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SUPPLEMENTARY MATERIAL

A. Decomposition of the force matching error

The decomposition of the force matching error (4) can be achieved by adding and subtracting the mean force
(5) and splitting the norm:
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This expression is equivalent to Eq. (6). as the mixed term is zero:〈〈
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The decomposition of the expected prediction error in the form of Eq. (11) can be achieved by adding and
subtracting the mean estimator f̄(X) = E [−∇U(X;θ)]:
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where ∗ is the element-wise product. We follow standard results for regression. For the mixed term we can
use
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and this expectation value disappears:

E [A ∗B] = E
[(
f(X)− f̄(X)

)
∗
(
f̄(X) +∇U(X;θ)

)]
= E [f(X)] ∗ f̄(X) + E [f(X) ∗ ∇U(X;θ)]− E

[
f̄(X) ∗ f̄(X)

]
− f̄(X) ∗ E [∇U(X;θ)]

= f(X) ∗ f̄(X)− f(X) ∗ f̄(X)− f̄(X) ∗ f̄(X) + f̄(X) ∗ f̄(X)

= 0.

The remaining terms define bias and variance.

B. Cross-validation for the coarse-graining of the 2d toy model

We report here the results from cross-validation for the choice of hyper-parameters for the coarse-graining
of the 2d toy model discussed in the main text.
The feature regression for the coarse-graining of the 2 dimensional toy model is performed with the twenty
basis functions listed in Table S1 selected as features. Cross-validation is performed with the Stepwise Sparse
Regressor introduced in1. The minimum cross-validation error is obtained when the first four functions are
used as features, as shown in Fig. S1.

Table S1. Twenty elementary basis functions.

function ID function, f(x) function ID function, f(x)

1 1 11 x10

2 x 12 sin(x)

3 x2 13 cos(x)

4 x3 14 sin(6x)

5 x4 15 cos(6x)

6 x5 16 sin(11x)

7 x6 17 cos(11x)

8 x7 18 tanh(10x)

9 x8 19 tanh2(10x)

10 x9 20 e−50x2

The results from the cross-validation of the CGnet for the toy 2 dimensional system are reported in Tables
S2 and Fig. S1.
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Table S2. Hyper-parameter optimization for unregularized CGnet of two-dimensional model system. D: network
depth, W : network width. The unit of the cross-validation error is (kBT )2 , with the unit of length equal to 1.

D (W = 20) Cross-validation error

1 0.3785 ± 0.0024
2 0.5457 ± 0.0973
3 0.7339 ± 0.0298
4 0.5695 ± 0.0172
5 0.8543 ± 0.1227

W (D = 1) Cross-validation error

5 0.5674 ± 0.0044
10 0.8762 ± 0.0048
20 0.3785 ± 0.0024
40 0.3729 ± 0.0017
60 0.3703 ± 0.0013
80 0.3682 ± 0.0013
100 0.3671 ± 0.0013
120 0.3661 ± 0.0012
150 0.3661 ± 0.0012
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Figure S1. Model selection for CG model of 2D system using cross-validation. a) Choice of the set of feature functions
for feature regression. b) First stage of regularized CGnet hyper-parameter selection: the optimal number of layers,
D. c). Second stage of regularized CGnet hyperparameter selection: the optimal number of neurons per layer, W .
Red dashed lines indicate the minimal cross-validation error. Error bars represent the standard error of the mean
cross-validation error over five cross-validation folds, in panels a) and c) the error bars are invisible as they are smaller
than the marker. The unit of the cross-validation error is (kBT )2 , with the unit of length equal to 1.
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C. Training CG models

Networks were optimized using the Adam adaptive stochastic gradient descent method2 with default settings
using the PyTorch program. The batch-size was 128 for the 2D model and 512 for alanine dipeptide. The
convergence of the training error and validation error for the 2d toy model and alanine dipeptide is shown
in Fig. S2 below.
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Figure S2. Training error and validation error for (a) the 2D model and (b) alanine dipeptide. In (a), the model is
the regularized CGnet, in (b), the model is the regularized CGnet and the spline model, which is also regularized. All
errors are averaged over 200000 points – for the training error this is done by averaging over the most recent batches,
while the validation error is shown for a fixed validation set. Note that the hyper-parameter choices are made via
cross-validation. The unit of the error is (kBT )2 in (a) and [kcal/(mol·̊A)]2 in (b).
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D. Distribution of bond distances and angles for the different models of alanine dipeptide

a) b) c)

d) e) f)

g)
bond1 / Å bond2 / Å bond3 / Å

bond4 / Å

All-atom model
Regularized CGnet model
Unregularized CGnet model
Spline CG model

Figure S3. Probability density distribution for three angles a)- c), and four bonds d)-g) for the alanine dipeptide
models. Each panel contains the distribution from four models: All-atom model (blue), regularized CGnet model
(red), unregularized CGnet model (cyan), spline CG model (green). The distribution for regularized CGnet and
spline model (with regularization) agree with the true all-atom one. The distribution for the unregularized CGnet
has a wide range, which makes the distributions for the other models appear very narrow in d)-g). The insets in d)-g)
present zoomed views of the distributions in the correct range.
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E. Changes in the free energy of alanine dipeptide with different hyper-parameters

In order to show how the free energy is approximating the atomistic free energy as the hyper-parameters
gradually reach the optimal values, we select five hyper-parameters for CGnet (C1, C2, C3, C4, C5) and
four for the Spline model (S1, S2, S3, S4), as indicated in Fig. 5 in the manuscript. For each of these
combinations of hyper-parameters, we report the corresponding two dimensional free energy profiles in Fig.
S4 and Fig. S5 (in addition to the free energy profile for the global optima reported in Fig. 6). The figures
show that as the hyper-parameters get closer to the optimal values the model free energy landscape becomes
closer to the atomistic free energy landscape.
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Figure S4. Comparison of the free energy profiles of CGnet models of alanine dipeptide with different choices of
hyper-parameters. (a)-(d) Free energy profiles with hyperparameters corresponding to the combination indicated as
C1, C2, C3, C4 in Fig. 5. The choice of hyperparameters C5 correspond to the global optimum and is reported in Fig.
6c. (e) Comparison between the cross validation error (in [kcal/(mol·̊A)]2) and mean square free energy difference
(in [kBT ]2) for the five selected hyperparameters. The value of 381 is subtracted from the cross validation error to
obtain values in the similar range as the free energy differences.
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Figure S5. Comparison of the free energy profiles of the spline models of alanine dipeptide with different choices of
hyper-parameters. (a)-(d) Free energy profiles with hyperparameters corresponding to the combination indicated as
S1, S2, S3, S4 in Fig. 5. The choice of hyperparameters S4 correspond to the global optimum and is also reported
in Fig. 6b. (e) Comparison between the cross validation error (in [kcal/(mol·̊A)]2) and mean square free energy
difference (in [kBT ]2) for the five selected hyperparameters. The value of 380 is subtracted from the cross validation
error to obtain values in the similar range as the free energy differences.
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F. Energy decomposition for the CGnet model of alanine dipeptide.

As discussed in the main text, the use of a baseline energy to enforce physical constraints plays an important
role in the CGnet model. Here we report the decomposition of the total CGnet energy into the contribution
of the baseline (prior) energy and the energy of the neural network. Figs. S6a-c report the decomposition for
each point sampled in the simulations performed with CGnet. Fig. S6d-f report the same quantity averaged
over different bins in the space spanned by the dihedral angles. The figures show that the network energy
captures the overall features of the free energy landscape for this molecule, while the prior energy seems to
play an important role to enforce physical constraints mostly at the edges of the populated regions in the
landscape. This is in agreement with the intuition that the prior energy term makes the system avoid high
energy regions not visited in the training data.

U(x) / kBT U(x) / kBT U(x) / kBT

U(x) / kBTU(x) / kBTU(x) / kBT

a) b) c)

d) e) f)

Total energy Network energy Prior energy

Average total energy Average network energy Average prior energy

Figure S6. CGnet energy decomposition for the alanine dipeptide. In each simulated point, the total CGnet energy
(a) is decomposed in the energy contribution from the dense net (b), and the baseline (or prior) energy (c). In each
bin in the dihedral angles space, the average total energy (d) is decomposed into the average dense net energy (e),
and average prior energy (f).

G. Chignolin setup and simulation

The initial structure of Chignolin was generated starting from the cln025 peptide3, with sequence TYR-TYR-
ASP-PRO-GLU-THR-GLY-THR-TRP-TYR. The structure was solvated in a cubic box of 40 Å, containing
1881 water molecules and two Na+ ions to neutralize the peptide’s negative charge, as described in4. MD
simulations were performed with ACEMD5, using CHARMM22*6 force field and TIP3P7 water model at
350K temperature. A Langevin integrator was used with a damping constant of 0.1 ps−1. Integration time
step was set to 4 fs, with heavy hydrogen atoms (scaled up to four times the hydrogen mass) and holonomic
constrains on all hydrogen-heavy atom bond terms8. Electrostatics were computed using Particle Mesh Ewald
with a cutoff distance of 9 Å and grid spacing of 1 Å. Ten NVT simulations of 1 ns length were carried out,
with a dielectric constant of 80 and temperature of 350K to generate ten different starting conformations
for the production runs. Production simulations consisted of 3744 independent simulations of 50 ns, for a
total aggregate time of 187.2 µs. All the simulations were run using the GPUGRID9 distributed computing
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platform. The first 1000 simulations were spawned from the 10 conformations obtained previously. The
remaining 2744 simulations were spawned using the adaptive sampling10 protocol implemented in HTMD11.
In adaptive sampling, multiple rounds of simulations are performed, and each round the available trajectories
are analyzed to select the initial coordinates for the next round of simulations. Each round was done every
10 to 20 simulations, respawning an equivalent amount of new simulations. Initial coordinates for the
respawned simulations were selected proportionally to the inverse of the number of frames per macrostate as
explained in11. The Markov State Model12–16 constructed during the analysis was done using atom distances
as projected metric, TICA17,18 for dimensionality reduction method and k-Centers for clustering. Force data
used for training CGnet was obtained from the MD simulation trajectories. ACEMD was used to read the
Chignolin trajectories and compute forces for all atoms for each simulation frame, using the same parameters
used for the MD simulations.

H. Markov State Model analysis of Chignolin all-atom simulations

MD simulation data of Chignolin from GPUGrid was featurized into all pairwise Cα distances excluding
pairs of nearest neighbors residues (a total of 45 distances). Time-lagged independent component analysis
(TICA)17,18 was carried out with a lag τ = 25 ns. By using kinetic-map19,20 and a kinetic variance cutoff of
95%, 4 TICs were retained for further analysis. The 4 TICs were clustered into 350 discrete states using the
k-means algorithm. All MD data was mapped onto their discrete states and used for Markov state model
(MSM) estimation. The implied-timescales, ti = − τ

log |λi| , become constant as a function of lag-time (τ)
within statistical uncertainty for lag-times above approximately 20 ns. Spectral analysis of a Markov state
model estimated at a lagtime τ = 37.5 ns reveal a spectral gap after the third implied-timescale suggesting
4 meta-stable states (Fig. S7). Plotting the populations of the meta-stable states as function of lag-time
show that these are stable for τ > 10 ns, and that three of the four meta-stable states have significant
probability mass > 1%. These three most stable meta-stable states were used as reference states a, b and c,
ordered alphabetically from most to least populated (shown in Fig. 7a). To account for the non-equilibrium
nature of the multiple short molecular dynamics trajectories, we used the estimated MSM (τ = 37.5 ns) to
reweighed data prior to calculating the reference free energy profiles. These analyses were carried out using
the PyEMMA21 and MDTraj22 software packages.
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Figure S7. Validation of a convergence of the Chignolin all-atom Markov model, which is estimated at τ = 37.5 ns.
Top: Stationary probabilities of metastable states. Bottom: MSM implied time scales.
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I. Hyper-parameter optimization for Chignolin CG models

a) b)

c) d)

e) f)
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Figure S8. Five-stage cross-validation of the hyper-parameters for the CG models of Chignolin. (a) Selection of the
number of layers, D. (b) and (c) Selection of the number of neurons per layer, W. (d) Selection of the exponent of the
excluded volume term, c. (d) Selection of the effective excluded volume radius, σ. (f) Selection of of the Lipschitz
regularization strength, λ. The optimal values are indicated by orange squares and are used to generate the results
reported in Fig. 7.
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