 1.0 Hz, 1H, H-5), 1.27 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.9, 138.5, 138.5 (C_{q-arom}), 134.5, 131.6, 128.9, 128.6, 128.5, 128.4, 128.3, 128.1, 127.8, 127.7, 127.6, 127.1 (CH_{arom}), 87.7 (C-1), 84.7 (C-3), 77.3 (C-2), 76.8 (C-4), 75.7 (CH₂ Bn), 74.8 (C-5), 74.7, 73.0 (CH₂ Bn), 17.5 (CH₃); HRMS: [M+H]⁺ calcd for C₃₃H₃₅O₄S 527.22506, found 527.22479.

Preparation of Donor S15

Scheme S-2. Donor S15 synthesis. *Reagents and conditions:* a) *i*. Ac₂O, pyridine; *ii*. HBr, AcOH, DCM; *iii*. Bu₃SnH, AIBN, toluene; *iv*. PhSH, BF₃·OEt₂, DCM, S13: 61%; b) NaOMe, MeOH, S14: 97%; c) BnBr, NaH, DMF, S15: 92%.

Phenyl 2-deoxy-3,4-di-O-acetyl-1-thio-L-fucopyranoside (S13). To a suspension of L-fucose (928 mg, 5.7 mmol) in pyridine (2.5 mL), Ac₂O (5 mL, 53 mmol, 12 eq.) was added dropwise at 0 °C. After stirring for an additional 16 h at rt. the mixture was concentrated in vacuo and co-evaporated three times with heptane. The crude product was dissolved in a mixture of DCM (4 mL) and Ac₂O (0.25 mL, 2.6 mmol, 0.5 eq.), HBr (33 wt% in AcOH, 1.6 mL, 9.9 mmol, 1.8 eq.) was added dropwise at 0 °C. The mixture was stirred for an additional 4 h at rt. and subsequently concentrated under reduced pressure. The crude product was dissolved in toluene (500 mL, 0.01 M) and AIBN (123 mg, 0.75 mmol, 0.1 eq.) was added. The reaction was stirred at 80 °C for 30 minutes and Bu₃SnH (3 mL, 11.3 mmol, 2 eq.) was added dropwise over 16 h. The reaction mixture was concentrated and column chromatography (90:10 \rightarrow 80:20, pentane:EtOAc) afforded the crude product. The crude product was dissolved in DCM (40 mL, 0.15 M) and cooled to -80 °C. Subsequently, thiophenol (0.6 mL, 5.9 mmol, 1.05 eq.) and BF₃·OEt₂ (0.79 mL, 6.2 mmol, 1.1 eq.) were added dropwise to the solution and the reaction was allowed to warm up to rt. in 4 h. The reaction mixture was quenched with sat. aq. NaHCO₃ and extracted with DCM (3x). The combined organic layers were dried with MgSO4 and concentrated in vacuo. The residue was purified using column chromatography (pentane:EtOAc, $90:10 \rightarrow 70:30$) affording title compound S13. (1.43 g, 3.4 mmol, 61%) over 4 steps, average of 85% per step, colourless oil, 1,3-cis:1,3-trans; 20:80). TLC: Rf 0.45 (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 884, 1024, 1060, 1224, 1366, 1440, 1480, 1742; Data of the major stereoisomer (1,3trans product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.55 – 7.22 (m, 5H, CH_{arom} SPh), 5.74 (d, J = 5.7 Hz, 1H, H-1), 5.28 (ddd, J = 12.6, 4.9, 3.0 Hz, 1H, H-3), 5.23 (d, J = 3.1 Hz, 1H, H-4), 4.56 (dt, J = 3.1 Hz, 1H, 1H-4), 4.56 (dt, J = 3.1 Hz, 1Hz, 1Hz,7.5, 6.0 Hz, 1H, H-5), 2.46 (td, J = 12.9, 5.9 Hz, 1H, H-2), 2.16 (s, 3H, CH₃ Ac), 2.10 - 2.02 (m, 1H, H-2), 2.01 (s, 3H, CH₃ Ac), 1.15 (d, *J* = 6.5 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 170.8, 170.1 (C=O Ac), 131.1, 129.1, 127.3 (Carom SPh), 83.8 (C-1), 69.8 (C-3), 67.4 (C-4), 65.9 (C-5), 30.7 (C-2), 20.9 (CH₃ Ac), 16.6 (C-6); Data of the minor stereoisomer (1,3-cis product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.55 – 7.22 (m, 5H, CH_{arom} SPh), 5.13 (d, J = 3.2 Hz, 1H, H-4), 5.01 (ddd, J = 10.1, 7.4, 3.1 Hz, 1H, H-3), 4.83 (dd, J = 8.3, 5.8 Hz, 1H, H-1), 3.73 (qd, J = 6.3, 0.9 Hz, 1H, H-5), 2.16 (s, 3H, CH₃ Ac), 2.12 - 2.02 (m, 2H, H-2, H-2), 2.00 (s, 3H, CH₃ Ac), 1.24 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 131.8, 129.0, 127.7 (Carom SPh), 82.5 (C-1), 73.4 (C-5), 70.0 (C-3), 68.7 (C-4), 31.5 (C-2), 21.1 (CH₃ Ac), 17.1 (CH₃); HRMS: $[M+Na]^+$ calcd for $C_{16}H_{20}NaO_5S$ 347.0929, found 347.0925.

Phenyl 2-deoxy-1-thio-L-fucopyranoside (S14). Compound S13 (243 mg, 0.75 mmol) was dissolved in MeOH (3 mL, 0.25 M), NaOMe (8 mg, 750 µmol, 0.1 eq.) was added portionwise to the stirred solution. After 4 h of stirring the reaction was quenched with Amberlite IR120 H⁺. Filtration followed by column chromatography $(50:50 \rightarrow 20:80, \text{ pentane:EtOAc})$ afforded the title compound S14 (0.78 g, 3.3 mmol, 97%, white solid, 1,3-*cis*:1,3*trans*; 20:80). TLC: R₁ 0.43 (pentane:EtOAc, 2:8, v:v); IR (neat, cm⁻¹): 733, 876, 968, 1092, 1165, 1373, 1585, 2882, 3348; Data of the major stereoisomer (1,3-trans product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.56 – 7.17 (m, 5H, CH_{aron}), 5.65 (d, J = 5.7 Hz, 1H, H-1), 4.03 (ddd, J = 12.1, 5.3, 3.2 Hz, 1H, H-3), 3.79 - 3.53 (m, 2H, H-4, H-5), 2.84 - 2.29 (m, 2H, 3-OH, 4-OH), 2.29 - 2.04 (m, 1H, H-2), 2.18 - 1.70 (m, 1H, H-2), 1.28 (d, J = 6.6 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 135.1 (C_{q-arom}), 131.6, 131.1, 129.1, 127.2 (CH_{arom}), 84.0 (C-1), 71.4 (C-4), 67.0 (C-5), 66.7 (C-3), 33.6 (C-2), 16.8 (CH₃). Data of the minor stereoisomer (1,3-cis product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.56 - 7.17 (m, 5H, CH_{arom}), 4.72 (dd, J = 12.0, 2.2 Hz, 1H, H-1'), 4.43 (q, J = 6.8 Hz, 1H, H-5'), 3.79 - 3.53 (m, 2H, H-3', H-4'), 2.84 - 2.29 (m, 2H, 3-OH, 4-OH), 2.29 - 2.04 (m, 1H, H-2), 2.18 - 1.70 (m, 1H, H-2), 1.35 (d, J = 6.5 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 134.0 (C_{q-arom}), 131.6, 129.1, 129.0, 127.6 (CH_{arom}), 82.5 (C-1), 74.8 (C-4), 70.6 (C-5), 69.8 (C-3), 34.7 (C-2), 17.3 (CH₃); HRMS: [M+Na]⁺ calcd for C₁₂H₁₆NaO₃S 263.0719, found 263.0717.

Phenyl 2-deoxy-3,4-di-O-benzyl-1-thio-L-fucopyranoside (S15). Compound S14 (120 mg, 0.5 mmol) was dissolved in DMF (2.5 mL, 0.25 M) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 44 mg, 1.1 mmol, 2.2 eq.) was added portionwise and the resulting mixture was stirred for 15 minutes. Subsequently, benzyl bromide (131 µL, 1.1 mmol, 2.2 eq.) was added and the reaction mixture was allowed to warm up to rt. and stirred for an additional 16 h. The reaction was quenched with MeOH and diluted with H₂O, after which the resulting mixture was extracted with Et₂O (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Column chromatography (95:5 \rightarrow 85:15, pentane:Et₂O) gave the title compound **S15** (194 mg, 0.46 mmol, 92%, white solid, 1.3-cis:1,3-trans; 39:61). TLC: R_f 0.42 and 0.62 (pentane:Et₂O, 9:1, v:v); IR (thin film, cm⁻¹): 691, 733, 957, 1026, 1057, 1099, 1362, 2866; Data of the major stereoisomer (1,3-trans product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.63 – 7.16 (m, 15H, CH_{arom}), 5.76 (d, J = 5.6 Hz, 1H, H-1), 4.98 (d, J = 11.7 Hz, 1H, CHH Bn), 4.71 (m, 1H, CHH Bn) 4.66 (d, J = 12.8 Hz, 1H, CHH Bn), 4.62 (d, J = 11.9 Hz, 1H, CHH Bn), 4.27 (q, J = 6.5 Hz, 1H, H-5), 3.91 (ddd, J = 12.3, 4.4, 2.5 Hz, 1H, H-3), 3.70 - 3.63 (m, 1H, H-4), 2.60 (td, J = 12.7, 5.8 Hz, 1H, H-2_{ax}), 2.16 (dd, J = 13.0, 4.5 Hz, 1H, H-2_{eq}), 1.19 (d, J = 6.5 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.9, 138.4, 135.7 (C_{q-arom}), 131.3, 130.6, 129.0, 128.8, 128.6, 128.4, 128.3, 127.8, 127.5 (CH_{arom}), 84.4 (C-1), 76.1 (C-3/C-4), 76.0 (C-3/C-4), 74.6 (CH₂ Bn), 70.6 (CH₂ Bn), 68.0 (C-5), 31.7 (C-2), 17.3 (CH₃); Data of the minor stereoisomer (1,3-cis product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 4.98 (d, *J* = 11.8 Hz, 1H, CHH Bn), 4.74 – 4.68 (m, 1H, H-1), 4.69 (d, J = 11.8 Hz, 1H, CHH Bn), 4.63 (d, J = 12.1 Hz, 1H, CHH Bn), 4.57 (d, J = 12.1 Hz, 1H, CHH Bn), 3.59 (ddd, *J* = 11.5, 4.6, 2.5 Hz, 1H, H-3), 3.54 (dt, *J* = 2.5, 1.2 Hz, 1H, H-4), 3.46 (q, *J* = 5.7 Hz, 1H, H-5), 2.28 (q, J = 11.9 Hz, 1H, H-2_{ax}), 2.20 – 2.10 (m, 1H, H-2_{eq}), 1.26 (d, J = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 139.0, 138.4 (Cq-arom), 134.7, 131.3, 128.8, 128.6, 128.3, 128.2, 127.7, 127.5, 127.4, 127.1, 127.0, 126.8 (CH_{arom}), 82.7 (C-1), 79.0 (C-3), 75.1 (C-5), 74.6 (C-4), 74.3 (CH₂ Bn), 70.3 (CH₂ Bn), 68.0 (CH₂ Bn), 32.1 (C-2), 17.8 (CH₃); HRMS: [M+Na]⁺ calcd for C₂₆H₂₈NaO₃S 443.1657, found 443.1651.

Preparation of Donor S16

Phenyl 2-azido-2-deoxy-3,4-di-*O***-benzyl-1-seleno-β-L-fucopyranoside (S16).** Compound **S16** was obtained from L-fucose, according to a literature procedure.[Hagen, B., Ali, S., Overkleeft, H. S., van der Marel, G. A. & Codée, J. D. C. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides. *J. Org. Chem.* 82, 848–868 (2017).] TLC: R_f 0.68 (pentane:Et₂O, 8:2, v:v); IR (thin film, cm⁻¹): 694, 737, 1064, 1105, 1454, 1744, 2106, 2855, 2922; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.63 – 7.18 (m, 15H, CH_{arom}), 5.93 (d, *J* = 5.3 Hz, 1H, H-1), 4.93 (d, *J* = 11.5 Hz, 1H, *CHH* Bn), 4.78 (d, *J* = 11.4 Hz, 1H, CH*H* Bn), 4.75 (d, *J* = 11.4 Hz, 1H, C*H*H Bn), 4.60 (d, *J* = 11.4 Hz, 1H, CH*H* Bn), 4.35 (dd, *J* = 9.9, 5.3 Hz, 1H, H-2), 4.22 (q, *J* = 6.5 Hz, 1H, H-5), 3.75 – 3.69 (m, 2H, H-3, H-4), 1.13 (d, *J* = 6.5 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.3, 137.6, 134.5 (C_{q-arom}), 129.1, 128.7, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8 (CH_{arom}), 85.7 (C-1), 80.8 (C-3), 75.9 (C-4), 75.1, 72.7 (CH₂ Bn), 69.5 (C-5), 61.1 (C-2), 16.7 (CH₃); HRMS: [M-N₂+NH₄]⁺ calcd for C₂₆H₂₈NO₃Se 482.12289, found 482.12287.

Preparation of Donor S17

Phenyl 2,3,4-tri-*O***-benzyl-1-thio-β-L-rhamnopyranoside (S17).** Compound **S17** was obtained from L-rhamnose, according to a literature procedure.[Tanikawa, T. *et al.* Using Biological Performance Similarity To Inform Disaccharide Library Design. *J. Am. Chem. Soc.* 131, 5075–5083 (2009).] TLC: R_f 0.63 (pentane:Et₂O, 8:2, v:v); IR (thin film, cm⁻¹): 692, 732, 843, 908, 1024, 1070, 1082, 1205, 1452, 2868; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.48 – 7.10 (m, 20H, CH_{arom}), 5.49 (d, *J* = 1.6 Hz, 1H, H-1), 4.97 (d, *J* = 10.8 Hz, 1H, C*H*H Bn), 4.72 (d, *J* = 12.4 Hz, 1H, C*H*H Bn), 4.68 – 4.58 (m, 4H, CH₂ Bn, CH₂ Bn), 4.14 (dq, *J* = 9.3, 6.2 Hz, 1H, H-5), 3.99 (dd, *J* = 3.1, 1.7 Hz, 1H, H-2), 3.83 (dd, *J* = 9.3, 3.1 Hz, 1H, H-3), 3.68 (t, *J* = 9.3 Hz, 1H, H-4), 1.35 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.6, 138.3, 138.0, 134.8 (C_{q-arom}), 131.4, 129.1, 128.5, 128.1, 128.1, 127.9, 127.9, 127.8, 127.4 (CH_{arom}), 85.9 (C-1), 80.6 (C-4), 80.1 (C-3), 76.6 (C-2), 75.6, 72.2, 72.2 (CH₂ Bn), 69.4 (C-5), 18.1 (CH₃); HRMS: [M+H]⁺ calcd for C₃₃H₃₅O₄S 527.22506, found 527.22483.

Preparation of Donor S20

Scheme S-3. Donor S20 synthesis. *Reagents and conditions:* a) *i*. Ac₂O, pyr; *ii*. HBr, AcOH, DCM; *iii*. CuSO₄5H₂O, Ac₂O, NaOAc, AcOH, Zn; *iv*. Ac₂O, HBr, AcOH, S18: 60%; b) PhSH, BF₃·Et₂O, DCM, S19: 97%; c) *i*. NaOMe, MeOH, *ii*. BnBr, NaH, DMF, S20: 95%.

2-deoxy-1,3,4-tri-O-acetyl-α-L-rhamnopyranoside (S18). To suspension of L-rhamnose (4.5 g, 27.5 mmol) in pyridine (25 mL), Ac₂O (32 mL, 340 mmol, 12 eq.) at 0 °C. After stirring for an additional 16 h at rt. the mixture was concentrated in vacuo and co-evaporated three times with heptane. The resulting colourless oil was used in the next step without further purification. The crude product was dissolved in DCM (18 mL), followed by the addition of Ac₂O (1.0 mL, 11 mmol, 0.4 eq.). To the solution HBr (33 wt% in AcOH, 8.5 mL, 55.0 mmol, 2.0 eq.) was added dropwise at 0 °C and stirred for an additional 4 h at rt. The mixture was then concentrated under reduced pressure and the yellow oil was used as a crude product in the next step. Copper sulfate pentahydrate (0.88 g), Ac₂O (3.6 mL, 38 mmol, 1.4 eq.), sodium acetate (4.5 g, 55 mmol, 2 eq.), AcOH (3.2 mL) were suspended in acetonitrile (12 mL), and subsequently Zn (dust, 3.6 g, 55 mmol, 2 eq.) was added. After 45 minutes of stirring the rhamnosyl bromide was added in 60 mL acetonitrile via a dropping funnel over 40 minutes. The reaction was allowed to stir for an additional 2 h. After reaction completion the mixture was diluted with DCM and filtrated over Celite[®] 545 (Sigma-Aldrich) and transferred to a separatory funnel. The organic phase was washed with saturated sat. aq. NaHCO₃, dried with MgSO₄ and concentrated *in vacuo*. The crude rhamnal was dissolved in DCM (40 mL) and AcOH (15.8 mL, 276 mmol, 10 eq.), Ac₂O (22.2 mL, 233 mmol, 8.5 eq.) were added at 0 °C. After 15 min stirring, HBr (33 wt% in AcOH, 1.5 mL, 9.1 mmol, 0.3 eq.) was dropwise added at 0 °C and the reaction was stirred for an additional 5 h. After reaction completion the mixture was diluted with ice-cold water and extracted DCM (3x). The combined organic layers were washed with sat. aq. NaHCO₃, dried with MgSO₄ and concentrated in vacuo. Column chromatography (95:5 \rightarrow 85:15, pentane:EtOAc) gave the title compound S18 (4.5 g, 16.4 mmol, 60% over 4 steps, average of 88% per step, white solid). TLC: Rf 0.26 (pentane:EtOAc, 8:2, v:v); IR (neat, cm⁻¹): 922, 1037, 1134, 1157, 1369, 1732, 2994; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 6.19 (dd, *J* = 3.8, 1.4 Hz, 1H, H-1), 5.27 (ddd, *J* = 11.6, 9.5, 5.3 Hz, 1H, H-3), 4.80 (t, *J* = 9.7 Hz, 1H, H-4), 3.94 (dq, J = 9.8, 6.2 Hz, 1H, H-5), 2.26 (ddd, J = 13.5, 5.3, 1.5 Hz, 1H, H-2), 2.12 (s, 3H, CH₃ Ac), 2.07 (s, 3H, CH₃ Ac), 2.03 (s, 3H, CH₃ Ac), 1.92 (ddd, J = 13.5, 11.7, 3.7 Hz, 1H, H-2), 1.19 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (126 MH, CDCl₃, HSQC): δ 170.4, 170.1, 169.3 (C=O, Ac), 90.9 (C-1), 74.2 (C-4), 68.5 (C-3), 68.3 (C-5), 34.3 (C-2), 21.2 (CH₃ Ac), 21.1 (CH₃ Ac), 20.9 (CH₃ Ac), 17.7 (CH₃); HRMS: [M+Na]⁺ calcd for C₁₂H₁₈NaO₇ 297.0950, found 297.0951.

Phenyl 2-deoxy-3,4-di-*O***-acetyl-1-thio-L-rhamnopyranoside (S19).** Compound **S18** (400 mg, 1.46 mmol) was dissolved in DCM (10 mL, 0.15M), and thiophenol (0.20 mL, 1.90 mmol, 1.3 eq.) was added, followed by the dropwise addition of BF₃·OEt₂ (0.21 mL, 1.63 mmol, 1.1 eq.) at -80 °C. The reaction mixture was allowed to warm to room temperature in approximately 4 h. After 4 h, the reaction mixture quenched with sat. aq. NaHCO₃. The water layer was extracted with DCM (2x). The combined organic layer layers were washed with sat. aq. NaHCO₃ and dried with MgSO₄ and concentrated *in vacuo*. Column chromatography (95:5 \rightarrow 85:15, pentane:EtOAc) gave the title compound **S19** (460 mg, 1.42 mmol, 97%, colourless oil, 1,3-*cis*:1,3-*trans*; 36:64). TLC: R_f 0.52 (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 741, 910, 1049, 1219, 1366, 1740, 2982; Data of the major stereoisomer (1,3-*trans* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.56 – 7.20 (m, 5H, CH_{arom} SPh), 5.60 (d, *J* = 5.6 Hz, 1H, H-1), 5.26 (ddd, *J* = 11.8, 9.3, 5.2 Hz, 1H, H-3), 4.83 – 4.71 (m, 1H, H-4), 4.37 (dq, *J* = 9.6, 6.2 Hz, 1H, H-5), 2.45 (ddd, *J* = 13.4, 5.2, 1.2 Hz, 1H, H-2_{eq}), 2.20 (ddd, *J* = 13.4, 11.8, 5.9 Hz, 1H, H-2_{ax}), 2.08 (s, 3H, Ac CH₃), 2.03 (s, 3H, Ac CH₃), 1.19 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 170.35, 170.31 (C=O, Ac), 134.67 (Cq-arom), 133.02, 132.41, 131.34, 129.14, 129.07, 127.41

(CH_{arom}), 83.14 (C-1), 74.91 (C-4), 69.45 (C-3), 66.90 (C-5), 36.01 (CH₃ Ac), 21.15 (CH₃ Ac), 21.01 (CH₃ Ac), 17.57 (CH₃); Data of the minor stereoisomer (1,3-*cis* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 4.98 (ddd, J = 11.4, 9.5, 5.4 Hz, 1H, H-3), 3.52 (dq, J = 9.6, 6.2 Hz, 1H, H-4), 2.05 (s, 3H, Ac CH₃), 2.01 (s, 3H, Ac CH₃), 1.83 (dt, J = 12.7, 11.6 Hz, 1H, Ac CH₃), 1.26 (d, J = 6.2 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 170.50, 170.21 (C=O, Ac), 81.69 (C-1), 74.46 (C-5), 73.89 (C-4), 71.88 (C-3), 36.69 (CH₃ Ac), 21.10 (CH₃ Ac), 20.98 (CH₃ Ac), 18.05 (CH₃); HRMS: [M+Na]⁺ calcd for C₁₆H₂₀NaO₅S 347.0929, found 347.0928.

Phenyl 2-deoxy-3,4-di-O-benzyl-1-thio-L-rhamnopyranoside (S20). Compound S19 (400 mg, 1.2 mmol) was dissolved in MeOH (6 mL, 0.2 M), and NaOMe (7 mg, 120 µmol, 0.1 eq.) was added. The reaction mixture was stirred for 4 h, and subsequently quenched with Amberlite IR120 H⁺ and filtrated. The resulting filtrate was concentrated in vacuo. The crude product was dissolved in DMF (6 mL, 0.2 M) and cooled to 0 °C, and NaH (60% dispersion in mineral oil, 109 mg, 2.7 mmol, 2.2 eq.). The resulting suspension was stirred for 15 minutes, and benzyl bromide (323 µL, 2.7 mmol, 2.2 eq.) was dropwise added. The reaction mixture was allowed to warm up to rt. and stirred for an additional 16 h. The reaction was quenched with MeOH and diluted with H₂O. The resulting reaction mixture was extracted with Et₂O (3x), and the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Column chromatography (95:5 \rightarrow 85:15, pentane:Et₂O) gave the title compound **S20** (495 mg, 1.18 mmol, 95%, white solid, 1,3-cis:1,3-trans; 35:65). TLC: R₁ 0.46 and 0.59 (pentane:Et₂O, 9:1, v:v); IR (thin film, cm⁻¹): 694, 737, 995, 1072, 2866; Data of the major stereoisomer (1,3-*trans* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.54 – 7.14 (m, 15H, CH_{arom}), 5.58 (dd, *J* = 5.8, 1.3 Hz, 1H, H-1), 4.96 (d, *J* = 10.9 Hz, 1H, CHH Bn), 4.70 – 4.64 (m, 4H, CHH Bn, CH₂ Bn), 4.23 (dq, *J* = 9.4, 6.2 Hz, 1H, H-5), 3.94 (ddd, *J* = 11.5, 8.6, 4.8 Hz, 1H, H-3), 3.17 (t, *J* = 9.0 Hz, 1H, H-4), 2.47 (ddd, J = 13.2, 4.7, 1.3 Hz, 1H, H-2_{ca}), 2.09 (ddd, J = 13.4, 11.6, 5.7 Hz, 1H, H-2_{ax}), 1.29 (d, J = 6.2Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.6, 138.5 (C_{q-arom}), 131.3, 129.0, 128.6, 128.5, 128.1, 127.9, 127.2 (CH_{arom}), 84.5 (C-4), 83.9 (C-1), 77.8 (C-3), 75.4 (CH₂ Bn), 72.0 (CH₂ Bn), 68.5 (C-5), 36.7 (C-2), 18.2 (CH₃); Data of the minor stereoisomer (1,3-cis product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 4.94 (d, J = 10.9 Hz, 1H, CHH Bn), 4.73 (dd, J = 11.9, 2.0 Hz, 1H, H-1), 4.61 (d, J = 11.6 Hz, 1H, CHH Bn), 3.65 (ddd, *J* = 11.1, 8.7, 5.2 Hz, 1H, H-3), 3.39 (dq, *J* = 9.3, 6.1 Hz, 1H, H-5), 3.15 (t, *J* = 9.0 Hz, 1H, H-4), 1.79 (dt, J = 12.8, 11.6 Hz, 1H, H-2_{ax}), 1.36 (d, J = 6.2 Hz, 1H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.5, 138.3 (C_{q-arom}), 134.2, 131.4, 129.0, 128.2, 127.9, 127.5 (CH_{arom}), 83.5 (C-4), 82.0 (C-1), 80.6 (C-3), 75.8 (C-5), 75.5 (CH₂ Bn), 71.8 (CH₂ Bn), 37.3 (C-2), 18.6 (CH₃); HRMS: [M+Na]⁺ calcd for C₂₆H₂₈NaO₃S 443.1657, found 443.1651.

Preparation of Donor S21

Phenyl 2,3,4,6-tetra-*O***-benzyl-1-thio-β-D-glucopyranoside (S21).** Compound **S21** was obtained from D-glucose, according to a literature procedure.[Dinkelaar, J. *et al.* Stereodirecting Effect of the Pyranosyl C-5 Substituent in Glycosylation Reactions. *J. Org. Chem.* 74, 4982–4991 (2009)] TLC: $R_f 0.73$ (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20} = 15.2^\circ$ (*c* 1, DCM); IR (thin film, cm⁻¹): 714, 781, 1063, 1359, 1453, 2858, 2922; ¹H NMR (400 MHz, Chloroform*d*, HH-COSY, HSQC): δ 7.68 – 7.09 (m, 25H, CH_{arom}), 4.90 (d, *J* = 10.9 Hz, 1H, C*H*H Bn), 4.89 (d, *J* = 10.3 Hz, 1H, C*H*H Bn), 4.84 (d, *J* = 10.9 Hz, 1H, CHH Bn), 4.82 (d, *J* = 10.9 Hz, 1H, CHH Bn), 4.73 (d, *J* = 10.3 Hz, 1H CH*H* Bn), 4.67 (dd, J = 9.8, 0.9 Hz, 1H, H-1), 4.61 (d, J = 12.0 Hz, 1H C*H*H Bn), 4.59 (d, J = 10.8 Hz, 1H, CH*H* Bn), 4.54 (d, J = 12.0 Hz, 1H, CH*H* Bn), 3.79 (dd, J = 10.9, 1.9 Hz, 1H, H-6), 3.75 – 3.61 (m, 3H, H-3, H-4, H-6), 3.55 – 3.47 (m, 2H, H-2, H-5); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.5, 138.4, 138.2, 134.0 (C_{q-arom}), 132.1, 129.0, 128.6, 128.4, 128.1, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6 (CH_{arom}), 87.6 (C-1), 86.9 (C-3), 81.0 (C-5), 79.2 (C-2), 78.0 (C-4), 76.0, 75.6, 75.2, 73.6 (CH₂ Bn), 69.2 (C-6); HRMS: [M+Na]⁺ calcd for C₄₀H₄₀NaO₅S 655.2494, found 655.2496.

Preparation of Donor S22

Methyl (phenyl 2,3,4-tri-*O***-benzyl-1-thio-β-D-glucopyranosyl uronate) (S22).** Compound S22 was obtained from D-glucose, according to a literature procedure.[Dinkelaar, J. *et al.* Stereodirecting Effect of the Pyranosyl C-5 Substituent in Glycosylation Reactions. *J. Org. Chem.* 74, 4982–4991 (2009)] TLC: R_f 0.56 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 697, 738, 1026, 1073, 1209, 1439, 1453, 1750, 2856, 2924; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.71 – 7.08 (m, 20H, CH_{arom}), 4.88 (d, *J* = 10.3 Hz, 1H, *CH*H Bn), 4.88 (d, *J* = 10.9 Hz, 1H, *CH*H Bn), 4.84 (d, *J* = 10.9 Hz, 1H, CH*H* Bn), 4.78 (d, *J* = 10.8 Hz, 1H, *CH*H Bn), 4.73 (d, *J* = 10.2 Hz, 1H, *CHH* Bn), 4.68 (d, *J* = 9.8 Hz, 1H, H-1), 4.61 (d, *J* = 10.8 Hz, 1H, CH*H* Bn), 3.92 (d, *J* = 9.7 Hz, 1H, H-5), 3.84 (t, *J* = 9.4 Hz, 1H, H-4), 3.73 (s, 3H, CH₃ COOMe), 3.71 (t, *J* = 8.9 Hz, 1H, H-3), 3.52 (dd, *J* = 9.8, 8.7 Hz, 1H, H-2); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 168.8 (C=O), 138.2, 137.9, 137.8, 133.3 (C_{q-arom}), 132.3, 129.1, 128.6, 128.5, 128.3, 128.1, 128.0, 128.0, 127.9 (CH_{arom}), 88.4 (C-1), 86.0 (C-3), 80.4 (C-2), 79.3 (C-4), 78.1 (C-5), 76.0, 75.6, 75.2 (CH₂ Bn), 52.6 (CH₃ COOMe); HRMS: [M+Na]⁺ calcd for C₃₄H₃₄NaO₆S 593.1968, found 593.1977.

Preparation of Donor S24

Scheme S-4. Donor S24 synthesis. *Reagents and conditions:* a) HBr·PPh₃, AcOH, S23: 83%. b) PhSH, *p*TsOH, DCM, S24: 91%.

Phenyl 2-deoxy-3,4,6-tri-*O***-benzyl-1-thio-D-glucopyranoside (S23).** Compound **S23** was obtained from 2deoxy-tri-*O*-benzyl-D-glucal, according to a literature procedure as a mixture of stereoisomers (1,3-*cis*:1,3-*trans*; 10:90).[Beaver, M. G. & Woerpel, K. A. Erosion of Stereochemical Control with Increasing Nucleophilicity: *O*-Glycosylation at the Diffusion Limit. *J. Org. Chem.* 75, 1107–1118 (2010)] TLC: R_f 0.30 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 694, 734, 1026, 1078, 1362, 1454, 2863; Data of the major stereoisomer (1,3-*trans* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.47 – 7.06 (m, 15H, CH_{arom}), 6.25 (dd, *J* = 3.5, 1.5 Hz, 1H, H-1), 4.90 (d, *J* = 10.6 Hz, 1H, CHH Bn), 4.68 – 4.60 (m, 2H, CHH Bn, CHH Bn), 4.54 (d, *J* = 10.7 Hz, 1H, CHH Bn), 4.51 (d, *J* = 12.1 Hz, 1H, CHH Bn), 4.00 – 3.92 (m, 1H, CHH Bn), 3.96 (ddd, *J* = 11.4, 8.8, 4.9 Hz, 1H, H-3), 3.84 (dq, *J* = 9.9, 1.9 Hz, 1H, H-5), 3.78 (dd, *J* = 10.7, 3.5 Hz, 1H, H-6) 3.71 (dd, *J* = 9.8, 8.9 Hz, 1H, H-4), 3.66 (dd, *J* = 10.7, 1.9 Hz, 1H, H-6), 2.28 (ddd, *J* = 13.6, 5.0, 1.7 Hz, 1H, H-2_{eq}), 2.04 (s, 3H, CH₃ Ac), 1.84 (ddd, *J* = 13.6, 11.5, 3.5 Hz, 1H, H-2_{ax}); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 169.4 (C=O), 138.4, 138.3, 138.1 (Cq-arom), 128.5, 128.1, 128.0, 127.8, 127.8, 127.7 (CH_{arom}), 92.3 (C-1), 77.6 (C- 4), 76.9 (C-3), 75.3 (CH₂ Bn), 73.6 (CH₂ Bn), 73.5 (C-5), 71.9 (CH₂ Bn), 68.5 (C-6), 34.3 (C-2), 21.2 (CH₃ Ac); Data of the minor stereoisomer (1,3-*cis* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 5.67 (dd, J = 10.0, 2.2 Hz, 1H, H-1), 2.36 (ddd, J = 12.5, 4.9, 2.2 Hz, 1H, H-2_{eq}), 2.10 (s, 3H, CH₃ Ac). ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 169.4 (C=O), 92.9 (C-1), 75.1 (CH₂ Bn), 73.6 (CH₂ Bn), 71.8 (CH₂ Bn), 35.5 (C-2); HRMS: [M+Na]⁺ calcd for C₂₉H₃₂NaO₆ 499.2091, found 499.2096.

Phenyl 2-deoxy-3,4,6-tri-O-benzyl-1-thio-D-glucopyranoside (S24). Compound S23 (0.7 g, 1.5 mmol) was dissolved in DCM (14 mL, 0.1 M), followed by the addition of thiophenol (0.3 mL, 3.0 mmol, 2 eq.) and pTsOH (0.56 g, 3.0 mmol, 2 eq.). After 16 h of stirring the reaction was quenched with sat. aq. NaHCO₃ and extracted with DCM (3x). The combined organic layers were washed with brine and dried over MgSO₄. Column chromatography (95:5 \rightarrow 80:20, pentane:Et₂O) gave the title compound S24 (702 mg, 1.33 mmol, 91%, colourless oil, 1,3-*cis*:1,3-*trans*; 40:60). TLC: R_f 0.60 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 694, 734, 1026, 1078, 1362, 1454, 2863; Data of the major stereoisomer (1,3-trans product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.70 – 6.94 (m, 20H, CH_{arom}), 5.69 (dd, *J* = 5.6, 1.2 Hz, 1H, H-1), 4.90 (d, *J* = 10.9 Hz, 1H, CHH Bn), 4.74 – 4.51 (m, 4H, CH₂ Bn, CH₂ Bn, CH₂ Bn, CH₂ Bn), 4.46 (d, J = 12.0 Hz, 1H, CHH Bn), 4.30 (ddd, *J* = 9.8, 4.1, 2.0 Hz, 1H, H-5), 3.97 (ddd, *J* = 11.6, 8.7, 4.9 Hz, 1H, H-3), 3.90 – 3.76 (m, 1H, H-6), 3.73 (dd, *J* = 10.8, 4.6 Hz, 1H, H-5), 3.66 (ddd, *J* = 8.8, 5.0, 2.9 Hz, 1H, H-4), 2.49 – 2.41 (m, 1H, H-2_{eq}), 2.13 (ddd, *J* = 13.4, 11.7, 5.7 Hz, 1H, H-2_{ax}); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.5, 138.5, 138.2 (C_{g-arom}), 131.3, 129.0, 129.0, 128.6, 128.5, 128.5, 128.1, 128.0, 127.9, 127.8, 127.8 (CH_{arom}), 84.2 (C-1), 78.1 (C-4), 78.0 (C-3), 75.2, 73.5, 72.0 (CH₂ Bn), 71.8 (C-5), 68.9 (C-6), 36.4 (C-2). Data of the minor stereoisomer (1,3-cis product): ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 4.75 (dd, J = 11.9, 1.9 Hz, 1H, H-1), 1.88 – 1.74 (m, 1H, H-2). ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 82.2 (C-1), 37.0 (C-2); HRMS: [M+Na]⁺ calcd for C₃₃H₃₄NaO₄S 549.2070, found 549.2081.

Preparation of Donor S25

Phenyl 2-azido-2-deoxy-3,4,6-tetra-*O***-benzyl-1-thio-β-D-glucopyranoside (S25).** Compound S25 was obtained from D- glucosamine, according to a literature procedure.[Greenberg, W. A. *et al.* Design and Synthesis of New Aminoglycoside Antibiotics Containing Neamine as an Optimal Core Structure: Correlation of Antibiotic Activity with in Vitro Inhibition of Translation. *J. Am. Chem. Soc.* 121, 6527–6541 (1999)] TLC: R_f 0.61 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 697, 1101, 1105, 1146, 1276, 1453, 2109, 2856, 2919; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.60 (m, 2H, CH_{arom}), 7.35-7.19 (m, 18H, CH_{arom}), 4.86 (d, *J* = 10.5 Hz, 1H, CHH Bn), 4.83 (d, *J* = 10.5 Hz, 1H, CHH Bn), 4.79 (d, *J* = 11.0 Hz, 1H, CHH Bn), 4.62 (d, *J* = 12.0 Hz, 1H, CHH Bn), 4.58 (d, *J* = 10.5 Hz, 1H, CHH Bn), 4.54 (d, *J* = 12.0 Hz, 1H, CHH Bn), 4.41 (d, *J* = 10.0 Hz, 1H, H-1), 3.80 – 3.71 (m, 2H, H-6), 3.61 (t, *J* = 9.5 Hz, 1H, H-4), 3.51 (t, *J* = 9.5 Hz, 1H, H-3), 3.47 (ddd, *J* = 2.0, 4.0, 9.5 Hz, 1H, H-5), 3.34 (t, *J* = 9.5 Hz, 1H, H-2); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.2, 137.8, 137.6 (C_{q-arom}), 133.6, 131.1, 129.0, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6, 127.5 (CH_{arom}), 85.9 (C-1), 85.0 (C-3), 79.3 (C-5), 77.5 (C-4), 75.9, 75.0, 73.4 (CH₂ Bn), 68.7 (C-6), 65.0 (C-2); HRMS: [M+Na]⁺ calcd for C₃₃H₃₃N₃NaO₄S 590.2084, found 590.2094.

Phenyl 2,3,4,6-tetra-*O***-benzyl-1-thio-β-D-mannopyranoside (S26).** Compound S26 was obtained from D-mannose, according to a literature procedure.[S. van der Vorm, T. Hansen, H. S. Overkleeft, G. A. van der Marel, J. D. C. Codée, The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. *Chem. Sci.* 8, 1867–1875 (2017)] TLC: R_f 0.81 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 694, 731, 1026, 1064, 1362, 1454, 2863, 3029; ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC): δ 7.53 – 7.17 (m, 25H, CH_{arom}), 5.05 (d, *J* = 11.5 Hz, 1H, *CH*H Bn), 4.89 (d, *J* = 10.9 Hz, 1H, *CH*H Bn), 4.87 (d, *J* = 11.4 Hz, 1H, CH*H* Bn), 4.77 (d, *J* = 0.9 Hz, 1H, H-1), 4.73 (d, *J* = 11.8 Hz, 1H, CH*H* Bn), 4.69 (d, *J* = 11.8 Hz, 1H, CH*H* Bn), 4.60 (m, 2H, CH*H* Bn, C*H*H Bn), 4.55 (d, *J* = 11.8 Hz, 1H, CH*H* Bn), 4.15 (d, *J* = 2.2 Hz, 1H, H-2), 3.94 (t, *J* = 9.5 Hz, 1H, H-4), 3.84 (dd, *J* = 10.9, 1.8 Hz, 1H, H-6), 3.74 (dd, *J* = 10.9, 6.5 Hz, 1H, H-6), 3.63 (dd, *J* = 9.4, 2.9 Hz, 1H, H-3), 3.54 (ddd, *J* = 9.5, 6.5, 1.8 Hz, 1H, H-5); ¹³C NMR (CDCl₃, 101 MHz, HSQC): δ 138.7, 138.4, 138.3, 138.2, 135.8 (Cq-arom), 130.7, 129.0, 128.6, 128.5, 128.4, 128.3, 128.2, 127.9, 127.9, 127.8, 127.7, 127.5, 127.1 (CH_{arom}), 87.8 (C-1), 84.5 (C-3), 80.3 (C-5), 77.7 (C-2), 75.3 (CH₂Bn), 75.2 (CH₂Bn), 75.1 (C-4), 73.6 (CH₂Bn), 72.7 (CH₂Bn), 70.0 (C-6); ¹³C-GATED NMR (101 MHz, CDCl₃): δ 87.8 (*J*_{C1,H1} = 154 Hz, C-1 β); HRMS: [M+NH₄]⁺ calcd for C₄₀H₄₄NO₅S 650.29347, found 650.29381.

Preparation of Donor S27

Methyl (phenyl 2,3,4-tri-*O***-benzyl-1-thio-β-D-mannopyranosyl uronate) (S27).** Compound S27 was obtained from D-mannose, according to a literature procedure.[Dinkelaar, J. *et al.* Stereodirecting Effect of the Pyranosyl C-5 Substituent in Glycosylation Reactions. *J. Org. Chem.* 74, 4982–4991 (2009)] TLC: R_f 0.40 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 695, 734, 1025, 1067, 1131, 1200, 1286, 1438, 1453, 1747, 2850; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.53 – 7.24 (m, 20H, CH_{arom}), 5.05 (d, *J* = 11.4 Hz, 1H, *CH*H Bn), 4.87 (d, *J* = 11.4 Hz, 1H, CHH Bn), 4.86 (d, *J* = 10.8 Hz, 1H, *CH*H Bn), 4.78 (d, *J* = 1.2 Hz, 1H, H-1), 4.74 – 4.67 (m, 3H, CHH Bn, CHH Bn, CHH Bn), 4.31 (t, *J* = 9.5 Hz, 1H, H-4), 4.14 (dd, *J* = 2.9, 1.2 Hz, 1H, H-2), 3.87 (d, *J* = 9.5 Hz, 1H, H-5), 3.72 (s, 3H, CH₃ COOMe), 3.62 (dd, *J* = 9.5, 2.9 Hz, 1H, H-3); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 168.4 (C=O), 138.2, 138.0, 135.2 (C_{q-arom}), 131.0, 129.1, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.5 (CH_{arom}), 89.0 (C-1), 83.5 (C-3), 78.9 (C-5), 77.4 (C-2), 75.7 (C-4), 75.4, 75.3, 72.9 (CH₂ Bn), 52.5 (C-5); HRMS: [M+Na]⁺ calcd for C₃₄H₃₄NaO₆S 593.1968, found 593.1981.

Preparation of Donor S28

Methyl (phenyl 2-azido-2-deoxy-3,4-tri-*O*-benzyl-1-thio-α-D-mannopyranosyl uronate) (S28). Compound S28 was obtained from D-mannosamine, according to a literature procedure. TLC: R_f 0.45 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 695, 736, 1025, 1119, 1206, 1439, 1453, 1750, 2102; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.65 – 7.26 (m, 15H, CH_{arom}), 5.61 (d, *J* = 7.6 Hz, 1H, H-1), 4.68 (d, *J* = 11.4 Hz, 1H, CHH Bn), 4.63 (d, *J* = 4.4 Hz, 1H, H-5), 4.59 (s, 2H, CH₂ Bn, CH₂ Bn), 4.21 (dd, *J* = 5.7, 4.4 Hz, 1H, H-4), 3.93 (dd, *J* = 5.7, 3.0 Hz, 1H, H-3), 3.72 (dd, *J* = 9.4, 3.5 Hz, 1H, H-2), 3.54 (s, 3H, CH₃COOMe); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 169.5 (C=O), 137.5, 137.0 (C_{q-arom}),

132.6 (CH_{arom}), 132.2 (C_{q-arom}), 129.1, 128.6, 128.6, 128.3, 128.2, 128.2, 128.0, 127.9 (CH_{arom}), 82.3 (C-1), 77.2 (C-3), 74.9 (C-4), 73.2 (CH₂ Bn), 73.1 (C-5), 58.9 (C-2), 52.4 (CH₃ COOMe); HRMS: $[M+Na]^+$ calcd for C₂₇H₂₇N₃NaO₅S 528.1564, found 528.1574.

Preparation of Donor S29

Phenyl 2,3,4,6-tetra-*O***-benzyl-1-thio-β-D-galactopyranoside (S29).** Compound S29 was obtained from D-galactose, according to a literature procedure.[Whitman, C. P.; Hajipour, G.; Watson, R. J.; Johnson, W. H.; Bembenek, M. E.; Stolowicht, N. J. *J. Am. Chem. Soc.* 1992, 114, 10104-10110] TLC: R_f 0.75 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 714, 782, 1060, 1360, 1452, 2855, 2927; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC) δ 7.63 – 7.11 (m, 30H, CH_{arom}), 4.97 (d, *J* = 11.5 Hz, 1H, C*H*H Bn), 4.78 (d, *J* = 10.2 Hz, 1H, C*H*H Bn), 4.76 – 4.70 (m, 3H, CH*H* Bn, CH*H* Bn, C*H*H Bn), 4.64 (d, *J* = 9.7 Hz, 1H, H-1), 4.60 (d, *J* = 11.6 Hz, 1H, CH*H* Bn), 4.47 (d, *J* = 11.7 Hz, 1H, CH*H* Bn), 4.41 (d, *J* = 11.7 Hz, 1H, CHH Bn), 3.98 (dd, *J* = 2.8, 0.8 Hz, 1H, H-4), 3.93 (t, *J* = 9.4 Hz, 1H, H-2), 3.68 – 3.58 (m, 4H, H-3, H-5, H-6, H-6); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.9, 138.5, 138.4, 138.0, 134.3 (C_{q-arom}), 131.7, 128.9, 128.6, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.2 (CH_{arom}), 87.9 (C-1), 84.3 (C-3), 76.9 (C-5), 76.8 (C-2), 75.8, 74.6 (CH₂ Bn), 73.7 (C-4), 72.9 (CH₂ Bn), 68.9 (C-6); HRMS: [M+NH4]⁺ calcd for C₄₀H₄₄No₅S 650.29347, found 650.29380.

Preparation of Donor S30

p-Tolyl 2-deoxy-3,4,6-tetra-*O*-benzyl-1-thio-β-D-galactopyranoside (S30). Compound S30 was obtained from D-galactose, according to a literature procedure.[Chen, J. H., Ruei, J. H. & Mong, K. K. T. Iterative α-Glycosylation Strategy for 2-Deoxy- and 2,6-Dideoxysugars: Application to the One-Pot Synthesis of Deoxysugar-Containing Oligosaccharides. *European Journal of Organic Chemistry* 2014, 1827–1831] TLC: R_f 0.65 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 656, 733, 808, 1027, 1061, 1093, 1360, 1454, 1493, 2862, 3029; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.45 – 6.99 (m, 20H, CH_{arom}), 4.93 (d, *J* = 11.7 Hz, 1H, *CHH* Bn), 4.68 (dd, *J* = 11.8, 2.2 Hz, 1H, H-1), 4.62 (d, *J* = 11.7 Hz, 1H, *CHH* Bn), 4.60 – 4.54 (m, 2H, CH*H* Bn, CH*H* Bn), 4.46 (d, *J* = 11.6 Hz, 1H, *CH*H Bn), 4.41 (d, *J* = 11.7 Hz, 1H, CH*H* Bn), 3.85 (s, 1H, H-4), 3.65 (m, 2H, H-6), 3.58 (ddd, *J* = 11.6, 4.5, 2.4 Hz, 1H, H-3), 3.53 (t, *J* = 6.1 Hz, 1H, H-5), 2.27 (q, *J* = 11.9 Hz, 1H, H-2_{ax}), 2.15 (dt, *J* = 12.9, 2.9 Hz, 1H, H-2_{eq}); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 139.1, 138.3, 138.2 (Cq-arom), 137.4 (CH_{arom}), 132.0 (Cq-arom), 130.6, 129.6, 128.6, 128.5, 128.3, 128.1, 128.0, 127.8, 127.5, 127.5 (CH_{arom}), 83.4 (C-1), 78.5 (C-3), 78.1 (C-5), 74.2, 73.7 (CH₂ Bn), 71.9 (C-4), 70.3 (CH₂ Bn), 69.6, (C-6) 32.6 (C-2); HRMS: [M+Na]⁺ calcd for C₂₇H₂₉NaO₄ 440.1958, found 440.1960.

OMe-protected glycosyl donors

Preparation of Donor S31

$$\underset{MeO}{\overset{OMe}{\longrightarrow}} SPh \qquad \longleftrightarrow \qquad \underset{MeO}{\overset{OMe}{\longrightarrow}} OMe + \underset{MeO}{\overset{OMe}{\longrightarrow}} OMe + \underset{MeO}{\overset{OMe}{\longrightarrow}} SPh$$

Phenyl 2,3,4-tri-O-methyl-1-thio-D-lyxopyranoside (S31). The title compound was prepared according to general procedure IV from D-lyxose. Column chromatography (95:5 \rightarrow 85:15, pentane:EtOAc) yielded compound **S31** (334 mg, 1.17 mmol, 27% over 5 steps, average of 77% per step, colourless oil, 1,2-*cis*:1,2-*trans*; 72:28). TLC: Rf 0.21 (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 692, 743, 934, 1045, 1069, 1196, 1439, 1584, 2825, 2927; Data of the major stereoisomer (1,2-cis isomer product): ¹H NMR (500 MHz, Chloroform-d, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.53 – 7.16 (m, 5H, CH_{arom} SPh), 5.29 (d, J = 4.1 Hz, 1H, H-1), 4.26 (dd, J = 9.8, 3.9 Hz, 1H, H-5), 3.88 (dd, J = 4.3, 2.5 Hz, 1H, H-2), 3.56 - 3.47 (m, 9H, H-3, H-4, H-5, CH₃ Me, CH₃ Me), 3.42 (d, J = 0.9 Hz, 3H, CH₃ Me); 13 C NMR (126 MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 136.9 (Cq-arom SPh), 130.2, 128.5, 126.4 (CHarom SPh), 87.2 (C-1), 78.7 (C-3), 76.8 (C-2), 75.9 (C-4), 60.4 (C-5), 58.7, 57.9, 57.1 (CH₃ Me); ¹³C-GATED NMR (126 MHz, CDCl₃): δ 87.2 (*J*_{Cl-HI}= 158 Hz, 1,2-*cis*); Data of the minor stereoisomer (1,2-trans isomer product): ¹H NMR (500 MHz, Chloroform-d, HH-COSY, HSQC, HMBC, HH-NOESY, HMBC-Gated): δ 7.53 – 7.16 (m, 5H, CH_{arom} SPh), 5.47 (d, J = 3.4 Hz, 1H, H-1), 3.92 – 3.80 (m, 2H, H-5_{ax}, H-5_{co}), 3.76 (t, J = 3.3 Hz, 1H, H-2), 3.62 (td, J = 8.4, 4.8 Hz, 1H, H-4), 3.56 - 3.47 (m, 4H, H-3, CH₃) Me), 3.46 (s, 3H, CH₃ Me), 3.45 (s, 3H, CH₃ Me); ¹³C NMR (126 MHz, CDCl₃, HSQC, HMBC, HMBC-Gated): δ 134.1 (Cq-arom SPh), 130.9, 128.7, 127.0 (CHarom SPh), 84.8 (C-1), 79.4 (C-3), 78.1 (C-2), 75.8 (C-4), 61.7 (C-5), 58.4, 58.2, 57.8 (CH₃ Me); ¹³C-GATED NMR (126 MHz, CDCl₃): δ 84.8 (J_{Cl-Hl} = 164 Hz, 1,2-*trans*); HRMS: [M+Na]⁺ calcd for C₁₄H₂₀NaO₄S 307.09745, found 307.09752.

Preparation of Donor S32

Phenyl 2,3,4-tri-*O*-methyl-1-thio-D-xylopyranoside (S32). The title compound was prepared according to general procedure IV from D-xylose. Column chromatography (95:5 → 85:15, pentane:EtOAc) yielded compound S32 (1.24 g, 4.35 mmol, 79%, colourless oil, 1,2-*cis*:1,2-*trans*; 18:82). TLC: R_f 0.29 (pentane:EtOAc, 8.5:1.5, v:v); IR (thin film, cm⁻¹): 692, 745, 1051, 1094, 1130, 1157, 1439, 1462, 2831, 2899, 2931; Data of the minor stereoisomer (1,2-*trans* isomer product): ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, HMBC): δ 7.54 – 7.23 (m, 5H, CH_{arom} SPh), 4.59 (d, *J* = 8.9 Hz, 1H, H-1), 4.11 (dd, *J* = 11.3, 4.6 Hz, 1H, H-5_{eq}), 3.62 (s, 3H, CH₃ Me), 3.59 (s, 3H, CH₃ Me), 3.46 (s, 3H, CH₃ Me), 3.26 (ddd, *J* = 9.2, 8.2, 4.6 Hz, 1H, H-4), 3.23– 3.15 (m, 2H, H-3, H-5_{ax}), 3.07 (dd, *J* = 8.9, 7.9 Hz, 1H, H-2); ¹³C NMR (126 MHz, CDCl₃, HSQC, HMBC): δ 133.9 (C_{q-arom}), 131.9, 129.0, 127.5 (CH_{arom}), 87.8 (C-1), 86.5 (C-3), 82.0 (C-2), 79.1 (C-4), 66.4 (C-5), 60.7 (CH₃ Me, CH₃ Me), 58.7 (CH₃ Me); Data of the minor stereoisomer (1,2*-cis* isomer product): ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, HMBC): δ 5.65 (d, *J* = 5.3 Hz, 1H, H-1), 4.03 – 3.94 (m, 1H, H-5), 3.79 (dd, *J* = 11.5, 5.5 Hz, 1H, H-5), 3.64 (s, 3H, CH₃ Me), 3.52 (s, 3H, CH₃ Me), 3.50 (s, 3H, CH₃ Me), 3.35 (t, *J* = 9.0 Hz, 1H, H-3); ¹³C NMR (126 MHz, CDCl₃, HSQC, HMBC): δ 134.6 (C_{q-arom}), 131.6, 129.1, 127.3 (CH_{arom}), 87.0 (C-1), 82.9 (C-3), 61.1 (CH₃ Me), 60.7 (C-5), 59.1, 58.4 (CH₃ Me); HRMS: [M+Na]⁺ calcd for C₁₄H₂₀NaO₄S 307.09745, found 307.09757.

Preparation of Donor S33

Phenyl 2,3,4,6-tetra-O-methyl-1-thio-β-D-glucopyranoside (S33). Phenyl 1-thio-β-D-glucose (1.36 g, 5.0 mmol) [S. van der Vorm, T. Hansen, H. S. Overkleeft, G. A. van der Marel, J. D. C. Codée, The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. Chem. Sci. 8, 1867-1875 (2017)] was dissolved in DMF (25 mL, 0.25 M) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 0.96 g, 24.0 mmol, 4.8 eq.) was added, and the resulting mixture was stirred for 10 minutes. Subsequently, methyl iodide (1.5 mL, 24.0 mmol, 4.8 eq.) was added, and the reaction mixture was allowed to warm up to rt. and stirred for an additional 16 h. The reaction was quenched with MeOH and diluted with H₂O, after which the resulting mixture was extracted with Et₂O (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Column chromatography ($75:15 \rightarrow 80:20$, pentane:EtOAc) yielded compound **S33** (1.05) g, 3.2 mmol, 64%, colourless solid). TLC: R₁ 0.33 (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 2932, 2833, 1097; ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.64 – 7.21 (m, 5H, CH_{arom}), 4.52 (d, J = 9.8 Hz, 1H, H-1), 3.71 – 3.63 (m, 4H, CH₃, H-6), 3.63 (s, 3H, CH₃), 3.59 (dd, *J* = 10.8, 4.7 Hz, 1H, H-6), 3.56 (s, 3H, CH₃), 3.42 (s, 3H, CH₃), 3.32 (ddd, *J* = 9.4, 4.7, 2.0 Hz, 1H, H-5), 3.24 (t, *J* = 8.6 Hz, 1H, H-3), 3.19 (t, *J* = 9.3 Hz, 1H, H-4), 3.08 (dd, J = 9.8, 8.3 Hz, 1H, H-2); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 134.1 (C_{q-arom}), 131.8, 128.9, 127.4 (CHarom), 88.8 (C-4), 87.5 (C-1), 82.7 (C-2), 79.4 (C-3), 78.9 (C-5), 71.5 (C-6), 61.1 (CH₃), 61.0 (CH₃), 60.6 (CH₃), 59.5 (CH₃); HRMS: [M+Na]⁺ calcd for C₁₆H₂₄NaO₅S 351.1237, found 351.1239.

Preparation of Donor S34

Phenyl 2,3,4,6-tetra-O-methyl-1-thio-β-D-mannopyranoside (S34). Phenyl 1-thio-β-D-mannose (0.5 g, 1.8 mmol) [S. van der Vorm, T. Hansen, H. S. Overkleeft, G. A. van der Marel, J. D. C. Codée, The influence of acceptor nucleophilicity on the glycosylation reaction mechanism. Chem. Sci. 8, 1867-1875 (2017)] was dissolved in DMF (9.2 mL, 0.2 M) and cooled to 0 °C. NaH (60% dispersion in mineral oil, 0.35 g, 8.8 mmol, 4.8 eq.) was added, and the resulting mixture was stirred for 10 minutes. Subsequently, methyl iodide (0.55 mL, 8.8 mmol, 4.8 eq.) was added, and the reaction mixture was allowed to warm up to rt. and stirred for an additional 16 h. The reaction was quenched with MeOH and diluted with H₂O, after which the resulting mixture was extracted with Et₂O (3x). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. Column chromatography (75:15 \rightarrow 80:20, pentane:EtOAc) yielded compound S34 (0.5 g, 1.5 mmol, 83%, colourless solid). TLC: Rf 0.30 (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 2982, 2907, 1069, 737; ¹H NMR (400 MHz, Chloroform-d, HH-COSY, HSQC): δ 7.74 – 7.04 (m, 5H, CH_{arom} SPh), 4.71 (d, J = 1.0 Hz, 1H, H-1), 3.89 (dd, J = 3.2, 1.0 Hz, 1H, H-2), 3.74 - 3.58 (m, 5H, CH₃, H-6), 3.53 (s, 6H, CH₃, CH₃), 3.45 (t, *J* = 9.5 Hz, 1H, H-4), 3.39 (s, 3H, CH₃), 3.31 (ddd, *J* = 9.7, 5.9, 1.9 Hz, 1H, H-5), 3.24 (dd, *J* = 9.3, 3.1 Hz, 1H, H-3); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 135.5 (C_{q-arom}), 130.7, 128.9, 127.1 (CH_{arom}), 87.5 (C-1), 86.1 (C-3), 79.7 (C-5), 79.1 (C-2), 76.4 (C-4), 71.9 (C-6), 62.1 (CH₃), 60.9 (CH₃), 59.4 (CH₃), 58.1 (CH₃); HRMS: $[M+Na]^+$ calcd for C₁₆H₂₄NaO₅S 351.1237, found 351.1240.

Model glycosylation reactions

OBn-protected glycosyl donors

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-D-lyxopyranoside (S35).** The title compound was prepared according to general procedure V yielding compound **S35** (33 mg, 81 µmol, 81%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: $R_f 0.57$ (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20} -30.2^{\circ}$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 731, 1026, 1096, 1350, 1452, 2875, 2916; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.38 – 7.26 (m, 15H, CH_{arom}), 4.71 (d, *J* = 12.1 Hz, 1H, C*H*H Bn), 4.65 – 4.58 (m, 5H, CH*H* Bn, CH₂ Bn, CH₂ Bn), 3.88 (dd, *J* = 11.8, 3.5 Hz, 1H, H-5), 3.82 (t, *J* = 3.0 Hz, 1H, H-2), 3.78 (td, *J* = 6.4, 3.5 Hz, 1H, H-4), 3.68 (dd, *J* = 6.7, 3.0 Hz, 1H, H-3), 3.47 (d, *J* = 2.8 Hz, 1H, H-1), 3.41 (dd, *J* = 11.7, 6.1 Hz, 1H, H-5); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.7, 138.4, 138.4 (C_{q-arom}), 128.5, 128.5, 127.9, 127.9, 127.8, 127.8, 127.7 (CH_{arom}), 77.9 (C-3), 75.2 (C-4), 73.2 (C-2), 72.6, 71.6 (CH₂ Bn), 67.3 (C-5), 66.2 (t, *J* = 23.0 Hz, C-1); ²H NMR (77 MHz, CHCl₃) δ 3.86 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₆H₃₁DNO4 423.23941, found 423.23876.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-D-arabinopyranoside (S36).** The title compound was prepared according to general procedure V yielding compound S36 (35 mg, 86 μmol, 86%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.52 (pentane:EtOAc, 9:1, v:v); ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.38 – 7.26 (m, 15H, CH_{arom}), 4.71 (d, J = 12.2 Hz, 1H, C*H*H Bn), 4.68 – 4.57 (m, 5H, CH*H* Bn, CH₂ Bn, CH₂ Bn), 3.89 – 3.79 (m, 3H, H-1, H-2, H-5), 3.76 (dd, J = 6.6, 3.4 Hz, 1H, H-3), 3.68 (dd, J = 6.6, 2.4 Hz, 1H, H-4), 3.51 (t, J = 7.9 Hz, 1H, H-5); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.7, 138.4 (C_{q-arom}), 128.5, 128.5, 128.5, 127.9, 127.8, 127.8, 127.7 (CH_{arom}), 77.7 (C-4), 75.1 (C-3), 73.3 (C-2), 72.6, 72.5, 71.5 (CH₂ Bn), 66.8 (t, J = 23.4 Hz, C-1), 66.4 (C-5); ²H NMR (77 MHz, CHCl₃): δ 3.44 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₆H₃₁DNO₄ 423.23941, found 423.23876.

1-Deutero-1-deoxy-D-arabinopyranoside (S37). The title compound was prepared according to general procedure VI yielding compound **S37** (12 mg, 89 μmol, 89%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.53 (DCM:MeOH, 8:2, v:v); $[\alpha]_D^{20}$ –6.1° (*c* 0.25, MeOH); IR (thin film, cm⁻¹): 1014, 1410, 1449, 1647, 2951, 3294; ¹H NMR (400 MHz, Methanol-*d*₄, HH-COSY, HSQC, NOESY): δ 3.87 (dt, *J* = 5.8, 2.9 Hz, 1H, H-4), 3.79 (d, *J* = 3.8 Hz, 1H, H-1), 3.74 (dd, *J* = 7.4, 4.1 Hz, 1H, H-2), 3.72 (dd, *J* = 11.7, 5.2 Hz, 1H, H-5), 3.56 (dd, *J* = 7.4, 3.4 Hz, 1H, H-3), 3.50 (dd, *J* = 11.7, 2.6 Hz, 1H, H-5); ¹³C NMR (101 MHz, MeOD, HSQC): δ 74.2 (C-3), 70.4 (C-5), 69.98 (t, *J* = 21.9 Hz, C-1), 69.3 (C-2), 69.0 (C-4); ²H NMR (77 MHz, MeOH): δ 3.15 (D-1); HRMS: [M+H]⁺ calcd for C₅H₁₀DO₄ 136.07201, found 136.07146.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-D-xylopyranoside (S38).** The title compound was prepared according to general procedure V yielding compound **S38** (35 mg, 86 μmol, 86%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.44 (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20}$ –121.8° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 733, 1026, 1070, 1454, 1497, 2851, 2916; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.45 – 7.18 (m, 15H, CH_{arom}), 4.89 (s, 2H, CH₂ Bn), 4.73 (d, *J* = 11.6 Hz, 2H, CH₂ Bn), 4.63 (d, *J* = 11.6 Hz, 2H, CH₂ Bn), 3.96 – 3.90 (m, 2H, H-1, H-5_{eq}), 3.60 – 3.47 (m, 3H, H-2, H-3, H-4), 3.14 (dd, *J* = 11.1, 9.9 Hz, 1H, H-5_{ax}); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.9, 138.4 (C_{q-arom}), 128.6, 128.5, 128.1, 127.9, 127.7 (CH_{arom}), 85.3 (C-3), 78.1, 78.1 (C-2/C-4), 75.6, 73.5, 73.5 (CH₂ Bn), 68.9 (C-5), 68.7, (t, *J* = 22.5 Hz, C-1); ²H NMR (77 MHz, CHCl₃) δ 3.16 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₆H₃₁DNO₄ 423.23941, found 423.23871.

1-Deutero-1,2-di-deoxy-3,4-di-*O***-benzyl-D-xylopyranoside (S39).** The title compound was prepared according to general procedure V yielding compound **S39** (22 mg, 74 µmol, 74%, colourless oil, 1,3-*cis*:1,3-*trans*; >98:2). TLC: $R_f 0.63$ (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{25} - 16.2^\circ$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 730, 1020, 1077, 1456, 1496, 2850, 2910; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.65 – 6.57 (m, 10H, CH_{arom}), 4.74 (d, *J* = 11.8 Hz, 1H, C*H*H Bn), 4.71 – 4.63 (m, 3H, CH*H* Bn, C*H*H Bn, CH*H* Bn), 3.95 (dd, *J* = 11.5, 4.3 Hz, 1H, H-5), 3.58 (ddd, *J* = 9.1, 7.3, 4.5 Hz, 1H, H-3), 3.47 (ddd, *J* = 8.1, 7.3, 4.3 Hz, 1H, H-4), 3.39 (dd, *J* = 9.9, 2.8 Hz, 1H, H-1), 3.29 (dd, *J* = 11.5, 8.2 Hz, 1H, H-5), 2.06 (ddd, *J* = 13.4, 4.5, 2.9 Hz, 1H, H-2_{eq}), 1.64 (ddd, *J* = 13.4, 9.9, 9.2 Hz, 1H, H-2_{ax}); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.8, 138.6 (C_{q-arom}), 128.5, 128.5, 127.9, 127.8, 127.7, 127.7 (CH_{arom}), 78.0 (C-3), 77.3 (C-4), 72.8, 71.7 (CH₂ Bn), 68.2 (C-5), 65.24 (t, *J* = 22.3 Hz, C-1), 30.3 (C-2); ²H NMR (77 MHz, CHCl₃): δ 3.89 (D-1); HRMS: [M+Na]⁺ calcd for C₁₉H₂₁NaDO₃ 322.1524, found 322.1526.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-D-ribopyranoside (S40).** The title compound was prepared according to general procedure V yielding compound S40 (28 mg, 69 μmol, 69%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.62 (pentane:EtOAc, 9:1, v:v); ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.56 – 7.17 (m, 15H, CH_{arom}), 4.88 (s, 2H, CH₂ Bn), 4.56 (d, *J* = 12.1 Hz, 2H, CH₂ Bn), 4.52 (d, *J* = 12.1 Hz, 2H, CH₂ Bn), 4.21 (t, *J* = 2.1 Hz, 1H, H-3), 3.74 – 3.68 (m, 3H, H-1, H-5, H-5), 3.48 – 3.43 (m, 3H, H-2, H-4); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 139.4, 138.3 (C_{q-arom}), 128.6, 128.3, 127.9, 127.8, 127.6, 127.4 (CH_{arom}), 75.8, 75.7 (C-2/C-4), 74.0 (C-3), 73.8, 71.2, 71.2 (CH₂ Bn), 64.5 (C-5), 64.2 (t, *J* = 22.7 Hz, C-1); ²H NMR (77 MHz, CHCl₃): δ 3.71 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₆H₃₁DNO₄ 423.23941, found 423.23877.

1-Deutero-1-deoxy-D-ribopyranoside (S41). The title compound was prepared according to general procedure VI yielding compound **S41** (12 mg, 89 µmol, 89%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.50 (DCM:MeOH, 8:2, v:v); $[\alpha]_p^{20}$ 10.5° (*c* 1, MeOH); IR (thin film, cm⁻¹): 1013, 1043, 1105, 1412, 1448, 1645, 2920,

3368; ¹H NMR (500 MHz, Methanol-*d*₄, HH-COSY, HSQC, NOESY): δ 3.86 (t, J = 2.9 Hz, 1H, H-3), 3.70 – 3.65 (m, 2H, H-2, H-4), 3.62 (dd, J = 11.0, 7.3 Hz, 1H, H-5), 3.54 – 3.48 (m, 2H, H-1, H-5); ¹³C NMR (126 MHz, MeOD, HSQC): δ 68.9 (C-3), 67.9 (C-2, C-4), 67.8 (C-5), 66.61 (t, J = 21.5 Hz, C-1); ²H NMR (77 MHz, MeOH): δ 3.57 (D-1); HRMS: [M+H]⁺ calcd for C₅H₁₀DO₄ 136.07201, found 136.07141.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-α-L-fucopyranoside (S42).** The title compound was prepared according to general procedure V yielding compound S42 (31 mg, 74 μmol, 74%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: $R_f 0.54$ (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20} -35.0^\circ$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 694, 733, 1026, 1070, 1088, 1360, 1454, 1497, 2851, 2916; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.42 – 7.24 (m, 15H, CH_{arom}), 4.99 (d, *J* = 11.6 Hz, 1H, *CH*H Bn), 4.86 – 4.75 (m, 3H, CH*H* Bn, CH₂ Bn), 4.71 – 4.63 (m, 2H, CH₂ Bn), 4.06 – 4.00 (m, 2H, H-1, H-2), 3.64 (dd, *J* = 2.9, 1.1 Hz, 1H, H-4), 3.54 (dd, *J* = 8.7, 2.9 Hz, 1H, H-3), 3.40 (qd, *J* = 6.4, 1.1 Hz, 1H, H-5), 1.14 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.8, 138.6 (Cq-arom), 128.6, 128.5, 128.5, 128.3, 127.9, 127.8, 127.7, 127.7, 127.6 (CH_{arom}), 84.2 (C-3), 77.1 (C-4), 75.2 (C-5), 75.1 (CH₂ Bn), 74.9 (C-2), 73.6, 72.9 (CH₂ Bn), 66.75 (t, *J* = 23.5 Hz, C-1), 17.3 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 3.17 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₇H₃₃DNO₄ 437.25506, found 437.25445.

1-Deutero-1,2-di-deoxy-3,4-di-*O***-benzyl-α-L-fucopyranoside** (S43). The title compound was prepared according to general procedure V yielding compound S43 (26 mg, 83 μmol, 83%, colourless oil, 1,3-*cis*:1,3-*trans*; <2:98). TLC: R_f 0.21 (pentane:EtOAc, 9:1, v:v); IR (thin film, cm⁻¹): 696, 733, 1028, 1063, 1082, 1105, 1175, 1364, 1454, 2855, 2927, 2949; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.54 – 7.18 (m, 10H, CH_{arom}), 4.98 (d, *J* = 11.7 Hz, 1H, *CH*H Bn), 4.71 (d, *J* = 11.7 Hz, 1H, CH*H* Bn), 4.65 (d, *J* = 12.1 Hz, 1H, *CH*H Bn), 4.01 (dd, *J* = 5.0, 1.7 Hz, 1H, CH*H* Bn), 4.65 (dd, *J* = 12.2 Hz, 1H, CH*H* Bn), 4.01 (dd, *J* = 6.4, 1.1 Hz, 1H, H-1), 3.58 (dt, *J* = 2.5, 1.2 Hz, 1H, H-4), 3.55 (ddd, *J* = 11.7, 4.5, 2.5 Hz, 1H, H-3), 3.34 (qd, *J* = 6.4, 1.1 Hz, 1H, H-5), 2.16 (td, *J* = 12.2, 4.9 Hz, 1H, H-2_{ax}), 1.76 (ddt, *J* = 12.6, 4.5, 1.6 Hz, 1H, H-2_{eq}), 1.17 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 139.0, 138.7 (C_{q-arom}), 128.6, 128.3, 127.7, 127.6, 127.4 (CH_{arom}), 79.2 (C-3), 76.0 (C-4), 75.1 (C-5), 74.6 (CH₂ Bn), 70.1 (CH₂ Bn), 65.84 (t, *J* = 21.2 Hz, C-1), 26.9 (C-2), 18.0 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 3.40 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₀H₂₇DNO₃ 331.21320, found 331.21289.

1-Deutero-2-azido-2-deoxy-3,4-di-*O***-benzyl-α-L-fucopyranoside (S44).** The title compound was prepared according to general procedure V yielding compound S44 (23 mg, 65 μmol, 65%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.35 (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20}$ -2.1° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 1123, 1265, 1724, 2106; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.47 – 7.27 (m, 10H, CH_{arom}), 4.95 (d, *J* = 11.5 Hz, 1H, C*H*H Bn), 4.76 (d, *J* = 11.6 Hz, 1H, C*H*H Bn), 4.71 (d, *J* = 11.6 Hz, 1H, CHH Bn), 4.64 (d, *J* =

11.5 Hz, 1H, CH*H* Bn), 4.02 (dd, J = 9.6, 5.5 Hz, 1H, H-2), 3.97 (d, J = 5.5 Hz, 1H, H-1), 3.65 (d, J = 2.7 Hz, 1H, H-4), 3.43 (dd, J = 9.6, 2.7 Hz, 1H, H-3), 3.38 (q, J = 6.5 Hz, 1H, H-5), 1.17 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.3, 137.7 (C_{q-arom}), 128.7, 128.5, 128.4, 128.1, 128.0, 127.9 (CH_{arom}), 83.3 (C-3), 75.5 (C-2), 75.2 (C-5), 75.0, 72.2 (CH₂ Bn), 68.2 (t, J = 21.2 Hz, C-1), 58.3 (C-4), 17.5 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 3.08 (D-1); HRMS: [M-N₂+H]⁺ calcd for C₂₀H₂₃DNO₃ 327.18135, found 327.18146.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-β-L-rhamnopyranoside** (S45). The title compound was prepared according to general procedure V yielding compound S45 (33 mg, 79 μmol, 79%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.38 (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20}$ 26.1° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 694, 733, 1026, 1092, 1113, 1354, 1452, 1497, 2860; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.46 – 7.26 (m, 15H, CH_{arom}), 4.99 (d, *J* = 10.8 Hz, 1H, *CH*H Bn), 4.81 (d, *J* = 12.7 Hz, 1H, CH*H* Bn), 4.72 – 4.61 (m, 3H, CH₂ Bn, *CH*H Bn), 4.57 (d, *J* = 11.9 Hz, 1H, *CHH* Bn), 3.75 (dd, *J* = 3.3, 1.0 Hz, 1H, H-2), 3.62 (t, *J* = 9.2 Hz, 1H, H-4), 3.53 (dd, *J* = 9.3, 3.2 Hz, 1H, H-3), 3.28 (dq, *J* = 9.0, 6.0 Hz, 1H, H-5), 3.24 (s, 1H, H-1), 1.36 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.7, 138.5, 138.4 (C_{q-arom}), 128.5, 128.2, 127.8, 127.7 (CH_{arom}), 82.8 (C-4), 80.8 (C-3), 76.5 (C-5), 75.7 (CH₂ Bn), 72.6 (C-2), 71.7, 71.3 (CH₂ Bn), 66.8 (t, *J* = 23.5 Hz, C-1), 18.4 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 4.03 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₇H₃₃DNO₄ 437.25506, found 437.25446.

1-Deutero-1,2-di-deoxy-3,4-di-O-benzyl-L-rhamnopyranoside (S46). The title compound was prepared according to general procedure V yielding compound **S46** (27 mg, 86 μmol, 86%, colourless oil, 1,3-*cis*:1,3-*trans*; 66:34). TLC: R_f 0.24 (pentane:Et₂O, 8:2, v:v); IR (thin film, cm⁻¹): 696, 735, 1089, 1107, 1360, 1454, 2855, 2924. Data of the major stereoisomer (1,3-*cis* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.38 – 7.21 (m, 10H, CH_{arom}), 4.96 (d, *J* = 10.9 Hz, 1H, *CH*H Bn), 4.70 (d, *J* = 11.7 Hz, 1H, CH*H* Bn), 4.66 (d, *J* = 10.9 Hz, 1H, *CH*H Bn), 4.63 (d, *J* = 11.7 Hz, 1H, CH*H* Bn), 3.59 (ddd, *J* = 11.4, 8.6, 5.1 Hz, 1H, H-3), 3.33 (dd, *J* = 12.8, 2.0 Hz, 0.66H, H-1), 3.27 (dq, *J* = 9.2, 6.1 Hz, 1H, H-5), 3.10 (t, *J* = 8.9 Hz, 1H, H-4), 2.08 (ddd, *J* = 13.0, 5.1, 2.0 Hz, 1H, H-2_{eq}), 1.67 (td, *J* = 12.9, 11.3 Hz, 1H, H-2_{ax}), 1.30 (d, *J* = 6.1 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CHCl₃, HSQC): δ 138.7 (Cq-arom), 128.5, 128.2, 127.8, 127.7 (CH_{arom}), 84.5 (C-4), 81.1 (H-3), 76.1 C-5), 75.5 (CH₂ Bn), 71.5 (CH₂ Bn), 65.21 (t, *J* = 22.4 Hz, C-1), 31.8 (C-2), 18.7 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 3.91 (D-1); Data of the minor stereoisomer (1,3-*trans* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): 3.88 (dd, *J* = 5.0, 1.7 Hz, 0.34 H, H-1'); ²H NMR (77 MHz, CHCl₃): δ 3.36 (D-1'); HRMS: [M+NH₄]⁺ calcd for C₂₀H₂₇DNO₃ 331.21320, found 331.21269.

1-Deutero-1-deoxy-2,3,4,6-tetra-*O***-benzyl-***α***-D-glucopyranoside** (S47). The title compound was prepared according to general procedure V yielding compound S47 (37 mg, 70 μmol, 70%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.69 (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{20}$ 5.3° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 698, 731, 1024, 1093, 1123, 1353, 1451, 1499, 2867; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.61 – 6.96 (m,

20H, CH_{arom}), 4.97 (d, J = 11.0 Hz, 1H, CHH Bn), 4.84 (d, J = 11.0 Hz, 1H, CHH Bn), 4.83 (d, J = 10.7 Hz, 1H, CHH Bn), 4.71 (d, J = 11.6 Hz, 1H, CHH Bn), 4.63 (d, J = 11.6 Hz, 1H, CHH Bn), 4.59 (d, J = 12.2 Hz, 1H, CHH Bn), 4.63 (d, J = 10.7 Hz, 1H, CHH Bn), 4.59 (d, J = 12.2 Hz, 1H, CHH Bn), 4.63 (d, J = 10.7 Hz, 1H, CHH Bn), 4.59 (d, J = 12.2 Hz, 1H, CHH Bn), 4.63 (d, J = 10.7 Hz, 1H, CHH Bn), 4.01 (d, J = 4.5 Hz, 1H, H-1), 3.74 – 3.59 (m, 4H, H-2, H-6, H-6, H-5), 3.56 (ddd, J = 9.2, 5.7, 3.5 Hz, 1H, H-4), 3.37 (ddd, J = 9.5, 4.3, 2.1 Hz, 1H, H-3); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.8, 138.3, 138.2, 138.0 (C_{q-arom}), 128.6, 128.5, 128.5, 128.1, 128.1, 128.0, 128.0, 127.9, 127.8, 127.7 (CH_{arom}), 86.5 (C-2/C-5), 79.3 (C-3), 78.5 (C-5/C-2), 77.9 (C-4), 75.7 (CH₂ Bn), 75.3 (CH₂ Bn), 73.7 (CH₂ Bn), 73.4 (CH₂ Bn), 69.1 (C-6), 67.9 (t, J = 21.5 Hz, C-1); HRMS: [M+Na]⁺ calcd for C₃₄H₃₅NaDO₅ 548.2518, found 548.2521.

Methyl (2,3,4-tri-*O***-benzyl-1-deoxy-α-deuterio-D-glucopyranosyl uronate) (S48).** The title compound was prepared according to general procedure V yielding compound **S48** (20 mg, 43 µmol, 43%, colourless oil, 1,2*cis*:1,2-*trans*; >98:2). TLC: $R_f 0.73$ (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{25}$ 54.5° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 695, 734, 1027, 1070, 1211, 1438, 1454, 1747, 2950; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ ¹H NMR (500 MHz, Chloroform-*d*) δ 7.55 – 7.13 (m, 20H, CH_{arom}), 4.93 (d, *J* = 11.0 Hz, 1H, *CH*H Bn), 4.84 (d, *J* = 11.0 Hz, 1H, CH*H* Bn), 4.79 (d, *J* = 10.8 Hz, 1H, *CH*H Bn), 4.72 (d, *J* = 11.6 Hz, 1H, *CH*H Bn), 4.62 (d, *J* = 11.6 Hz, 1H, CH*H* Bn), 4.57 (d, *J* = 10.8 Hz, 1H, CH*H* Bn), 4.02 (d, *J* = 4.4 Hz, 1H, H-1), 3.84 (d, *J* = 9.4 Hz, 1H, H-5), 3.70 (s, 3H, CH₃ COOMe), 3.75 – 3.64 (m, 3H, H-2, H-3, H-4); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 169.8 (C=O), 138.6, 138.1, 137.9 (C_{q-arom}), 128.7, 128.6, 128.5, 128.1, 128.1, 128.0, 128.0, 128.0, 127.9 (CH_{arom}), 85.3 (C-3), 79.5 (C-4), 78.7 (C-5), 77.7 (C-2), 75.7, 75.3, 73.6 (CH₂ Bn), 67.95 (t, *J* = 21.1 Hz, C-1), 52.6 (CH₃ COOMe); ²H NMR (77 MHz, CHCl₃): δ 3.26 (D-1); HRMS: [M+Na]⁺ calcd for C₂₈H₂₉DO₆Na 486.1997, found 486.2004.

1-Deutero-1,2-di-deoxy-3,4,6-tri-*O***-benzyl-D-glucopyranoside** (**S49**). The title compound was prepared according to general procedure V yielding compound **S49** (32 mg, 43 μmol, 43%, colourless oil, 1,3-*cis*:1,3-*trans*; 52:48). TLC: $R_f 0.62$ (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 734, 1027, 1086, 1360, 1452, 2862, 2922; Data of the major stereoisomer (1,3-*cis* product): ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.40 – 7.11 (m, 15H, CH_{arom}), 4.90 (d, *J* = 10.8 Hz, 1H, C*H*H Bn), 4.70 (d, *J* = 11.7 Hz, 1H, C*H*H Bn), 4.63 (d, *J* = 10.3 Hz, 1H, CH*H* Bn), 4.60 (d, *J* = 10.8 Hz, 1H, C*H*H Bn), 4.53 (d, *J* = 12.2 Hz, 1H, CH*H* Bn), 4.52 (d, *J* = 10.8 Hz, 1H, C*H*H Bn), 3.72 – 3.59 (m, 3H, H-3, H-6, H-6), 3.49 (t, *J* = 9.1 Hz, 1H, H-4), 3.39 – 3.31 (m, 1.52H, H-1, H-5), 2.07 (ddd, *J* = 13.0, 5.0, 1.9 Hz, 1H, H-2_{eq}), 1.70 (dddd, *J* = 16.3, 12.9, 9.5, 3.9 Hz, 1H, H-2_{ax}); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.7, 138.6, 138.2 (Cq-arom), 128.5, 128.5, 128.5, 128.1, 128.1, 127.8, 127.7, 127.7 (CH_{arom}), 81.3 (C-3), 79.4 (C-5), 78.6 (C-4), 75.2, 73.7, 71.5 (CH₂ Bn), 69.6 (C-6), 65.5 (t, *J* = 22.5 Hz, C-1), 31.5 (C-2); ²H NMR (77 MHz, CHCl₃): δ 4.05 (D-1); Data of the minor stereoisomer (1,3-*trans* product): ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): 3.98 (dd, *J* = 5.0, 1.7 Hz, 0.48 H, H-1'); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 65.5 (t, *J* = 22.5 Hz, C-1); ²H NMR (77 MHz, CHCl₃): δ 3.36 (D-1'); HRMS: [M+Na]⁺ calcd for C₂₇H₂₉DO₄Na 442.2099, found 442.2103.

1-Deutero-2-azido-1,2-di-deoxy-3,4,6-tri-*O***-benzyl-1-α-D-glucopyranoside (S50).** The title compound was prepared according to general procedure V yielding compound **S50** (24 mg, 52 μmol, 52%, colourless oil, 1,2*cis*:1,2-*trans*; >98:2). TLC: R_f 0.77 (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{25} - 9.2^\circ$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 697, 735, 1027, 1059, 1109, 1137, 1261, 1362, 1454, 1497, 2104, 2866; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.51 – 6.88 (m, 15H, CH_{arom}), 4.88 (s, 2H, CH₂ Bn), 4.80 (d, *J* = 10.8 Hz, 1H, C*H*H Bn), 4.60 (d, *J* = 12.1 Hz, 1H, C*H*H Bn), 4.52 (d, *J* = 10.8 Hz, 1H, CH*H* Bn), 4.51 (d, *J* = 12.1 Hz, 1H, CH*H* Bn), 4.01 (d, *J* = 5.4 Hz, 1H, H-1), 3.71 – 3.57 (m, 4H, H-2, H-4, H-6, H-6), 3.51 (dd, *J* = 9.5, 8.9 Hz, 1H, H-3), 3.36 (ddd, *J* = 9.7, 4.1, 2.3 Hz, 1H, H-5); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.0, 137.9, 137.9 (C_{q-arom}), 128.6, 128.6, 128.6, 128.3, 128.1, 128.0, 128.0, 127.9 (CH_{arom}), 85.5 (C-3), 79.7 (C-5), 78.3 (C-4), 75.7, 75.2, 73.7 (CH₂ Bn), 68.8 (C-6), 68.0 (t, *J* = 21.5 Hz, C-1), 61.9 (C-2); HRMS: [M+Na]⁺ calcd for C₂₇H₂₈DN₃NaO₄ 483.2113, found 483.2118.

1-Deutero-1-deoxy-2,3,4,6-tetra-*O***-benzyl-β-D-mannopyranoside (S51).** The title compound was prepared according to general procedure V yielding compound **S51** (49 mg, 93 μmol, 93%, colourless oil, 1,2-*cis*:1,2-*trans*; 95:5). TLC: $\mathbb{R}_f 0.60$ (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{20} -28.3^\circ$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 699, 723, 1020, 1090, 1128, 1356, 1454, 1498, 2860; Data of the major stereoisomer (1,2-*cis* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.66 – 7.03 (m, 20H, CH_{arom}), 4.92 (d, *J* = 10.8 Hz, 1H, *CH*H Bn), 4.80 (d, *J* = 12.6 Hz, 1H, *CH*H Bn), 4.65 (d, *J* = 12.4 Hz, 1H, *CH*H Bn), 4.63 – 4.54 (m, 4H, *CH*H Bn, CH*H* Bn, CH*H* Bn, CH*H* Bn, CH*H* Bn, 4.52 (d, *J* = 10.8 Hz, 1H, CH*H* Bn), 3.89 (t, *J* = 9.4 Hz, 1H, H-4), 3.79 – 3.64 (m, 3H, H-2, H-6, H-6), 3.57 (dd, *J* = 9.3, 3.3 Hz, 1H, H-3), 3.42 (ddd, *J* = 9.6, 5.9, 2.1 Hz, 1H, H-5), 3.27 (s, 0.95H, H-1); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.5, 138.4, 138.3, 138.3 (Cq-arom), 129.4, 128.5, 128.5, 128.4, 128.1, 128.1, 128.0, 127.8, 127.7, 127.7 (CH_{arom}), 82.9 (C-3), 79.8 (C-5), 75.4 (CH₂ Bn), 75.3 (C-4), 73.6 (CH₂ Bn), 72.3 (C-2), 71.6, 71.0 (CH₂ Bn), 69.8 (C-6), 66.5 (t, *J* = 22.2 Hz, C-1); Data of the minor stereoisomer (1,2-*trans* product): ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 4.11 (d, *J* = 2.3 Hz, 0.05H); HRMS: [M+Na]⁺ calcd for C₃₄H₃₅NaDO₅ 548.2518, found 548.2521.

Methyl (2,3,4-tri-*O*-benzyl-1-deoxy-β-deuterio-D-mannopyranosyl uronate) (S52). The title compound was prepared according to general procedure V yielding compound S52 (35 mg, 76 µmol, 76%, colourless oil, 1,2*cis*:1,2-*trans*; >98:2). TLC: R_f 0.72 (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{25}$ –8.3° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 696, 735, 1027, 1091, 1104, 1205, 1454, 1750, 2869; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.80 – 7.15 (m, 15H, CH_{arom}), 4.66 (s, 2H, CH₂ Bn), 4.62 (d, *J* = 12.2 Hz, 1H. C*H*H Bn), 4.60 – 4.52 (m, 3H, C*H*H Bn, CH*H* Bn, CH*H* Bn), 4.26 (dd, *J* = 6.3, 4.9 Hz, 1H, H-4), 4.13 (d, *J* = 4.8 Hz, 1H, H-5), 3.88 (t, *J* = 3.2 Hz, 1H, H-2), 3.74 (dd, *J* = 6.1, 2.9 Hz, 1H, H-3), 3.63 (s, 3H, CH₃ COOMe), 3.58 (d, *J* = 3.5 Hz, 1H, H-1); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 170.0 (C=O), 138.3, 138.2, 138.0 (C_{q-arom}), 131.2, 128.6, 128.5, 128.4, 128.0, 128.0, 127.9, 127.8, 127.8, 127.8, 124.9 (CH_{arom}), 76.7 (C-3), 76.2 (C-4), 75.4 (C-5), 73.6, 72.2 (CH₂ Bn), 71.9 (C-2), 71.4 (CH₂ Bn), 63.7 (td, *J* = 21.5 Hz, C-1), 52.3 (CH₃ COOMe); ²H NMR (77 MHz, CHCl₃): δ 4.21 (D-1); HRMS: [M+Na]⁺ calcd for C₂₈H₂₉DO₆Na 486.1997, found 486.1998.

Methyl (2-azido-3,4-di-*O*-benzyl-1,2-dideoxy-β-deuterio-D-glucopyranosyl uronate) (S53). The title compound was prepared according to general procedure V yielding compound S53 (21 mg, 53 µmol, 53%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f0.56 (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{25}$ -4.1° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 698, 738, 1026, 1100, 1133, 1278, 1454, 1750, 2102, 2880; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.38 – 7.24 (m, 10H, CH_{arom}), 4.68 (s, 2H, CH₂ Bn), 4.61 (s, 2H, CH₂ Bn), 4.20 (dd, *J* = 6.0, 5.0 Hz, 1H, H-4), 4.13 (d, *J* = 5.0 Hz, 1H, H-5), 3.84 – 3.76 (m, 2H, H-2, H-3), 3.65 (d, *J* = 1.5 Hz, 1H, H-1), 3.59 (s, 3H, CH₃ COOMe); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 169.5 (C=O), 137.6, 137.2 (C_{q-arom}), 128.7, 128.6, 128.2, 128.1, 128.0 (CH_{arom}), 77.7 (C-3), 75.1 (C-4/C-5), 75.1 (C-5/C-4), 73.7, 72.6 (CH₂ Bn), 63.7 (bs, C-1), 56.2 (C-2), 52.4 (CH₃ COOMe); HRMS: [M+Na]⁺ calcd for C₂₁H₂₂DN₃NaO₅ 421.1593, found 421.1591.

1-Deutero-1-deoxy-2,3,4,6-tetra-*O***-benzyl-***α***-D-galactopyranoside (S54).** The title compound was prepared according to general procedure V yielding compound S54 (45 mg, 86 μmol, 86%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.65 (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{20}$ 1.2° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 690, 730, 1029, 1092, 1129, 1350, 1449, 1493, 2867; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.43 – 7.21 (m, 20H, CH_{arom}), 4.94 (d, *J* = 11.5 Hz, 1H, CHH Bn), 4.81 – 4.73 (m, 3H, CHH Bn, CHH Bn, CHH Bn), 4.64 (d, *J* = 11.5 Hz, 1H, CHH Bn), 4.59 (d, *J* = 11.6 Hz, 1H, CHH Bn), 4.47 (d, *J* = 11.9 Hz, 1H, CHH Bn), 4.39 (d, *J* = 11.9 Hz, 1H, CHH Bn), 4.08 – 3.99 (m, 2H, H-1, H-3), 3.93 (dd, *J* = 2.9, 1.1 Hz, 1H, H-4), 3.59 – 3.50 (m, 2H, H-6, H-2), 3.49 (td, *J* = 6.0, 1.1 Hz, 1H, H-5), 3.43 (dd, *J* = 8.9, 6.1 Hz, 1H, H-6); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.7, 138.6, 138.0 (C_{q-arom}), 128.5, 128.5, 128.4, 128.4, 128.1, 127.9, 127.9, 127.8, 127.7, 127.7, 127.6 (CH_{arom}), 83.8 (C-2), 78.0 (C-5), 75.3 (C-3), 74.8 (CH₂ Bn), 74.5 (C-4), 73.7, 73.7, 72.8 (CH₂ Bn), 69.4 (C-6), 68.3 (t, *J* = 21.2 Hz, C-1); HRMS: [M+Na]⁺ calcd for C₃₄H₃₅NaDO₅ 548.2518, found 548.2518.

1-Deutero-1,2-di-deoxy-3,4,6-tri-*O***-benzyl-1-***α***-D-galactopyranoside (S55).** The title compound was prepared according to general procedure V yielding compound S55 (38 mg, 91 μmol, 91%, colourless oil, 1,3-*cis*:1,3-*trans*; <2:98). TLC: R_f0.52 (pentane:EtOAc, 8:2, v:v); IR (thin film, cm⁻¹): 730, 1025, 1080, 1368, 1450, 2863, 2920; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC): δ ¹H NMR (500 MHz, Chloroform-*d*) δ 7.64 – 7.05 (m, 15H, CH_{arom}), 4.93 (d, J = 11.7 Hz, 1H, *CH*H Bn), 4.66 – 4.56 (m, 3H, CH*H* Bn, *CH*H Bn, CH*H* Bn), 4.49 (d, J = 11.9 Hz, 1H, *CH*H Bn), 4.41 (d, J = 11.9 Hz, 1H, CH*H* Bn), 4.04 (dd, J = 5.0, 1.8 Hz, 1H, H-1), 3.85 (dt, J = 2.4, 1.1 Hz, 1H, H-4), 3.63 – 3.56 (m, 1H, H-6), 3.54 (ddd, J = 11.7, 4.5, 2.5 Hz, 1H, H-3), 3.50 – 3.42 (m, 2H, H-5, H-6), 2.19 (td, J = 12.2, 4.9 Hz, 1H, H-2_{ax}), 1.77 (ddt, J = 12.6, 4.5, 1.6 Hz, 1H, H-2_{eq}); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 138.9, 138.6, 138.1 (C_{q-arom}), 128.5, 128.5, 128.4, 128.3, 128.0, 127.8, 127.7, 127.6, 127.4 (CH_{arom}),

78.6 (C-3), 78.1 (C-5), 74.4, 73.6 (CH₂ Bn), 73.4 (C-4), 70.2 (CH₂ Bn), 70.0 (C-6), 66.0 (t, J = 21.5 Hz, C-1), 27.3 (C-2); HRMS: [M+Na]⁺ calcd for C₂₇H₂₉NaDO₄442.2099, found 442.2106.

OMe-protected glycosyl donors

1-Deutero-1-deoxy-2,3,4-tri-*O***-methyl-D-lyxopyranoside (S56).** The title compound was prepared according to general procedure V yielding compound **S56** (16 mg, 90 µmol, 90%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: $R_f 0.28$ (pentane:EtOAc, 5:5, v:v); $[\alpha]_D^{20} -133.7^{\circ}$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 733, 953, 1072, 1096, 1357, 1462, 2824, 2897; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 3.88 (dd, *J* = 11.7, 3.7 Hz, 1H, H-5), 3.62 (t, *J* = 2.9 Hz, 1H, H-2), 3.54 (dt, *J* = 6.9, 3.4 Hz, 1H, H-4), 3.51 (s, 3H, CH₃), 3.47 (s, 3H, CH₃), 3.45 (m, 4H, H-1, CH₃), 3.42 (dd, *J* = 7.1, 3.2 Hz, 1H, H-3), 3.35 (dd, *J* = 11.8, 6.8 Hz, 1H, H-5); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 80.2 (C-3), 76.3 (C-4), 75.0 (C-2), 66.6 (C-5), 65.33 (t, *J* = 22.5 Hz, C-1), 58.3, 58.0, 57.4 (CH₃ Me); ²H NMR (77 MHz, CHCl₃): δ 3.85 (D-1); HRMS: [M+H]⁺ calcd for C₈H₁₆DO₄ 178.11896, found 178.11840.

1-Deutero-1-deoxy-2,3,4-tri-*O***-methyl-D-xylopyranoside (S57).** The title compound was prepared according to general procedure V yielding compound S57 (15 mg, 85 µmol, 85%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: $R_f 0.62$ (pentane:EtOAc, 5:5, v:v); $[\alpha]_D^{20} -1.8^\circ$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 841, 922, 1022, 1099, 1161, 1462, 2827, 2932; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 4.00 (dd, *J* = 5.0, 1.2 Hz, 1H, H-5_{eq}), 3.97 (td, *J* = 4.9, 1.2 Hz, 1H, H-1), 3.63 (s, 3H, CH₃), 3.48 (s, 6H, CH₃, CH₃), 3.26 – 3.19 (m, 2H, H-2, H-4), 3.12 (t, *J* = 8.3 Hz, 1H, H-3), 3.09 (dd, *J* = 11.2, 9.9 Hz, 1H, H-5_{ax}); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 86.0 (C-3), 79.6, 79.5 (C-2/C-4), 68.2 (C-5), 67.9 (t, *J* = 21.5 Hz, C-1), 60.7 (CH₃ Me), 58.9 (CH₃ Me, CH₃ Me; ²H NMR (77 MHz, CDCl₃): δ 3.08 (D-1); HRMS: [M+H]⁺ calcd for C₈H₁₆DO4 178.11896, found 178.11847.

1-Deuterio-1-deoxy-2,3,4,6-tetra-*O***-methyl-***α***-D-glucopyranoside (S58).** The title compound was prepared according to general procedure V yielding compound S58 (21 mg, 95 μmol, 95%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.69 (pentane:EtOAc, 5:5, v:v); $[\alpha]_D^{20}$ 4.2° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 830, 920, 1031, 1086, 1464, 2821, 2940; ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 4.04 (d, *J* = 5.2 Hz, 1H, H-1), 3.64 (s, 3H, CH₃), 3.60 (dd, *J* = 10.4, 2.1 Hz, 1H, H-6), 3.54 (s, 4H, CH₃, H-6), 3.47 (s, 3H, CH₃), 3.40 (s, 3H, CH₃), 3.29 – 3.18 (m, 2H, H-2, H-5), 3.18 – 3.05 (m, 2H, H-3, H-4); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 87.9 (C-3), 80.0 (C-2), 79.7 (C-4), 79.1 (C-5), 71.8 (C-6), 67.42 (t, *J* = 21.7 Hz, C-1), 60.8, 60.6, 59.4, 58.9 (CH₃); HRMS: [M+H]⁺ calcd for C₁₀H₁₉NaDO₅ 244.1256, found 244.1267.

1-Deuterio-1-deoxy-2,3,4,6-tetra-*O***-methyl-β-D-mannopyranoside (S59).** The title compound was prepared according to general procedure V yielding compound **S59** (22 mg, 99 μmol, 99%, colourless oil, 1,2-*cis*:1,2-*trans*; 96:4). TLC: R_f 0.71 (pentane:EtOAc, 5:5, v:v); $[\alpha]_D^{20}$ –16.1° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 833, 923, 1028, 1090, 1465, 2825, 2930; Data of the major stereoisomer (1,2-*cis* product): ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 3.65 (dd, *J* = 10.3, 2.0 Hz, 1H, H-6), 3.62 (dd, *J* = 3.4, 0.9 Hz, 1H, H-2), 3.56 (dd, *J* = 10.3, 6.4 Hz, 1H, H-6), 3.53 (s, 3H, CH₃), 3.50 (s, 3H, CH₃), 3.45 (s, 3H, CH₃), 3.41 (s, 3H, CH₃), 3.36 (t, *J* = 9.3 Hz, 1H, H-4), 3.31 – 3.23 (m, 2.96H, H-1, H-3, H-5); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 84.6 (C-3), 79.5 (C-5), 77.0 (C-4), 75.2 (C-2), 72.4 (C-6), 65.51 (t, *J* = 22.7 Hz, C-1), 61.0, 59.4, 57.4, 57.3 (CH₃); Data of the major stereoisomer (1,2-*trans* product): ¹H NMR (500 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): 4.17 (d, *J* = 1.5 Hz, 0.04H); HRMS: [M+H]⁺ calcd for C₁₀H₁₉NaDO₅ 244.1256, found 244.1269.

Model glycosylation reactions in Et₂O or MeCN

OBn OBn

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-α-L-fucopyranoside (S42).** The title compound was prepared according to general procedure VII yielding compound **S42** (40 mg, 95 μmol, 95%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2) in Et₂O or yielding compound **S42** (23 mg, 55 μmol, 55%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2) in MeCN. TLC: R_f 0.54 (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20}$ –35.0° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 694, 733, 1026, 1070, 1088, 1360, 1454, 1497, 2851, 2916; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.42 – 7.24 (m, 15H, CH_{arom}), 4.99 (d, *J* = 11.6 Hz, 1H, C*H*H Bn), 4.86 – 4.75 (m, 3H, CH*H* Bn, CH₂ Bn), 4.71 – 4.63 (m, 2H, CH₂ Bn), 4.06 – 4.00 (m, 2H, H-1, H-2), 3.64 (dd, *J* = 2.9, 1.1 Hz, 1H, H-4), 3.54 (dd, *J* = 8.7, 2.9 Hz, 1H, H-3), 3.40 (qd, *J* = 6.4, 1.1 Hz, 1H, H-5), 1.14 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.8, 138.6 (Cq-arom), 128.6, 128.5, 128.5, 128.3, 127.9, 127.8, 127.7, 127.6 (CH_{arom}), 84.2 (C-3), 77.1 (C-4), 75.2 (C-5), 75.1 (CH₂ Bn), 74.9 (C-2), 73.6, 72.9 (CH₂ Bn), 66.75 (t, *J* = 23.5 Hz, C-1), 17.3 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 3.17 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₇H₃₃DNO₄ 437.25506, found 437.25445.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-β-L-rhamnopyranoside** (S45). The title compound was prepared according to general procedure VII yielding compound S45 (36 mg, 86 μmol, 86%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2) in Et₂O or yielding compound S45 (25 mg, 60 μmol, 60%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2) in MeCN. TLC: R_f 0.38 (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20}$ 26.1° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 694, 733, 1026, 1092, 1113, 1354, 1452, 1497, 2860; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.46 – 7.26 (m, 15H, CH_{arom}), 4.99 (d, *J* = 10.8 Hz, 1H, *CH*H Bn), 4.81 (d, *J* = 12.7 Hz, 1H, CH*H* Bn), 4.72 – 4.61 (m, 3H, CH₂ Bn, *CH*H Bn), 4.57 (d, *J* = 11.9 Hz, 1H, CH*H* Bn), 3.75 (dd, *J* = 3.3, 1.0 Hz, 1H, H-2), 3.62 (t, *J* = 9.2 Hz, 1H, H-4), 3.53 (dd, *J* = 9.3, 3.2 Hz, 1H, H-3), 3.28 (dq, *J* = 9.0, 6.0 Hz, 1H, H-5), 3.24 (s, 1H, H-1), 1.36 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.7, 138.5, 138.4 (C_{q-arom}), 128.5, 128.2, 127.8, 127.7 (CH_{arom}), 82.8 (C-4), 80.8 (C-3), 76.5 (C-5), 75.7 (CH₂ Bn), 72.6 (C-2), 71.7, 71.3 (CH₂ Bn), 66.8 (t, *J* =

23.5 Hz, C-1), 18.4 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 4.03 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₇H₃₃DNO₄ 437.25506, found 437.25446.

Preparation of N-phenyl trifluoroacetimidate donors and their model glycosylations

2,2,2-trifluoro-N-phenylacetimidoyl 2,3,4-tri-O-benzyl- α/β -D-fucopyranoside (S60). 2,3,4-tri-O-benzyl- α/β -D-fucopyranoside (87 mg, 0.2 mmol) was dissolved in acetone (2 mL, 0.1 M) and water (0.2 mL, 50 eq.) and cooled on ice. Subsequently, CsCO₃(130 mg, 0,4 mmol, 1.8 eq.) and 2,2,2-trifluoro-N-phenylacetimidoyl chloride (83 mg, 0.4 mmol, 1.8 mmol) was added and the solution was allowed to attain rt. After stirring for 18 hours, the solution was diluted with H₂O and EtOAc. The aqueous layer was extracted (3x) with EtOAc followed by washing the combined organic layer with H₂O, sat. aq. NaHCO₃ and brine respectively. Subsequently, the organic layer was dried over MgSO4, filtered and concentrated in vacuo to yield the crude product as a colourless oil. Flash column chromatography (95:5 \rightarrow 80:20; pentane:Et₂O) yielded the title compound **S60** (102 mg, 0.17 mmol, 76%) in a 33:66 α : β ratio) as a colourless oil. Spectroscopic data was in accordance with literature.[M. Adinolfi, A. Iadonisi, A. Ravidà, M. Schiattarella, Versatile Use of Ytterbium(III) Triflate and Acid Washed Molecular Sieves in the Activation of Glycosyl Trifluoroacetimidate Donors. Assemblage of a Biologically Relevant Tetrasaccharide Sequence of Globo H. The Journal of Organic Chemistry. 70, 5316-5319 (2005).] TLC: Rf 0.4 (pentane: Et₂O, 9:1, v:v); Data for the anomeric mixture: (500 MHz, Chloroform-d, 60 °C, HH-COSY, HSQC): δ 7.64 - 6.60 (m, 30H, CH_{aron}), 6.38 (s, 0.5H, H-1_a), 5.54 (s, 1H, H-1_b), 5.06 - 4.61 (m, 9H, CH₂ Bn_a, Bn_{α} , $CH_2 Bn_{\beta}$, $CH_2 Bn_{\beta}$, $CH_2 Bn_{\beta}$, 4.16 (dd, J = 10.1, 3.5 Hz, 0.5H, $H-2_{\alpha}$), 4.08 - 3.98 (m, 1.5H, $H-2_{\beta}$, $H-5_{\alpha}$), 3.96 $(dd, J = 10.1, 2.8 Hz, 0.5H, H-3_{\alpha})$, 3.67 $(dd, J = 2.8, 1.3 Hz, 0.5H, H-4_{\alpha})$, 3.63 – 3.47 $(m, 2H, H-3_{\beta}, H-4_{\beta})$, 3.41 $(s, 2H, H-3_{\beta})$, 3.41 $(s, 2H, H-3_$ 1H, H-5_β), 1.18 (m, 4.5H, CH_{3α}, CH_{3β}); ¹³C NMR (101 MHz, CDCl₃, 60 °C, HSQC): δ 144.1, 144.0, 138.9, 138.7, 138.7, 138.6, 138.5, 135.4 (C_{g-arom}), 129.5, 128.8, 128.7, 128.6, 128.5, 128.5, 128.5, 128.4, 128.3, 127.9, 127.8, 127.8, 127.8, 127.7, 126.6, 124.3, 124.2, 120.8, 119.8, 119.6 (CH_{arom}), 98.0 (C-1_β), 95.4 (bs, C-1_α), 82.8 (C-3_β), 78.9 (C-3_α), 78.4 (C-2_β), 78.0 (C-4_α), 76.7 (C-4_β), 76.0 (C-2_α), 75.5, 75.2, 75.1, 73.6, 73.6, 73.5 (CH₂ Bn), 71.9 (C-5_β), 69.9 (C-5_α), 16.8 (CH_{3β}), 16.8 (CH_{3α}).

2,2,2-trifluoro-*N*-phenylacetimidoyl 2,3,4-tri-*O*-benzyl- α/β -D-rhamnopyranoside (S61). 2,3,4-tri-*O*-benzyl- α/β -D-rhamnopyranoside (87 mg, 0.2 mmol) was dissolved in acetone (2 mL, 0.1 M) and water (0.2 mL, 50 eq.) and cooled on ice. Subsequently, CsCO₃ (130 mg, 0,4 mmol, 1.8 eq.) and 2,2,2-trifluoro-*N*-phenylacetimidoyl chloride (83 mg, 0.4 mmol, 1.8 mmol) was added and the solution was allowed to attain rt. After stirring for 18 hours, the solution was diluted with H₂O and EtOAc. The aqueous layer was extracted (3x) with EtOAc followed by washing the combined organic layer with H₂O, sat. aq. NaHCO₃ and brine respectively. Subsequently, the organic layer was dried over MgSO₄, filtered and concentrated *in vacuo* to yield the crude product as a colourless oil. Flash column chromatography (95:5 \rightarrow 80:20; pentane:Et₂O) yielded the title compound S60 (109 mg, 0.18 mmol, 81% in a 71:29 α : β ratio) as a colourless oil. Spectroscopic data was in accordance with literature.[M. Adinolfi, G. Barone, A. Iadonisi, M. Schiattarella, Activation of Glycoyl Trihaloacetimidates with Acid-Washed Molecular Sieves in the Glycosidation Reaction. *Org. Lett.* 5, 987–989
(2003).] TLC: $R_f 0.4$ (pentane: Et_2O , 9:1, v:v); Data for the anomeric mixture: (500 MHz, Chloroform-*d*, 60 °C, HH-COSY, HSQC): δ 7.74 – 6.66 (m, 28H, CH_{arom}), 6.09 (bs, 1H, H-1_a), 5.52 (bs, 0.4H, H-1_β), 4.96 – 4.46 (m, 8.4H, CH₂ Bn_a, CH₂ Bn_a, CH₂ Bn_β, CH₂ Bn_β, CH₂ Bn_β), 4.05 (d, J = 2.9 Hz, 0.4H, H-3_β), 3.91 – 3.72 (m, 3H, H-2_a, H-3_a, H-5_a), 3.74 – 3.58 (m, 1.4H, H-2_β, H-4_a), 3.48 (d, J = 9.1 Hz, 0.4H, H-4_β), 3.25 (bs, 0.4H, H-5_β), 1.34 (m, 4.2H, CH_{3a}, CH₃_β); ¹³C NMR (101 MHz, CDCl₃, 60 °C, HSQC): δ 143.9, 138.7, 138.5, 138.1 (C_{q-arom}), 129.6, 128.9, 128.9, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 128.2, 128.1, 128.0, 127.9, 127.9, 127.8, 127.8, 126.6, 124.5, 120.8, 119.7, 119.6 (CH_{arom}), 96.5 (C-1_β), 96.2 (C-1_a), 82.4 (C-4_β), 80.1 (C-4_a), 79.9 (C-2_β), 79.3 (C-2_a), 75.6, 75.5, 74.4 (CH₂ Bn), 74.2 (C-3_a), 73.7 (C-3_β), 73.2 (C-5_β), 73.1, 72.9, 72.4 (CH₂ Bn), 71.3 (C-5_a), 18.2 (CH_{3a}), 18.1 (CH_{3β}).

2,2,2-trifluoro-N-phenylacetimidoyl 2,3,4-tri-O-benzyl-α/β-D-rhamnopyranoside (S62). 2,3,4-tri-O-benzylα/β-D-rhamnopyranoside (108 mg, 0.2 mmol) was dissolved in acetone (2 mL, 0.1 M) and water (0.2 mL, 50 eq.) and cooled on ice. Subsequently, CsCO₃ (130 mg, 0,4 mmol, 1.8 eq.) and 2,2,2-trifluoro-Nphenylacetimidoyl chloride (83 mg, 0.4 mmol, 1.8 mmol) was added and the solution was allowed to attain rt. After stirring for 18 hours, the solution was diluted with H₂O and EtOAc. The aqueous layer was extracted (3x) with EtOAc followed by washing the combined organic layer with H₂O, sat. aq. NaHCO₃ and brine respectively. Subsequently, the organic layer was dried over MgSO₄, filtered and concentrated in vacuo to yield the crude product as a colourless oil. Flash column chromatography (95:5 \rightarrow 80:20; pentane:Et₂O) yielded the title compound **S60** (142 mg, 197 μmol, 98% in a 50:50 α:β ratio) as a colourless syrup. Spectroscopic data was in accordance with literature.[L. Wang, H. S. Overkleeft, G. A. van der Marel, J. D. C. Codée, Reagent Controlled Stereoselective Synthesis of α-Glucans. Journal of the American Chemical Society (2018).] TLC: R_f 0.4 (pentane: Et₂O, 9:1, v:v); Data for the anomeric mixture: (500 MHz, Chloroform-d, 60 °C, HH-COSY, HSQC) δ 7.78 – 6.70 (m, 50H, CH_{aron}), 6.44 (bs, 1H, H-1_a), 5.59 (bs, 1H, H-1_b), 4.99 – 4.49 (m, 16H, CH₂ Bn_a, CH₂ Bn Bn_{α} , $CH_2 Bn_{\beta}$, $CH_2 Bn_{\beta}$, $CH_2 Bn_{\beta}$, $CH_2 Bn_{\beta}$), 4.06 (t, J = 9.3 Hz, 1H, H-4 $_{\alpha}$), 3.99 (m, 1H, H-6 $_{\alpha}$), 3.80 – 3.32 (m, 10H, H-2_α, H-3_α, H-5_α, H-6_α, H-2_β, H-3_β, H-4_β, H-5_β, H-6_β, H-6_β); ¹³C NMR (101 MHz, CDCl₃, 60 °C, HSQC): δ 143.9, 143.7, 143.4, 138.9, 138.7, 138.3, 138.2, 138.1, 138.1, 135.9, 135.8, 133.5, 133.5, 133.2, 133.2 (C_{g-arom}), 129.4, 128.8, 128.5, 128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 128.0, 127.9, 127.9, 127.9, 127.8, 127.9, 127.9, 127.80, 127.7, 127.7, 127.6, 126.7, 126.7, 126.4, 126.1, 126.0, 126.0, 124.4, 124.3, 120.7, 119.6, 119.6 (CH_{arom}), 116.5 (q, CF₃), 97.6 (C-1_β), 93.9 (C-1_α), 84.7, 81.7, 81.2, 79.7, 77.6, 77.6, 76.0, 75.7, 75.6, 75.3, 75.0, 75.0, 73.7, 73.6, 73.5, 73.5, 68.6.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-α-L-fucopyranoside (S42).** The title compound was prepared according to general procedure VIII yielding compound **S42** (38 mg, 91 μmol, 91%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: $R_f 0.54$ (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20} -35.0^\circ$ (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 694, 733, 1026, 1070, 1088, 1360, 1454, 1497, 2851, 2916; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.42 – 7.24 (m, 15H, CH_{arom}), 4.99 (d, *J* = 11.6 Hz, 1H, C*H*H Bn), 4.86 – 4.75 (m, 3H, CH*H* Bn, CH₂ Bn), 4.71 – 4.63 (m, 2H, CH₂ Bn), 4.06 – 4.00 (m, 2H, H-1, H-2), 3.64 (dd, *J* = 2.9, 1.1 Hz, 1H, H-4), 3.54 (dd, *J* = 8.7, 2.9 Hz, 1H, H-3), 3.40 (qd, *J* = 6.4, 1.1 Hz, 1H, H-5), 1.14 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.8, 138.6 (Cq-arom), 128.6, 128.5, 128.5, 128.3, 127.9, 127.8, 127.7, 127.7, 127.6 (CH_{arom}), 84.2 (C-3), 77.1 (C-

4), 75.2 (C-5), 75.1 (CH₂ Bn), 74.9 (C-2), 73.6, 72.9 (CH₂ Bn), 66.75 (t, J = 23.5 Hz, C-1), 17.3 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 3.17 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₇H₃₃DNO₄ 437.25506, found 437.25445.

1-Deutero-1-deoxy-2,3,4-tri-*O***-benzyl-β-L-rhamnopyranoside** (S45). The title compound was prepared according to general procedure VIII yielding compound S45 (39 mg, 93 μmol, 93%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.38 (pentane:EtOAc, 9:1, v:v); $[\alpha]_D^{20}$ 26.1° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 694, 733, 1026, 1092, 1113, 1354, 1452, 1497, 2860; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC, NOESY): δ 7.46 – 7.26 (m, 15H, CH_{arom}), 4.99 (d, *J* = 10.8 Hz, 1H, *CHH* Bn), 4.81 (d, *J* = 12.7 Hz, 1H, CH*H* Bn), 4.72 – 4.61 (m, 3H, CH₂ Bn, *CH*H Bn), 4.57 (d, *J* = 11.9 Hz, 1H, CH*H* Bn), 3.75 (dd, *J* = 3.3, 1.0 Hz, 1H, H-2), 3.62 (t, *J* = 9.2 Hz, 1H, H-4), 3.53 (dd, *J* = 9.3, 3.2 Hz, 1H, H-3), 3.28 (dq, *J* = 9.0, 6.0 Hz, 1H, H-5), 3.24 (s, 1H, H-1), 1.36 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.7, 138.5, 138.4 (C_{q-arom}), 128.5, 128.2, 127.8, 127.7 (CH_{arom}), 82.8 (C-4), 80.8 (C-3), 76.5 (C-5), 75.7 (CH₂ Bn), 72.6 (C-2), 71.7, 71.3 (CH₂ Bn), 66.8 (t, *J* = 23.5 Hz, C-1), 18.4 (CH₃); ²H NMR (77 MHz, CHCl₃): δ 4.03 (D-1); HRMS: [M+NH₄]⁺ calcd for C₂₇H₃₃DNO₄ 437.25506, found 437.25446.

1-Deutero-1-deoxy-2,3,4,6-tetra-*O***-benzyl-α-D-glucopyranoside** (S47). The title compound was prepared according to general procedure VIII yielding compound S47 (48 mg, 91 µmol, 91%, colourless oil, 1,2-*cis*:1,2-*trans*; >98:2). TLC: R_f 0.69 (pentane:EtOAc, 8:2, v:v); $[\alpha]_D^{20}$ 5.3° (*c* 1, CHCl₃); IR (thin film, cm⁻¹): 698, 731, 1024, 1093, 1123, 1353, 1451, 1499, 2867; ¹H NMR (400 MHz, Chloroform-*d*, HH-COSY, HSQC): δ 7.61 – 6.96 (m, 20H, CH_{arom}), 4.97 (d, *J* = 11.0 Hz, 1H, C*H*H Bn), 4.84 (d, *J* = 11.0 Hz, 1H, CH*H* Bn), 4.83 (d, *J* = 10.7 Hz, 1H, C*H*H Bn), 4.71 (d, *J* = 11.6 Hz, 1H, C*H*H Bn), 4.63 (d, *J* = 10.7 Hz, 1H, C*H*H Bn), 4.50 (d, *J* = 12.2 Hz, 1H, CH*H* Bn), 4.48 (d, *J* = 10.7 Hz, 1H, CH*H* Bn), 4.59 (d, *J* = 4.5 Hz, 1H, H-1), 3.74 – 3.59 (m, 4H, H-2, H-6, H-6, H-5), 3.56 (ddd, *J* = 9.2, 5.7, 3.5 Hz, 1H, H-4), 3.37 (ddd, *J* = 9.5, 4.3, 2.1 Hz, 1H, H-3); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 138.8, 138.3, 138.2, 138.0 (C_{q-arom}), 128.6, 128.5, 128.5, 128.1, 128.1, 128.0, 128.0, 127.9, 127.8, 127.7 (CH_{arom}), 86.5 (C-2/C-5), 79.3 (C-3), 78.5 (C-5/C-2), 77.9 (C-4), 75.7 (CH₂ Bn), 75.3 (CH₂ Bn), 73.7 (CH₂ Bn), 73.4 (CH₂ Bn), 69.1 (C-6), 67.9 (t, *J* = 21.5 Hz, C-1); HRMS: [M+Na]⁺ calcd for C₃₄H₃₅NaDO₅ 548.2518, found 548.2521.

Preparation of the donors for the HF/SbF₅ experiments

Preparation of Donor 33

Scheme S-5. Donor 33 synthesis. Reagents and conditions: a) NIS, AcOH, Et₂O, 1,2-dichloroethane, 33: 67%.

Acetyl 3,4-di-O-acetyl-2-deoxy-α-L-fucopyranoside (33). Glacial acetic acid (11.9 mL, 208 mmol, 100 eq.) was added to a mixture of NIS (0.52 g, 2.29 mmol, 1.1 eq.) in Et₂O (10.4 mL) and 1,2-dichloroethane (10.4 mL). The formed solution was added to compound S13 (0.69 g, 2.1 mmol). After 45 minutes of stirring, the reaction was quenched with sat. aq. NaS₂O₃. The aqueous mixture was extracted with DCM (3x), dried over MgSO₄ and concentrated in vacuo. Column chromatography (pentane:EtOAc, $10:90 \rightarrow 70:30$) was performed to yield title compound 33 as an 1:4 1,3-cis/1,3-trans mixture (0.49 g, 1.8 mmol, 86%, colourless oil). Additional purification by column made it possible to solely isolate the 1,3-trans product (0.38 g, 1.4 mmol, 67%, colourless solid). TLC: R₁0.45 (pentane:EtOAc, 3:7, v:v); IR (neat, cm⁻¹): 802, 927, 987, 1011, 1038, 1194, 1222, 1368, 1441, 1739; Data for the major stereoisomer (1,3-trans product): ¹H NMR (400 MHz, CDCl₃, HH-COSY, HSQC): δ 6.32 (d, J = 2.7 Hz, 1H, H-1), 5.32 (ddd, *J* = 12.5, 5.1, 3.0 Hz, 1H, H-3), 5.28 – 5.22 (m, 1H, H-4), 4.20 (q, *J* = 6.5 Hz, 1H, H-5), 2.21 (td, J = 13.0, 3.6 Hz, 1H, H-2), 2.20 (s, 3H, CH₃ Ac), 2.14 (s, 3H, CH₃ Ac), 2.04 (s, 3H, CH₃ Ac), 1.91 (ddt, J = 13.4, 5.1, 1.2 Hz, 1H, H2), 1.18 (d, J = 6.5 Hz, 3H, H-6, H-6, H-6); ¹³C NMR (101 MHz, CDCl₃, HSQC): δ 170.8, 170.3, 169.5 (C=O Ac), 92.1 (C-1), 69.4 (C-4), 67.5 (C-5), 66.4 (C-3), 28.9 (C-2), 21.3, 21.1, 20.9 (CH₃ Ac), 16.7 (C-6); Data for the minor stereoisomer (1,3-cis product): ¹H NMR (400 MHz, CDCl3, HH-COSY, HSQC): δ 5.77 (dd, *J* = 9.3, 3.3 Hz, 1H, H-1), 5.14 (d, *J* = 3.1 Hz, 1H, H-4), 5.04 (ddd, *J* = 11.7, 5.8, 3.2 Hz, 1H, H3), 3.82 (q, J = 6.4 Hz, 1H, H-5), 2.18 (s, 3H, CH₃ Ac), 2.14 (s, 3H, CH₃ Ac), 2.03 - 2.00 (m, 5H, H2, H-2, CH₃ Ac), 1.23 (d, J = 6.4 Hz, 3H, H-6, H-6, H-6); ¹³C NMR (126 MHz, CDCl₃, HSQC): δ 91.8 (C-1), 70.5 (C-5), 68.7 (C-4), 68.4 (C-3), 30.5 (C-2), 21.2 (CH₃ Ac), 20.9 (CH₃ Ac), 16.5 (C-6); HRMS: [M+Na]⁺ calcd for C₁₂H₁₈NaO₇ 297.09447, found 297.09439.

Preparation of Donor 34

Scheme S-6. Donor 34 synthesis. *Reagents and conditions:* a) *i*. Ac₂O, pyr; *ii*. HBr, AcOH, DCM; *iii*. CuSO₄·5H₂O, Ac₂O, NaOAc, AcOH, Zn; *iv*. Ac₂O, HBr, AcOH, 34: 60%.

2-deoxy-1,3,4-tri-*O***-acetyl-α-L-rhamnopyranoside (34).** To suspension of L-rhamnose (4.5 g, 27.5 mmol) in pyridine (25 mL), Ac₂O (32 mL, 340 mmol, 12 eq.) at 0 °C. After stirring for an additional 16 h at rt. The mixture

was concentrated in vacuo and co-evaporated three times with heptane. The resulting colourless oil was used in the next step without further purification. The crude product was dissolved in DCM (18 mL), followed by the addition of Ac₂O (1 mL, 10.6 mmol, 0.4 eq.). To the solution HBr (33 wt% in AcOH, 8.5 mL, 55.0 mmol, 2.0 eq.) was added dropwise at 0 °C and stirred for an additional 4 h at rt. The mixture was then concentrated under reduced pressure and the yellow oil was used as a crude product in the next step. CuSO₄·5H₂O (0.88 g), Ac₂O (3.6 mL, 38 mmol, 1.4 eq.), sodium acetate (4.5 g, 55 mmol, 2 eq.), AcOH (3.2 mL) were suspended in acetonitrile (12 mL), and subsequently Zn (dust, 3.6 g, 55 mmol, 2 eq.) was added. After 45 minutes of stirring the rhamnosyl bromide was added in 60 mL acetonitrile via a dropping funnel over 40 minutes. The reaction was allowed to stir for an additional 2 h. After reaction completion the mixture was diluted with DCM and filtrated over Celite® 545 (Sigma-Aldrich) and transferred to a separatory funnel. The organic phase was washed with saturated sat. aq. NaHCO₃, dried with MgSO4 and concentrated in vacuo. The crude rhamnal was dissolved in DCM (40 mL) and AcOH (15.8 mL, 276 mmol, 10 eq.), Ac₂O (22.2 mL, 233 mmol, 8.5 eq.) were added at 0 °C. After 15 min stirring, HBr (33 wt% in AcOH, 1.5 mL, 9.1 mmol, 0.3 eq.) was dropwise added at 0 °C and the reaction was stirred for an additional 5 h. After reaction completion the mixture was quenched with ice-cold water and extracted DCM (3x). The combined organic layers were washed with sat. aq. NaHCO₃, dried with MgSO₄ and concentrated in vacuo. Column chromatography (95:5 \rightarrow 85:15, pentane:EtOAc) gave the title compound **34** (4.5 g, 16.4 mmol, 60%) over 4 steps, average of 88% per step, white solid). TLC: Rf 0.26 (pentane:EtOAc, 8:2, v:v). IR (neat, cm⁻¹): 922, 1037, 1134, 1157, 1369, 1732, 2994; ¹H NMR (500 MHz, Chloroform-d, HH-COSY, HSQC): δ 6.19 (dd, J = 3.8, 1.4 Hz, 1H, H-1), 5.27 (ddd, J = 11.6, 9.5, 5.3 Hz, 1H, H-3), 4.80 (t, J = 9.7 Hz, 1H, H-4), 3.94 (dq, J = 9.8, 6.2) Hz, 1H, H-5), 2.26 (ddd, J = 13.5, 5.3, 1.5 Hz, 1H, H-2), 2.12 (s, 3H, CH₃ Ac), 2.07 (s, 3H, CH₃ Ac), 2.03 (s, 3H, CH₃ Ac), 1.92 (ddd, J = 13.5, 11.7, 3.7 Hz, 1H, H-2), 1.19 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (126 MH, CDCl₃), HSQC): δ 170.4, 170.1, 169.3 (C=O, Ac), 90.9 (C-1), 74.2 (C-4), 68.5 (C-3), 68.3 (C-5), 34.3 (C-2), 21.2 (CH₃) Ac), 21.1 (CH₃ Ac), 20.9 (CH₃ Ac), 17.7 (CH₃); HRMS: [M+Na]⁺ calcd for C₁₂H₁₈NaO₇ 297.0950, found 297.0951.

Stereochemical proofs

Donor S6

¹H NMR H-H coupling constants

H-1: d, J = 4.0 Hz (H-1–H-2) H-2: dd, J = 4.1, Hz (H-2–H-1), 2.5 Hz (H-2–H-3) H-3: dd, J = 5.7 Hz (H-3–H-4) 2.6 Hz (H-3–H-2) H-4: signal overlaps with H-3 H-5_{eq}: dd, J = 12.2 Hz (geminal), 4.3 Hz (H-5–H-4) H-5_{ax}: dd, J = 12.3 Hz (geminal), 2.5 Hz (H-5–H-4)

NOESY NMR: H-H long range NOE coupling interaction

The vicinal long range NOE interactions are very weak, which is extra indication that a conformational equilibrium is present. For further structure elucidation see section *"NMR simulations of selected glycosides"*.

Donor S7

¹H NMR H-H coupling constants

H-1: d, J = 6.1 Hz (H-1–H-2) H-2: t, J = 6.5 Hz (H-2–H-1 and H-2–H-3) H-3: dd, J = 6.9 Hz (H-3–H-2) 3.1 Hz (H-3–H-4) H-4: dt, J = 5.8 Hz (H-4–H-5), 2.8 Hz (H-4–H-3 and H-4–H-5) H-5_{eq}: dd, J = 12.0 Hz (geminal), 5.8 Hz (H-5–H-4) H-5_{ax}: dd, J = 12.0 Hz (geminal), 2.6 Hz (H-5–H-4)

NOESY NMR: H-H long range NOE coupling interaction

The vicinal long range NOE interactions are very weak, which is extra indication that a conformational equilibrium is present. For further structure elucidation see section *"NMR simulations of selected glycosides"*.

Donor S8; major isomer 1,2-trans

¹*H* NMR *H*-*H* coupling constants

H-1: d, J = 9.5 Hz (ax^{H-1}-ax^{H-2}) H-2: t, J = 8.7 H (ax^{H-2}-ax^{H-1} and ax^{H-2}-ax^{H-3}) H-3: signal overlaps with H-4 H-4: signal overlaps with H-3 H-5_{eq}: signal overlaps with H-5_{ax} of 1,2-*cis* anomer H-5_{ax}: dd, J = 11.5 Hz (geminal), 9.6 Hz (ax^{H-5}-ax^{H-4})

NOESY NMR: H-H long range NOE coupling interaction

No clear visible vicinal H1-H3 long range NOE interactions as a result of overlap with other NOE signals. As expected the vicinal H1-H5_{ax} long range NOE interaction is present at medium intensity.

Donor S8; minor isomer 1,2-cis

¹H NMR H-H coupling constants

H-1: d, J = 4.4 Hz (H-1–H-2) H-2: t, J = 3.0 Hz (H-2–H-1 and H-2–H-3) H-3: dd, J = 5.9 Hz (H-3–H-4) 3.1 Hz (H-3–H-2) H-4: signal overlaps with H-3, H-4 of 1,2-*trans* anomer H-5_{eq}: dd, J = 11.4 Hz (geminal), 5.7 Hz (H-5–H-4) H-5_{ax}: signal overlaps with H-5_{eq} of 1,2-*cis* anomer

NOESY NMR: H-H long range NOE coupling interaction

Donor S11; major isomer 1,2-trans

¹H NMR H-H coupling constants

H-1: d, J = 9.0 Hz (ax^{H-1}-ax^{H-2}) H-2: dd, J = 9.1 Hz (ax^{H-2}-ax^{H-1}), 2.5 Hz (ax^{H-2}-eq^{H-3}) H-3: t, J = 2.5 Hz (eq^{H-3}-ax^{H-2} and eq^{H-3}-ax^{H-4}) H-4: ddd, J = 8.3 (ax^{H-4}-ax^{H-5}) 5.9 Hz (ax^{H-4}-eq^{H-5}), 2.3 Hz (ax^{H-4}-eq^{H-3}) H-5_{eq}: signal overlaps with H-5_{ax} H-5_{ax}: signal overlaps with H-5_{eq}

NOESY NMR: H-H long range NOE coupling interaction

Donor S11; minor isomer 1,2-cis

¹*H* NMR *H*-*H* coupling constants

H-1: d, J= 5.5 Hz (eq^{H-1}-ax^{H-2}) H-2: dd J = 5.5 Hz (ax^{H-2}-eq^{H-1}), 2.2 Hz (ax^{H-2}-eq^{H-3}) H-3: t, J = 2.4 Hz (eq^{H-3}-ax^{H-2} and eq^{H-3}-ax^{H-4}) H-4: m H-5_{eq}: dd, J = 10.9 Hz (geminal), 5.0 Hz (eq^{H-5}-ax^{H-4}) H-5_{ax}: t, J = 10.8 Hz (geminal and ax^{H-5}-ax^{H-4})

NOESY NMR: H-H long range NOE coupling interaction

Donor S31; major isomer 1,2-cis

H-1: d, J = 4.1 Hz (H-1–H-2) H-2: dd, J = 4.3 Hz (H-2–H-1), 2.5 Hz (H-2–H-3) H-3: signal overlaps with H-4, H-5 and CH₃ H-4: signal overlaps with H-3, H-5 and CH₃ H-5_{ax}: signal overlaps with H-3, H-4 and CH₃ H-5_{eq}: dd, J = 9.8 Hz (geminal), 3.9 Hz (H-5–H-4)

NOESY NMR: H-H long range NOE coupling interaction

The vicinal long range NOE interactions are very weak, which is extra indication for a conformational equilibrium. For further structure elucidation see section *"NMR simulations of selected glycosides"*.

Donor S31; minor isomer 1,2-trans

¹H NMR H-H coupling constants

H-1: d, J = 3.4 Hz (eq^{H-1}-eq^{H-2}) H-2: t, J = 3.3 Hz (eq^{H-2}-ax^{H-1} and eq^{H-2}-ax^{H-3}) H-3: signal overlaps with CH₃ H-4: td, J = 8.4 Hz (ax^{H-4}-ax^{H-5} and ax^{H-4}-ax^{H-3}), 4.8 Hz (ax^{H-4}-eq^{H-5}) H-5_{eq}: signal overlaps with H-5_{ax} H-5_{ax}: signal overlaps with H-5_{eq}

NOESY NMR: H-H long range NOE coupling interaction

No clear visible vicinal H3-H5 long range NOE interactions as a result of overlap with 1,2-*cis* anomer NOE signals.

¹H NMR H-H coupling constants

H-1: d, J = 2.8 Hz (H-1–H-2) H-2: t, J = 3.0 Hz (H-2–H-1 and H-2–H-3) H-3: dd, J = 6.7 Hz (H-3–H-4 and H-3–H-5), 3.0 Hz (H-3–H-2) H-4: td, J = 6.4 Hz (H-4–H-3 and H-4 and H-5), 3.5 Hz (H-4–H-5) H-5_{ax}: dd, J = 11.7 Hz (geminal), 6.1 Hz (H-5–H-4), signal almost overlaps with H-1, indicating H-1 has to be axial oriented (which is confirmed by NOESY): H-5_{eq}: dd, J = 11.8 Hz (geminal), 3.5 Hz (H-5–H-4)

For further structure elucidation see section "NMR simulations of selected glycosides".

¹H NMR: H-H coupling constants

H-1: d, J = 3.8 Hz (H-1–H-2) H-2: dd, J = 7.4 Hz (H-2–H-3), 4.1 Hz (H-2–H-1) H-3: dd, J = 7.4 (H-3–H-2), 3.4 Hz (H-3–H-4) H-4: dt, J = 5.8 (H-4–H-5), 2.9 Hz (H-4–H-3 and H-4–H-5) H-5_{ax}: 11.7 Hz (geminal), 2.6 Hz (H-5–H-4) H-5_{eq}: 11.7 Hz (geminal), 5.2, Hz (H-5–H-4)

NOESY-NMR: H-H long range NOE coupling interaction

¹H NMR: H-H coupling constants of the minor anomer

¹*H* NMR: *H*-*H* coupling constants

H-1: signal overlaps with H-5_{eq} (H-1 is most likely a singlet or very small coupling constant) H-2: signal overlaps with H-3 and H-4 H-3: signal overlaps with H-2 and H-4 H-4: signal overlaps with H-2 and H-3 H-5_{ax}: dd, J = 11.1 (geminal) and 9.9 Hz (ax^{H-5}–ax^{H-4}) H-5_{eq}: signal overlaps with H-1, and therefore H-1 can only be an equatorial hydrogen (as result of the symmetry in the molecule)

NOESY-NMR: H-H long range NOE coupling interaction

¹*H* NMR: *H*-*H* coupling constants

H-1: s

H-1: 5 H-2: signal overlaps with H-4 H-3: t, J = 2.9 Hz (H-3–H-2 and H-3–H-4) H-4: signal overlaps with H-2 H-5_{ax}: dd, J = 11.0 Hz (geminal), 7.3 Hz (H-5–H-4) H-5_{eq}: dd, J = 11.2 Hz (geminal), 3.5 Hz (H-5–H-4), signal overlaps with H-1, and therefore H-1 can only be an equatorial hydrogen (as result of the symmetry in the molecule)

NOESY-NMR: H-H long range NOE coupling interaction

¹H NMR: H-H coupling constants

H-1: s H-2: signal overlaps with H-1 H-3: dd, J = 8.7 Hz (ax^{H-3}-ax^{H-2}), 2.9 Hz (ax^{H-3}-eq^{H-4}) H-4: dd, J = 2.9 Hz (eq^{H-4}-ax^{H-3}), 1.1 Hz (eq^{H-4}-ax^{H-5}) H-5: qd, J = 6.4 Hz (ax^{H-5}-CH₃), 1.1 Hz (ax^{H-5}-eq^{H-4})

¹H NMR: H-H coupling constants of the minor anomer

¹H NMR: H-H coupling constants

$$H_{3C} \rightarrow H_{1O} \rightarrow H_{N_{3}}$$

H-1: d, J = 5.5 Hz (eq^{H-1}-ax^{H-2}) H-2: dd, J = 9.6 Hz (ax^{H-2}-ax^{H-3}), 5.5 Hz (ax^{H-2}-eq^{H-1}) H-3: dd, J = 9.6 Hz (ax^{H-3}-ax^{H-2}), 2.7 Hz (ax^{H-3}-eq^{H-4}) H-4: d, J = 2.7 Hz (eq^{H-4}-ax^{H-3}) H-5: q, J = 6.5 Hz (ax^{H-5}-CH₃)

NOESY-NMR: H-H long range NOE coupling interaction

¹H NMR: H-H coupling constants

H-1: s
H-2: dd, $J = 3.3$ Hz (eq ^{H-2} -ax ^{H-3}), 1.0 Hz (eq ^{H-2} -ax ^{H-1})
H-3: dd, $J = 9.3$ Hz (ax ^{H-3} -ax ^{H-4}), 3.2 Hz (ax ^{H-3} -eq ^{H-2})
H-4: t, $J = 9.2$ Hz (ax ^{H-3} -ax ^{H-4} and ax ^{H-4} -ax ^{H-5})
H-5: dq, $J = 9.0$ Hz (ax ^{H-5} -ax ^{H-4}), 6.0 Hz (ax ^{H-5} -CH ₃)

NOESY-NMR: H-H long range NOE coupling interaction

¹H NMR: H-H coupling constants

H-1: s H-2: signal overlaps with H-6 H-3: dd, J = 9.3 Hz (ax^{H-3}-ax^{H-4}), 3.3 Hz (ax^{H-3}-eq^{H-2}) H-4: t, J = 9.4 Hz (ax^{H-3}-ax^{H-4} and ax^{H-4}-ax^{H-5}) H-5: ddd, J = 9.0 Hz (ax^{H-5}-ax^{H-4}), 6.0 Hz (ax^{H-5}-H-6), 2.1 (ax^{H-5}-H-6)

NOESY-NMR: H-H long range NOE coupling interaction

¹H NMR: H-H coupling constants

H-1: d, J = 3.5 Hz (H-1–H-2) H-2: t, J = 3.2 Hz (H-2–H-1 and H-2–H-3) H-3: dd, J = 6.1 Hz (H-3–H-4), 2.9 Hz (H-3–H-2) H-4: dd, J = 6.3 Hz (H-4–H-3), 4.9 Hz (H-4–H-5) H-5: d, J = 4.8 Hz (H-5–H-4)

NOESY-NMR: H-H long range NOE coupling interaction

¹H NMR: H-H coupling constants

H-1: d, J = 1.5 Hz (eq^{H-1}-ax^{H-2}) H-2: signal overlaps with H-3 H-3: signal overlaps with H-2 H-4: dd, J = 6.0 Hz (eq^{H-4}-eq^{H-3}), 5.0 Hz (eq^{H-4}-eq^{H-5}) H-5: d, J = 5.0 Hz (eq^{H-5}-eq^{H-4})

¹*H* NMR: *H*-*H* coupling constants

H-1: signal overlaps with Me (C-2) H-2: t, J = 2.9 Hz (H-2–H-1 and H-2–H-3) H-3: dd, J = 7.1 Hz (H-3–H-4), 3.2 Hz (H-3–H-2) H-4: dt, J = 6.9 Hz (H-4–H-3 and H-4–H-5), 3.4 Hz (H-4–H-5) H-5_{ax}: dd, J = 11.8 Hz (geminal), 6.8 Hz (H-5–H-4), signal in close proximity with H-1, indicating H-1 to be axial oriented (which is confirmed by NOESY): H-5_{eq}: dd, J = 11.7 Hz (geminal), 3.7 Hz (H-5–H-4)

For further structure elucidation see section "NMR simulations of selected glycosides".

¹H NMR: H-H coupling constants

H-1: s (signal overlaps partly with H-5_{eq}) H-2: signal overlaps with H-4 H-3: t, J = 8.3 Hz (ax^{H-3}-ax^{H-2} and ax^{H-3}-ax^{H-4}) H-4: signal overlaps with H-2 H-5_{ax}: dd, J = 11.2 Hz (geminal), 9.9 Hz (ax^{H-5}-ax^{H-4}) H-5_{eq}: dd, J = 11.0 Hz (geminal) 5.0 Hz (eq^{H-5}-ax^{H-4}), signal overlaps with H-1, and therefore H-1 can only be also an equatorial hydrogen (as result of the symmetry in the molecule)

NOESY-NMR: H-H long range NOE coupling interaction

¹H NMR: H-H coupling constants

H-1: $d J = \pm 0.5 \text{ Hz} (ax^{\text{H-1}}-eq^{\text{H-2}})$ H-2: $dd, J = 3.4 \text{ Hz} (eq^{\text{H-2}}-ax^{\text{H-3}}), 0.9 \text{ Hz} (eq^{\text{H-2}}-ax^{\text{H-1}})$ H-3: $dd, J = 3.5 \text{ Hz} (ax^{\text{H-3}}-eq^{\text{H-2}}), 9.5 \text{ Hz} (ax^{\text{H-3}}-ax^{\text{H-4}})$ H-4: $t, J = 9.3 \text{ Hz} (ax^{\text{H-3}}-ax^{\text{H-4}} \text{ and } ax^{\text{H-4}}-ax^{\text{H-5}})$ H-5: signal overlaps with H-1 and H-3

NOESY-NMR: H-H long range NOE coupling interaction

DFT computed NMR simulations of selected glycosides

Donor S6

H-H coupling	Exp.	DFT Calcs. ¹
Н-1-Н-2	4.0 Hz	3.3 Hz
H-2-H-3	2.6 Hz	3.1 Hz
H-3-H-4	5.7 Hz	6.4 Hz
H-4-H-5	2.5 Hz	3.9 Hz
H-4-H-5	4.3 Hz	6.7 Hz
Н-5-Н-5	12.3 Hz	12.5 Hz

¹Boltzmann weighted averaged coupling constants based on the ${}^{4}C_{1}$ and ${}^{1}C_{4}$. Computed using B3LYP/6-311g(d,p) u+1s (*T*=293.15 K) PCM=chloroform and a scaling factor of 0.92.

Donor S7

H-H coupling	Exp.	DFT Calcs. ¹
H-1-H-2	6.1 Hz	5.0 Hz
Н-2-Н-3	6.5 Hz	7.1 Hz
Н-3-Н-4	3.1 Hz	3.3 Hz
H-4-H-5	2.8 Hz	3.1 Hz
H-4-H-5	5.8 Hz	5.3 Hz
Н-5-Н-5	12.0 Hz	11.2 Hz

¹Boltzmann weighted averaged coupling constants based on the ${}^{4}C_{1}$ and ${}^{1}C_{4}$. Computed using B3LYP/6-311g(d,p) u+1s (*T*=293.15 K) PCM=chloroform and a scaling factor of 0.92.

H-H coupling	Exp.	DFT Calcs. ¹
H-1 _b -H-2	2.8 Hz	3.5 Hz
H-2-H-3	3.0 Hz	3.1 Hz
H-3-H-4	6.4 Hz	6.1 Hz
H-4-H-5	3.5 Hz	3.1 Hz
H-4-H-5	6.1 Hz	5.0 Hz
Н-5-Н-5	11.8 Hz	12.0 Hz

¹Boltzmann weighted averaged coupling constants based on the ${}^{4}C_{1}$ and ${}^{1}C_{4}$. Computed using B3LYP/6-311g(d,p) u+1s (*T*=293.15 K) PCM=chloroform and a scaling factor of 0.92.

If H-1_a was present: H-1_a-H-2: 6.7 Hz

NMR spectra of new and selected compounds

HH-COSY NMR, CDCl₃ of Donor $\mathbf{S6}$

HSQC NMR, CDCl₃ of Donor S6

NOESY NMR, CDCl₃ of Donor $\mathbf{S6}$

HMBC-GATED NMR, CDCl3 of Donor S6

174

¹H NMR, 400 MHz, CDCl₃ of Donor **S7**

¹³C NMR, 101 MHz, CDCl₃ of Donor S7

HH-COSY NMR, CDCl₃ of Donor $\mathbf{S7}$

HSQC NMR, CDCl₃ of Donor **S7**

NOESY NMR, CDCl₃ of Donor $\mathbf{S7}$

HMBC-GATED NMR, CDCl3 of Donor S7

$^1\mathrm{H}$ NMR, 500 MHz, CDCl3 of Donor $\mathbf{S8}$

 $^{13}\mathrm{C}$ NMR, 126 MHz, CDCl_3 of Donor $\boldsymbol{S8}$

HH-COSY NMR, CDCl₃ of Donor S8

HSQC NMR, CDCl3 of Donor S8

NOESY NMR, CDCl3 of Donor S8

HMBC-GATED NMR, CDCl3 of Donor S8

$^1\mathrm{H}$ NMR, 400 MHz, CDCl3 of Donor $\mathbf{89}$

HSQC NMR, CDCl3 of Donor S9

¹H NMR, 500 MHz, CDCl₃ of Donor **S10**

1-1222 1-1222

¹H NMR, 400 MHz, CDCl₃ of Donor **S11**

¹³C NMR, 101 MHz, CDCl₃ of Donor S11

HSQC NMR, CDCl3 of Donor S11

NOESY NMR, CDCl₃ of Donor S11

HMBC-GATED NMR, CDCl3 of Donor S11

¹H NMR, 400 MHz, CDCl₃ of Donor **S14**

HH-COSY NMR, $CDCl_3$ of Donor S14

¹H NMR, 400 MHz, CDCl₃ of Donor **S15**

$^1\mathrm{H}$ NMR, 500 MHz, CDCl3 of Donor $\mathbf{S18}$

¹H NMR, 400 MHz, CDCl₃ of Donor **S19**

^1H NMR, 500 MHz, CDCl₃ of Donor **S20**

¹H NMR, 500 MHz, CDCl₃ of Donor **S31**

$^{13}\mathrm{C}$ NMR, 126 MHz, CDCl_3 of Donor S31

HSQC NMR, CDCl3 of Donor S31

NOESY NMR, CDCl₃ of Donor S31

HMBC-GATED NMR, CDCl3 of Donor S31

200

$^1\mathrm{H}$ NMR, 500 MHz, CDCl3 of Donor $\mathbf{S32}$

¹³C NMR, 126 MHz, CDCl₃ of Donor S32

HH-COSY NMR, CDCl₃ of Donor $\mathbf{S32}$

HSQC NMR, CDCl₃ of Donor S32

 $^1\mathrm{H}$ NMR, 400 MHz, CDCl3 of Donor $\mathbf{S33}$

HH-COSY NMR, CDCl₃ of Donor $\mathbf{S33}$

 $^1\mathrm{H}$ NMR, 400 MHz, CDCl3 of Donor $\mathbf{S34}$

HH-COSY NMR, $CDCl_3$ of Donor S34

¹H NMR, 400 MHz, CDCl₃ of compound S35

¹³C NMR, 101 MHz, CDCl₃ of compound **S35**

HH-COSY NMR, CDCl₃ of compound $\mathbf{S35}$

HSQC NMR, CDCl₃ of compound $\mathbf{S35}$

NOESY NMR, $CDCl_3$ of compound S35

¹H NMR, 400 MHz, CDCl₃ of compound **S36**

¹³C NMR, 101 MHz, CDCl₃ of compound **S36**

HH-COSY NMR, CDCl3 of compound 836

210

HSQC NMR, CDCl₃ of compound $\mathbf{S36}$

NOESY NMR, CDCl3 of compound S36

¹H NMR, 400 MHz, MeOD of compound **S37**

¹³C NMR, 101 MHz, MeOD of compound **S37**

HH-COSY NMR, MeOD of compound S37

HSQC NMR, MeOD of compound S37

NOESY NMR, MeOD of compound S37

¹H NMR, 500 MHz, CDCl₃ of compound **S38**

HH-COSY NMR, CDCl3 of compound S38

HSQC NMR, CDCl₃ of compound **S38**

NOESY NMR, CDCl₃ of compound $\mathbf{S38}$

¹H NMR, 500 MHz, CDCl₃ of compound **S39**

HH-COSY NMR, CDCl₃ of compound S39

HSQC NMR, CDCl₃ of compound **S39**

¹H NMR, 500 MHz, CDCl₃ of compound S40

7,44 7,742 7,742 7,742 7,345 7,457 7 - 4.57 4.57 4.55 4.55 4.55 4.55 3.72 3.72 3.72 3.570 3.570 3.570 3.570 3.570 3.570 3.570 3.570 3.570 3.570 3.570 3.547 3.573 3.570 3.572 5 BnO[.] lOBn BnO Bn BnÓ ЫBn I 15.90 2.02 J 4.06 -1.00 J 3.04] 2.03] Б 0 5 3 7 6 2 1 4 f1 (ppm)

¹³C NMR, 126 MHz, CDCl₃ of compound **S40**

HH-COSY NMR, CDCl₃ of compound $\mathbf{S40}$

HSQC NMR, CDCl3 of compound S40

NOESY NMR, CDCl₃ of compound $\mathbf{S40}$

¹H NMR, 500 MHz, MeOD of compound **S41**

¹³C NMR, 126 MHz, MeOD of compound **S41**

HH-COSY NMR, MeOD of compound S41

HSQC NMR, MeOD of compound S41

NOESY NMR, MeOD of compound S41

HMBC NMR, MeOD of compound S41

¹H NMR, 400 MHz, CDCl₃ of compound S42 (pre-activation Tf₂O/Ph₂SO based *D*-glycosylation in DCM)

¹³C NMR, 101 MHz, CDCl₃ of compound **S42**

HH-COSY NMR, CDCl₃ of compound $\mathbf{S42}$

HSQC NMR, CDCl₃ of compound $\mathbf{S42}$

NOESY NMR, CDCl3 of compound S42

¹H NMR, 400 MHz, CDCl₃ of compound S42 (pre-activation Tf₂O/Ph₂SO based *D*-glycosylation in Et₂O)

¹H NMR, 400 MHz, CDCl₃ of compound **S42** (TMSOTf activation based *D*-glycosylation)

¹H NMR, 500 MHz, CDCl₃ of compound S43

HH-COSY NMR, CDCl3 of compound S43

NOESY NMR, $CDCl_3$ of compound S43

 $^1\mathrm{H}$ NMR, 400 MHz, CDCl3 of compound S44

 ^{13}C NMR, 101 MHz, CDCl3 of compound S44

HSQC NMR, CDCl₃ of compound $\mathbf{S44}$

NOESY NMR, CDCl3 of compound S44

¹H NMR, 400 MHz, CDCl₃ of compound S45 (pre-activation Tf₂O/Ph₂SO based *D*-glycosylation in DCM)

 ^{13}C NMR, 101 MHz, CDCl3 of compound S45

HH-COSY NMR, CDCl₃ of compound $\mathbf{S45}$

HSQC NMR, CDCl₃ of compound $\mathbf{S45}$

NOESY NMR, $CDCl_3$ of compound S45

¹H NMR, 400 MHz, CDCl₃ of compound S45 (pre-activation Tf₂O/Ph₂SO based *D*-glycosylation in Et₂O)

¹H NMR, 400 MHz, CDCl₃ of compound **S45** (pre-activation Tf₂O/Ph₂SO based *D*-glycosylation in MeCN)

¹H NMR, 400 MHz, CDCl₃ of compound **S45** (TMSOTf activation based *D*-glycosylation)

^{13}C NMR, 101 MHz, CDCl3 of compound S45

¹H NMR, 500 MHz, CDCl₃ of compound **S46**

¹³C NMR, 126 MHz, CDCl₃ of compound S46

HSQC NMR, CDCl₃ of compound **S46**

¹H NMR, 400 MHz, CDCl₃ of compound S47 (pre-activation Tf₂O/Ph₂SO based *D*-glycosylation in DCM)

HH-COSY NMR, CDCl₃ of compound S47

HSQC NMR, CDCl3 of compound S47

¹H NMR, 400 MHz, CDCl₃ of compound S47 (TMSOTf activation based *D*-glycosylation)

¹³C NMR, 101 MHz, CDCl₃ of compound S47

¹H NMR, 500 MHz, CDCl₃ of compound **S48**

¹³C NMR, 126 MHz, CDCl₃ of compound **S48**

HSQC NMR, CDCl₃ of compound S48

5.0

4.9

4.8

4.7

4.6

4.5

4.4

4.3 f2 (ppm) 4.1

4.2

4.0

3.9

3.8

3.7

- 5.0

3.6

¹H NMR, 500 MHz, CDCl₃ of compound S49

HH-COSY NMR, CDCl₃ of compound S49

HSQC NMR, CDCl3 of compound S49

NOESY NMR, CDCl₃ of compound S49

¹H NMR, 500 MHz, CDCl₃ of compound **S50**

¹³C NMR, 126 MHz, CDCl₃ of compound **S50**

HSQC NMR, CDCl₃ of compound S50

253

¹H NMR, 400 MHz, CDCl₃ of compound **S51**

HH-COSY NMR, CDCl3 of compound S51

HSQC NMR, CDCl₃ of compound $\mathbf{S51}$

HSQC NMR, CDCl₃ of compound **S51** (cropped)

NOESY NMR, CDCl3 of compound **S51**

256

¹H NMR, 500 MHz, CDCl₃ of compound **S52**

NOESY NMR, $CDCl_3$ of compound S52

HSQC NMR, CDCl₃ of compound $\mathbf{S53}$

¹H NMR, 500 MHz, CDCl₃ of compound **S54**

HH-COSY NMR, CDCl3 of compound S54

HSQC NMR, CDCl3 of compound S54

¹H NMR, 500 MHz, CDCl₃ of compound **S55**

¹³C NMR, 126 MHz, CDCl₃ of compound **S55**

HH-COSY NMR, CDCl₃ of compound $\mathbf{S55}$

NOESY NMR, $CDCl_3$ of compound S55

¹H NMR, 400 MHz, CDCl₃ of compound **S56** (cropped)

 ^{13}C NMR, 101 MHz, CDCl3 of compound S56

HH-COSY NMR, CDCl3 of compound S56

HSQC NMR, CDCl3 of compound S56

NOESY NMR, CDCl₃ of compound $\mathbf{S56}$

HMBC NMR, CDCl₃ of compound S56

¹H NMR, 500 MHz, CDCl₃ of compound **S57**

¹H NMR, 500 MHz, CDCl₃ of compound **S57** (cropped)

¹³C NMR, 101 MHz, CDCl₃ of compound **S57**

HSQC NMR, CDCl₃ of compound S57

NOESY NMR, $CDCl_3$ of compound S57

HMBC NMR, $CDCl_3$ of compound S57

¹H NMR, 500 MHz, CDCl₃ of compound **S58**

¹³C NMR, 126 MHz, CDCl₃ of compound **S58**

HSQC NMR, CDCl₃ of compound $\mathbf{S58}$

¹H NMR, 500 MHz, CDCl₃ of compound **S59**

HH-COSY NMR, CDCl₃ of compound $\mathbf{S58}$

HSQC NMR, CDCl₃ of compound S58

NOESY NMR, CDCl₃ of compound S58

 $^{13}\mathrm{C}$ NMR, 126 MHz, CDCl₃ of compound **33**

HSQC NMR, CDCl₃ of compound ${\bf 33}$

¹³C NMR, 126 MHz, CDCl₃ of Donor 34

HSQC NMR, CDCl3 of Donor 34

